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Abstract

Differentiation of the well-known addition theorem for Legendre polynomials produces
results for sums over order m of products of various derivatives of associated Legendre
functions. The same method is applied to the corresponding addition theorems for vector
and tensor spherical harmonics. Results are also given for Chebyshev polynomials of the
second kind, corresponding to 'spin-weighted' associated Legendre functions, as used in
studies of distributions of rotations.

1. Introduction

The addition theorem for Schmidt normalized associated Legendre functions, here
denoted P™(cos9) is given by Chapman and Bartels [1] as

K(cos0!)Pn
m(cos62)cosm(<t>x - <fc) = ^ ( c o s G ) . (1)

m=0

Schmidt normalized associated Legendre functions are defined in (50). The symbols
6\ and (f>\ denote the colatitude and east longitude respectively, of a point A on a
spherical surface, whilst Q2 and fa, are the corresponding quantities for another point
B. The symbol © denotes angular length of the great circle arc between the two points

The addition theorem plays an important part in potential theory and is widely
used in a number of geophysical problems, such as geophysical exploration and the
mathematical formulation of the theory of tides. Doodson [2] used the addition
theorem as the basis of his work on the representation of the tide-producing potential.
He used C as the lunar hour angle in place of ((/>i — fa). The lunar hour angle C
1 Department of Applied Mathematics, University of Sydney, Sydney, 2006, Australia.
2Institute of Geophysics and Planetary Physics, Los Angeles, California, 90024, U.S.A.
© Australian Mathematical Society, 1995, Serial-fee code 0334-2700/95

212

https://doi.org/10.1017/S0334270000007670 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007670


[2] Derivatives of addition theorems for Legendre functions 213

0

FIGURE 1. Spherical triangle showing nomenclature used.

increases at the rate of approximately 360° per mean lunar day. The expansion of
P2, P3 and Pi, in terms of cos C, cos 2C, cos 3C and cos AC by means of the addition
theorem (1) was used to separate the so-called 'species of tidal constituents'.

In work on the weighted least squares analysis of geomagnetic field components
X,Y, Z, Whaler and Gubbins [7] required a number of sums over the order m of the
associated Legendre functions of degree n and their derivatives. They report results
obtained using an unpublished method suggested to them by P. H. Roberts, involving
differentiation of the addition theorem (1) with respect to the parameters 9u<j>u62 and

Vector and tensor spherical harmonics given in terms of unit normalised surface
spherical harmonics Y™(6, </>) have been defined in such a way as to satisfy addition
theorems in vector and tensor forms.

In studies of distributions of rotations, the associated Chebyshev functions are
the relevant orthogonal polynomials. They are very closely related to associated
Legendre functions of half-odd integer degree and order, and they also satisfy an
addition theorem. Results for multiple derivatives of this addition theorem are given.
The results include as special cases the spherical trigonometry of hyperspheres used
in dealing with combinations of rotations where a rotation about an axis through a
given angle corresponds to a point on the hypersphere.

https://doi.org/10.1017/S0334270000007670 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007670


214 D.E. Winch and P.H. Roberts [3]

2. Derivatives of 0 , Xi. Xi

Expressions for the partial derivatives of 0 with respect to one of the parameters
9\,fa,92 or 02, are obtained by differentiating the formula known as the cosine rule
of spherical trigonometry

cos 0 = cos By cos 02 + sin 9{ sin 02 cos (fa — fa), (2)

which is the n = 1 case of the addition theorem (1). By making use of the well-known
results from spherical trigonometry

sin 0\ cos 92 — cos 9\ sin 62 cos(fa — <j>2) = sin 0 cos xi. (3)

cos #i sin 02 — sin 0\ cos 92 cos(</>, —(f>2) = sin 0 cos X2, (4)

sin G2 sin(0! — 0j) = sin 0 sin Xi, (5)

sin 6\ sm(fa — fa) = sin 0 sin xi> (6)

the following results for partial derivatives of 0 are obtained:

3 0 30
— = cos xi - 7 r = cos *2, (7)

