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EXPANSION OF ANALYTIC FUNCTIONS OF AN OPERATOR
IN SERIES OF FABER POLYNOMIALS

MAURICE HASSON

Let T : B —> B be a bounded linear operator on the complex Banach space B and
let f(z) be analytic on a domain D containing the spectrum Sp(T) of T. Then
f(T) is denned by

where C is a contour surrounding Sp(T) and contained in D.
If there exists a € C and r > 0 such that the disk \z - a\ < r contains Sp(T)

and is contained in D, then

where

n=0

is the power series representation of /(z) in \z — a\ < r. If, however, for every disk
oo

A C D, we have A 7S Sp(T), then the series ^ an(T — a)" cannot converge no
n=0

matter what point a 6 D is chosen.
The purpose of this paper, for a given operator T and function f(z) whose

domain D contains Sp (T), is to find an expansion

in a series of polynomials Fn(z) where the convergence is uniform on compact
subsets of some open set containing Sp(T) and such that

where f(T) is defined as above, and where the convergence takes place in the
operator norm topology.
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304 M. Hasson [2]

I. INTRODUCTION

Let T : B —> B be a bounded linear operator on the complex Banach space B and
let f(z) be analytic on a domain D containing the spectrum Sp(T) of T. Then f(T)
is defined by the well known formula

(1.1) f(T):=^-. f
2-KI JcIc

where C is a contour surrounding Sp (T) and contained in D.

If there exists a € C and r > 0 such that the disk \z - a\ < r contains Sp(T) and

is contained in D, then
oo

f(T) = J2an(T-a)n

n=0
where

oo

n=0

is the power series representation of f(z) in \z — a\ < r. See [4] and [8]. However the
spectral radius formula shows that the above geometric condition is also necessary:

PROPOSITION 1 . 1 . If, for every disk A = AQ of center a with A C D, we
oo

have A 7$ Sp(T), then the series £2 an(T — a)n cannot converge no matter what point
71=0

a G D is chosen, and where the an are as above.
PROOF: The above hypothesis, the fact that SP(T - a) — SP(T) - a and the

Cauchy-Hadamard formula for the radius of convergence show that
(1-2)

limsup ^
n—•oo

where | |T||S is the spectral norm of T. Now the spectral radius formula

iim||rf/n =

and (1.2) yield

limsup v | a n

(1.3)

= 1.

Relation (1.3) shows that the series

71=0

cannot converge.
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REMARK. In fact the above proof shows slightly more. (We are grateful to Michael
Vogelius for having made this observation.) If a G D is such that every disk centered at

oo

a and contained in D does not contain Sp(T) then the series J2 an(T - a)n cannot
n=0

converge.
The simple example below illustrates the situation.
Let a € C, a ^ 0, and let T : C2 -> C2 be defined by T(zi,z2) = (-azi,az2) so

that its matrix representation with respect to the basis (1,0), (0,1) is

0 a

Let f(z) = \/z and let a ^ 0 be a complex number. We remark that, indeed, there is
no (open) disk A with 0 ^ A and -a, a € A. We have

1 v \ i r(z-o)" , ,

However the series

z * — i ~ - a"
n = 0

l A \n * oc / /1 \ I \ n n

l " ' ~ ^ ^ = a^n
[~ } \ 0 ((a-a)ar

n=0 n=0

does not converge because |(—a — a)/a\ > 1 or \(a — a)/a\ > 1 as is readily verified by
using the law of cosines.

The purpose of this paper, for a given operator T and function f(z) whose domain
D contains Sp{T), is to find an expansion

n = 0

in a series of polynomials Fn (z) where the convergence is uniform on compact subsets
of some open set containing Sp(T) and such that

n=0

where f{T) is defined as in (1.1), and where the convergence takes place in the operator

norm topology. Moreover we shall show that in an " ./V̂  root sense" to be made precise

later, the speed of convergence

N

f(T)-Y,c
n=0
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where ||.|| denotes the operator norm on C(B), is dominated by

N

n=0 SP(T)

where H-Ĥ , denotes the supremum norm on the set E C C.