3 0 30
^ sin xi, —- = -sin<92sinx2- (8)

0
Derivatives of xi and X2 with respect to 6\ and 92 are obtained by differentiating (3)
and (4) with respect to 0\ and 92, making use of the cosine rule (2) and the result from
spherical trigonometry

sin #i sin 92 + cos 9\ cos B2 cos(0i — 4>2) = sin xi sin X2 — cos Xi cos X2 cos 0 , (9)

in which the right-hand side is simply the polar form of the left-hand side. Thus

3X2 sinxi 9X2 . . „ . . . .
= , = — sinx2cot0. (11)

30, sin© 36>2

Derivatives of xi and X2, with respect to fa and fa, are obtained by differentiating (3)
and (4) with respect to fa and fa, and making use of the results

sin 0 cos 0i — cos 0 sin 9{ cos Xi = sin 02 cos X2, (12)

cos0! sin(0i - fa) = sinxi COSX2 + cosxi sinx2cos0, (13)

cos02sin(#i -fa) = cosxi sinx2 + sinxi cosX2cos©, (14)
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to obtain

Derivatives of addition theorems for Legendre functions

9x.
90,

9X2

90!

sin #2 cos X2

sin©

sin 9\ cos Xi
sin©

9X.

902

9X2

902

sin #2 cos xi
sin©

sin 9\ cos X\
sin©

215

(15)

(16)

3. Derivatives of the addition theorem

Differentiation of the addition theorem (1) with respect to the parameters 6\ and
0!, and use of the expressions for the derivatives of 0 , X\ and Xi, given in Section 2,
gives the following addition theorems directly.

^ d P"1 (cos 0,) d Pn (cos 0)
Y^LZ/>m(cose)cosm(0 -02 ) = "\ ; c o s X l , (17)

m=l

-02) = -dPn(™@) sinXl. (18)

Another group of formulae can be obtained by differentiating (17) with respect to
6\, 62, 0i and 02. The second derivative of the Legendre polynomials Pn(cos 0) that
arises can be removed, if required, by making use of the Legendre equation

d2 Pn (cos 0) d Pn (cos 0 )
n; ; + c o t 0 "V + n(n + l)Fn(cos0) = 0.; +cot0
d©2 d@

Thus

2 dPn(cos@) . 2s * + s i n Xicot©, (19)

^ d P™ (cos 6>,) d P™ (cos 62)

m=0 ' 2

= cos x, cos X2 " 1 (20)
d©2 d© sin 0

^— Pn
m (cos 02) sin m(0, - &)

sin0:

d2Pn(cos0) . dPn(cos0)sinxiCOSX2 ,_1X

cosA-,sinX2 — — . (21)
d& sin 0

TFTicosA,sinX2

d®2 d& sin 0
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Differentiate (18) with respect to 9t, 02, to obtain

P " (COS ^ ) Sin 111(0, - 0 2 )

d2Pn(cos&) t^dPn(cos®)[ .
+cot&Jsin^cosx (22)

n (cos 9i) i n V P' (COS Ol) C0S m {<Pi ~
n (cos ©) . . d Pn (cos 0 ) cos x\ c o s X2

s inxs inx + ( 2 3 )

m=l

sin®

Despite their simple appearance, (17)-(23) are not easy to apply. One must first use
(2)-(6) to evaluate xi> Xi - and 0 for the given (0x, 0]) and (92,<f>2). Such complications
do not arise in the special cases given in the following section.

4. Special cases

The sums given in Section 3 for the case n = 1 are well known formulae of
spherical trigonometry: (17) reduces to (3), (18) to (5), (19) to the addition theorem
(1), (20) to (9) and (21) reduces to (13). Equation (23) reduces to the polar form of
the cosine rule of spherical trigonometry

cos(0i — 02) = sin X\ sin X2 cos 0 - cos Xi cos X2- (24)

In the special case that arises when A lies on the same meridian as B and to the
north of it, then from Figure 1, the values of 0 , xu X2, (0i — 02), are given by

® = 92-9u x, = 7r, *2 = 0, 0 , - 0 2 = 0. (25)

With the substitutions indicated in (25), then (1), (17), (19), (20), (23) give the
following duplication formulae

I Pn
m(cos9t)Pn

m(cos92) = Pn[cos(92 - 0,)], (26)
m=0

^ dP?(cose^dP?(cos92) = rdPH(cos0)1
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[6] Derivatives of addition theorems for Legendre functions 217

d®
(30)

e=fl2_e,

These results have been used in spherical harmonic analysis of the geomagnetic main
field as a linear inverse problem (Whaler and Gubbins [7]), and in the theory of
off-centre or eccentric geomagnetic dipoles, for example Elsasser [3]. In the further
special case 0 = 0, when A and B coincide, Q\ — 62 = 0,the results

[Pn(cos®)]@=0 =

(cos 0)1
[sin

dPn(cos@]

\dPn(co
[ d®

— u,

@ d®
Vd2Pn(co
I d®2

d® J0=o

together with (26M30), give the following sums

= -\n(n
0=0

= -\n{n

1),

• 1 ) ,
0=0

m=Q

m=0

E[-
m=0 L
m=o L dO J

= £/!(« + 1),

m=\

(31)

(32)

(33)

(34)

(35)

(36)

(37)

Equation (34) could also have been derived from (33) by differentiation.
A number of other special cases involving sums of higher derivatives are easily

obtained and are included here for completeness. In the special case that arises when
A lies on the same meridian as B and the constraints of (25) apply, differentiate (19)
twice with respect to 02 to obtain

d2P? (cos 0,) d2P? (cos 02)

m=0

Differentiate (22) with respect to fo and 62 to obtain

sinfl,

= 1̂ 1
d62

dPn(cos®)

https://doi.org/10.1017/S0334270000007670 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007670


218 D.E. Winch and P.H. Roberts [7]

In the further special case when 0 = 0, when A and B coincide, then 9X = 92 = 9,
then the two previous equations become

d4Pn (cos 9 ) 1

Je=o
1)(3«2 + 3/i - 2), (38)

and

m _

(39)

Not all such sums are independent of 9, as are the results of (33)-(39). To establish
the two sums given in (44) and (45) below, one proceeds as follows.

The derivative of (36) with respect to 9 gives

n ^ ° S 6 > ) = 0. (40)

Differentiate (37) with respect to 9 to obtain

rns 9
(41)

m=l

Given the differential equation for associated Legendre functions P™(cos9) in the
form

d2P? dP"1 . _ m2

n
m = 0, (42)

multiply throughout by d2P™/d92 and sum over m, making use of (38), (40), (35), to
obtain

t S^
Differentiate (41) with respect to 9 and use the sum in (43) to obtain

m dPm(cos9)~\2 \n{n + \)
in^ d9 I sin2^ 8

m l -I

Multiply the differential equation (42) throughout by m2P™ (cos 9)/sin2 9 and sum
over m, making use of (37), (41) and (43), to obtain

t [ f f j H = i!^r + '^n-1)n("+1)("+2)- <45)
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The derivatives required in (31), (32), (38) and (39) are obtained by expanding the
Rodrigues's formula for Legendre polynomials in ascending powers of (1 — /A), where
fi = cos 6.

P"M = £ -w(/I + .?!, > - !)r = 2Fl(-n, „ + l; l; 1(1 - /x)). (46)*—* 2r(n — rV.r\r\ z
r=0

It follows from (46) that the /-tn derivative of the Legendre polynomials Pn(n) eval-
uated at fx = 1 is given by

with special cases:

1), =l-(n-l)n(n + 1)(« + 2). (48)

Multiple derivatives of Pn (cos 0) with respect to 6 at 6 = 0 are obtained using the
chain rule; the odd order derivatives are found to be zero, and the first few even order
derivatives are

[P,,(COS0)]e=o=l,
d2Pn(cos9)

d4Pn(cosG)

d6Pn(cos9)
d~9~6

e=o

6=0

9=0

(49)

5. Vector spherical harmonics

The sums given in Sections 3 and 4 have a simple form because of the use of
Schmidt normalised associated Legendre functions, where