We remark that if T is a normal operator on a Hilbert space then the spectral
theorem tells us that

N

n = 0

N

71 = 0 SP(T)

rthTo prove the same relation in an "Nla root sense" in the case of a general operator
requires the use of an appropriate contour C in the complex plane in relation (1.1).
This contour will happen to be the level curve of some conformal mapping, as will be
shown in Section III. In that sense the proof of our main result has some similarities
with the proof of the classical result [4, 14] that Sp(T) C open left half plane = >
\\etT\\ —> 0 as t —>• oo, where an appropriate contour C also has to be chosen. However
in the latter setting, C is a contour enclosing Sp(T) and bounded away from the y-axis,
and conformal mapping plays no role.

The polynomials Fn(z) happen to be the Faber polynomials for (an appropriate set
E containing) Sp{T) and the next section is devoted to the review of these polynomials.
Section III contains the statement and proof of our main result. The last section is
devoted to illustrative examples.

II. PRELIMINARIES FROM APPROXIMATION THEORY IN THE COMPLEX PLANE

In this section we state, mostly without proof, results of complex approximation
theory which will be needed in the next section. We follow essentially three sources:
[11, 12, 13].

Let £ be a compact simply connected set of the complex plane containing more
than one point and let u> — 4>{z) map conformally E x t ( £ ) into \w\ > 1 and with
4>{oo) = oo. The map <j>(z) has the form

= -+ao+ —
c z

—
zz

The number c > 0 is the capacity Cap (E) of the set E. The Faber polynomials for E,
Fn(z), consist of the polynomial part of <t>(z)n. The inverse map is denoted z = ip(uj)
and has the form
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For p > 1 let Tp be the level curve

Tp:={zGC; \<f>(z)\=p}.

As an example consider E = [—1,1]. Then

and

Hence Fp (p > 1) is the ellipse with foci [—1,1] and p + 1/p, (p - 1/p) for lengths
of its axes. The Faber polynomials for [—1,1] are Fn{z) = 2Tn(z) where Tn(x) =
cos (n arccos x) are the Chebyshev polynomials. (See the remark following the proof of
Walsh's theorem below.)

If the mapping function extends continuously and in an bijective manner to the
boundary Br(E) of E, which is the case if Br(E) is a Jordan curve, we write I \ =
Br(E). In that case the mapping function and its inverse are still denoted by w = <j>{z)
and z — ip(u>) respectively.

The following celebrated theorem of Walsh [13] will play a fundamental role in the
sequel.

THEOREM 2 . 1 . (Walsh) Let E be as above and let Pn{z) be a polynomial of

degree (at most) n with

\\Pn(z)\\B ^ 1.

Then, for p> 1, one has

\\Pn(z)\\Tp ^ Pn-

Because of the importance of this theorem in our work, we give a simplified proof

of it made possible by the additional assumption that B r (E) is a Jordan curve. In that

case the maximum principle extends to the extended mapping function.

P R O O F : Because the Laurent expansion at u) = oo of z — ip(uj) is of the form

T/J(U>) = c w + b0 + (6_i/w) + (6_ 2 /w 2 ) + . . . , the function Pn(tp(u))) has a pole of order

n at oo. It follows tha t

is analytic at oo. Now the maximum principle yields, for p ^ 1,

SUP ^1±L^-^L -> s u p

|w| = l W " \w\=p
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Walsh's theorem follows if we remark that

sup \Pnty(uj))\ = sup \Pn{z)\.
\u,\=P zerp Q

For a proof of Walsh's theorem in which the hypothesis that Br(E) is a Jordan

curve is deleted, see [11].

Notice that we deviate slightly from the usual definition of the Faber polynomials

in the sense tha t our function w = (f>(z) maps Ext(E) onto |w| > 1 instead of \u\ > c,

where c — Cap (E), as it is usually the case. It follows that the Faber polynomials as

often described in the literature correspond to cnFn(z) here. In particular the Faber

polynomials for [-1,1] are usually (l/2n~1)Tn(z) instead of 2Tn(z). We found it more

convenient to make this modification. For the same reason, our statement of Walsh's

theorem differs from tha t in [11]. Note tha t some authors, like Curtiss in [3], use the

convention adopted here.

Let z e Ext(E) and let p > 1 be such that z e Tp. Then for \u\ > p the

following generating function for the Faber polynomials

- z

holds where the convergence is uniform in the compact subsets of |w| > p.

One of the important consequences of this fundamental relation is the following

expansion of analytic functions in series of Faber polynomials:

THEOREM 2 . 2 . Let f(z) be analytic in a domain D containing E and let Fn(z)

be the Faber polynomials for E. Let p > 1 be such that Tp C D. Then

n=0

where

(2.1) i r /(</>(
2m Jc, u)n-

and where C" is the image by ui = 4>(z) of a closed curve C contained in D and not
intersecting E. Moreover the convergence is uniform in the compact subsets ofint (Tpi)
where p' is the supremum of the numbers p such that Int (Tp) C D.

N
As well known, under mild conditions on Br(E), the partial sums ^2 anFn(z) are,

n=0

up to a factor of Klog(N), the best approximation of f(z) by polynomials of degree
N for the supremum norm on E. See [3, 7, 9]. The following specialised version of
Bernstein's theorem [11] will be needed.
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PROPOSITION 2 . 3 . Let E and p' be as above. Then

N 1/N
lim sup
N-HX> n = 0 E

1_

P1

PROOF: It follows easily from (2.1), by taking C = {\u\ = p}, p < p', that

l imsup|an | 1 / n < —.
n-+oo p

On the other hand (see [9])

for some a. It readily follows that

That is to say

lim sup
JV-K3O

lim sup
N->oo

n=N+l

1/N

N

n=O

1/N

Equality above follows from standard overconvergence arguments. Indeed if strict in-
equality was to prevail above, then f(z) would be analytic in a domain containing
Int Tpti with p" > p', contrarily to the definition of p'. D

III. STATEMENT AND PROOF OF THE MAIN RESULT

Let T : B -t B be a bounded linear operator on the complex Banach space B
and let f(z) be analytic on a domain D containing Sp(T). In what follows we assume
that ~Sp(T) is a connected (compact) set and we designate by E the smallest (compact)
simply connected set containing Sp(T). The non extended mapping functions a> = 4>(z)
and z = ip(ui) are as described in Section II. Remark that | | /(z)| |s m =

 II/(Z)II.E- Our
main results states:

THEOREM 3 . 1 . Let f(z) be analytic on a domain D containing E and let Fn(z)
be the Faber polynomials for E. Let, with an given in (2.1),

n=0

be the expansion of f(z) in Faber polynomials. Then

n = 0
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where

Moreover let p > 1 be such that L c f l . Then

[8]

(3.1) lim sup
N

n=0

l/N

If, in addition, the number p has the following property:

S> p=

then

(3.2)
lim sup

N

n = 0

l/N

= lim sup
W-+OO

_ 1

p

N

/(z) -
n = 0

REMARK. Theorem 2.2 and Proposition 2.3, together with Walsh's theorem and an
appropriate contour C, can be used to show, by following an argument similar to that

oo

of Lemma 3.2 below, that the partial sums of JZ anFn(T) form a Cauchy sequence in
n=0

C(B). Part of the work below consists precisely of proving that the sum is f(T) as
denned in (1.1).

The Proof of Theorem 3.1 relies on several preparatory results.
LEMMA 3 . 2 . Let Pn(z) be a sequence of polynomials each of degree (at most)

n with the following property:

limsup ||Pn(z)
,1/n

= 1.

Then

E tjnA

n=0

n(T)
+ 1

converges uniformly on the compact subsets of \ui\ > 1.

PROOF: In what follows M is a generic constant whose value may change from
occurrence to occurrence. Let e > 0. Then, for n big enough,

Pn(z)|L < ( ! + £ ) " •
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Now

The fact that the curve F i + e is bounded away from Sp(T) and standard continuity (the
curve Fi+ E is analytic) and compactness arguments, together with Walsh's theorem,
yield

sup (|pn(7(t))| | | (7(*K-r)"1 | h'(t)\)

where f(t) is a C 1 parametrisation of F 1 + £ . Hence

\\Pn(T)\\^M(l+e)2n.

It follows, because e > 0 is arbitrary, tha t

n—too

I =In fact the above inequality, the hypothesis limsup ll^nWII^ = 1 and the inequality
n—+00

\\Pn{z)\\B ^ \\Pn{T)\\ imply

limsup | |Pn
n-»oo

It follows that

n=0

converges uniformly on the compact subsets of \OJ\ > 1 as was to be proved. D

LEMMA 3 . 3 .

is analytic at oo.

PROOF: Remark first that ip(w) is denned for \u\ > 1 so that ip{u>) £ E 3 Sp{T).
Hence i/>(w) — T is invertible and bounded. The term in the highest power of w of the
asymptotic expansion at oo of uixp'{uj) (ip{u) — T) is CUJ{CUI — T) where c is the
capacity of E. But

ouicuj - T ) " 1 = I -\ \- ...
cu

at oo. This shows that the asymptotic expansion

)" 1 /{u) - T ) " 1 = / + — + . . .
cw

is valid at oo.

Hence Lemma 3.3 follows.
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REMARK. What will be used in the proof of Proposition 3.4 below is the fact that the
map

is analytic at oo where X € (C(B)) , the dual of C(B). This follows at once from
Lemma 3.3 and the continuity and linearity of X.

Lemmas 3.2 and 3.3, in conjunction with the Hahn-Banach theorem and the obser-

vation below, will allow us to prove the following extension of the generating function

of the Faber polynomials. As already noticed, H-F^WHE ^ n ° f°r some a. It then

follows that limsup H-FnWHg = 1- This result also follows from the well known
n—>oo

representation formula of Fn(z) in term of 4>{z):

(This also shows that ||.FnCz)||B ^ M if the boundary BT(E) of E is an analytic
curve. See [6].) As in the proof of the usual generating function formula, the following
observation will play a central role.

From the definition of the Faber polynomials Fn(z) we see that

" - Fn(Q

has a zero of order two at oo.

PROPOSITION 3.4.

n=0

holds where the convergence is uniform in the compact subsets of \u>\ > 1.

PROOF: Let C be a contour containing E in its interior, and let C be a contour

with C C Int (C), Int (C) D E. The above observation yields,

Indeed the inner integral above vanishes in view of the zero of order two at £ = oo of

£ >-> (0 (0" - -Fn(0)/(£ - Z) a n d the fact that z € C C Int (C). Now

(3.4)
j _ r j _ r ^(0 ( _ }_i =±_r {z) {z _ }_i
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On the other hand

2TTI Jc £ - z 2m Jc 2m Jc, V(w) - z

2TTZ JCI

where C" is the image by u — <j>{z) of C. Hence (3.3), (3.4) and (3.5) yield

Let now X g (£(f?)) , the dual of C(B). We have, using the continuity and linearity
of the integral and X,

(X,Fn(T)) = -1- f o;"-WH
2m Jci

This shows that (X, Fn(T)) is the coefficient of w~n in the Laurent expansion at w = oo
of

Now by (the remark following) Lemma 3.3 we have that wV'(w) (X, (V'(w) — T)~ ) is
analytic at oo so that its Laurent expansion at oo contains no positive powers of LJ.
That is to say

E
n=0

Now using again the continuity and linearity of X and the fact that, by Lemma 3.2,

(Fn(T))/(u)n+1) converges uniformly on the compact subsets of \u>\ > 1, we obtain
oo

E
n=0

* n=0 '

Hence the Hahn-Banach theorem tells us, because X £ (£(i?)) is arbitrary, that

n=0

where the convergence is uniform in the compact subsets of |a>| > 1, again because
oo
J2 (Fn(T)/u)n+1) converges uniformly on the compact subsets of |w| > 1, as was to

n=0

be proved. U
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REMARK. Proposition 3.4 also shows that Fn(T) is the coefficient of a;"""1 in the
Laurent expansion at oo of

V'M(VM-T)-1.

Proposition 3.4 allows us now to expand f(T) in series of Faber polynomials in T.

THEOREM 3 . 5 . Let f(z) be analytic in a domain D containing Sp(T), let E
be as above and let Fn(z) be the Faber polynomials for E. Then

n=0

where

and

2-KI Jc, un

and where the convergence takes place in C(B).

PROOF: With C, C and C" as in the proof of Proposition 3.4, with the additional
assumption that C C D,

1 f 1 f f(£) i
L T^ d% (z ~ T)~ dz

ni Jc 2m Jc 5 - z

c 2-KI JC - z

S5 X,
n=0

where the last equality is obtained from Proposition 3.4. It follows that

f(T) = YanFn(T)f
n=0

where
1 f / W

2ni JCi u)n
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and where the interchange of the integral with the summation is justified in view of the
uniform convergence of

n=0

on the compact subsets of |w| > 1. D

We now have built the necessary tools for the proof of our main result, Theorem
3.1. In view of Theorem 3.5, only the error estimates remain to be proved. We prove
only (3.2) because this relation clearly implies (3.1).

PROOF OF THEOREM 3.1: We remark that in the formula

du>
1 f /(V'(w)

p' may be taken as close as we please to p as far as p' < p. It follows easily that

l i m s u p | a n | 1 / n ^ -.
n—¥oo P

In fact we have

l imsup|an | 1 / n = -.
n-*oo P

Indeed overconvergence (in the sense of Walsh) arguments show that l imsup|an | ' n <
n—>oo

1/p implies f(z) is analytic in Tg with 5 > p, which is not possible in view of the

definition of p. Now limsup|an | ' " = 1/p implies

limsup
I/AT

(3.6)

On the other hand

(3.7)
n—>oo

It follows from (3.6), (3.7) and standard estimates that

(3.8)

But

(3.9)

lim sup
N—»o

N

n=0

N

f(T)-TanFn(T)
n = 0

l/JV

N

n=0 SP{T)
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We obtain, using the above overconvergence arguments and Proposition 2.3,

JV l /JV

(3.10) lim sup
JV-+00 n = 0

It follows from (3.8), (3.9) and (3.10) that

JV 1/JV

lim sup
JV->oo n=0

1

SP(T)

= lim sup
JV-+00

JV

f{z)-YanFn{z)
n = 0

1/JV

SP(T)

as was to be shown.

The proof of Theorem 3.1 is complete.

IV. CONCLUDING REMARKS

Theorem 3.1 also shows that

JV l / J V

lim
N-nx> n = 0

= 0

if and only if f(z) is entire.

We restricted ourselves to the case when Sp(T) is connected, however this con-
straint is unnecessary. It suffices to take for E a compact simply connected set con-
taining Sp(T) and containing D. However in that case conclusion (3.2) of Theorem
3.1 will have to be replaced by

lim sup
JV->oo

JV

n = 0

1/JV

n = 0

1/JV

E
lim sup

JV-KX)

1

P

which is weaker than (3.2) because now | | / (z) | |B ^ ||/(-z)|| sp(T).

Even if there exists a disk A of center a with D D A D Sp(T), so that expansion
of f(T) in series of monomials (T — a)n is possible, it may be advantageous to expand
f(T) in series of Faber polynomials as the simple example below illustrates. (For the
problem of numerical evaluation of the Faber polynomials see [1, 2, 5] and the references
therein.)
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Let T with SP(T) = [-1,1] and let f(z) = l/(z - 2). Then

f(T) = -
'T'n

n = 0

and

(4.1) lim sup
N

f(T) + E os
'T'n

+ l
n = 0

1/iV

The expansion of / (T) in series of Faber polynomials for [—1,1] is

n = 0

where

with

/WM)i f /W
an = /

2-KiJc w»

aw

and
= 2Tn(z).

(The an are half the Fourier coefficients of l/(cos 6 — 2). See [10].) Now the level curve
which passes through the point 2 is the ellipse T 2 + ^ . It follows by Theorem 3.1 that

(4.2) lim sup
n = 0

1/JV

Comparison of (4.1) with (4.2) shows a faster rate of convergence when the expansion
in series of Faber polynomials is used.

Let now f(z) = l/(z2 + 1/4) and T be as above. Then, in view of Proposition 1.1,
expansion of f(T) in series of monomials (T — a)" is not possible whereas expansion
in series of Faber polynomials for [—1,1] gives

lim sup
Af-KX)

N

n = 0

1/iV

if we remark that the level curve I\1+v/g\ ,2 passes through the points i/2 and —i/2.
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