- " * •
<50)

which is valid for positive and negative values of m such that \m\ < n. Since
P-n-\ (/•<•) = P^(fJ-), it is usual to assume that n > 0.
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The result that

(JA (M2 - D",

is easily verified by using Leibnitz's theorem on the multiple derivatives of a product
of two functions and rearranging the factorial terms that arise. It then follows directly
that, for Schmidt normalised functions,

and further, that the addition theorem sum

P? (cos 0,) />„" (cos 92) cos m (</>, - fa)
m=0

n

PnAcosei)Pn,m(cose2)e-im(*<-'h) (51)

where Y™(9, <f>) = Pn,m(cos9)ein"tl, and

1 (n — m)\ 7 ., / d \ ?

Pn m(n) = / (1 — //, ) ' I — I (/x — 1) .
2"n\y (n +m)\ \d(M/

The addition theorem for associated Legendre functions becomes

0. (52)

where the overline denotes a complex conjugate.
In view of the treatment of addition theorems for vector and tensor spherical

harmonics to follow, it is convenient to set down explicitly the addition theorems
obtained by differentiating (52).

= (2« + l) " " ' cos* , , (53)
d&
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it

E 32yn
m(ft,fr).

30,2

= (2n + 1) d®2 cosz

[d2Pn(cos
[ d®2

dPn{cos®) . 2 I
— ^ — s m x . c o t © ,

COSX2

(55)

sin 0 J - (56)

Z^ 30, sin 02 302

/o , , u - -«v • , ^«(cos0)sinxicosx2l ,._.
= -(2n + l) ^ ^ cosxisinx2 + ^ r ^ .(57)sin0

VA
sin 0i

= (2n+l)p
-i

—" afl ' '1 J
["d2Fn(cos0)

cot 0 (58)

= (2n C 0 S X l smXi
d Pn (cos 0 ) sin2 xi cot X2

sin© ]• (59)

1 31? i
sin 02 302

rf©2 sinx2
cfPn(cos0)cosxiCosx2] , , m^ r-^ | ,(60)

d® sin® J

30?

d®2 d® sin©
, (61)

where (59) and (61) are obtained by differentiating (53) and (54) with respect to 0 P

Vector (surface) spherical harmonics Y7n(0, 0), Yon(0,0), Y", n(0,0), aredefined
by
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Y7n(0, 0) = r»+2V[r-"-lY?<e, 0)] /y/(ji + l)(2n + 1),

Y£n(0, 0) = L.Y?(9, <t>)/s/n{n + 1), (62)

Y?:ii(,(0, 0) = /•1-nV[/-"yn
m(0, 0)] /y/n{2n + 1),

where the angular momentum operator L = — / r x V. The spherical polar components
of the vector spherical harmonics are given by

317(0,0) , 1 917(0.
C +

• f c w l » ' 'SMU m
V«(2n + 1)L " 90 sin0 30

These vector spherical harmonics are more commonly denoted by Y™n+1(#,0),
Y™n(0.0). Y™n_!(0,0), respectively, but this notation does not give enough em-
phasis to the property that these vector spherical harmonics transform under rotation
of the reference frame with the same transformation law as for the scalar spherical
harmonics Y™(9,0). In the context of geomagnetism these vector spherical harmon-
ics are very well known. Y"n(0, 0) is a component of the magnetic field originating
within the Earth evaluated on a sphere of unit radius; Ygn(0,0) is a component of
the so-called nonpotential field being the magnetic field associated with Earth-to-air
electric currents, and Y™, n(6,0) is a component of the magnetic field originating
outside the Earth.

Many of the properties of the vector spherical harmonics are most easily derived
when they are expressed in Cartesian components, or better still, in terms of complex
reference vectors ei, e0, e_i, defined by

_L- l

V2
which have the orthogonality property

e M - e u = S ^ , (/i,v = - 1 , 0 , 1 ) . (65)

A vector B say, with Cartesian components (Bx, By, Bz), will have a complex
reference vector form

(66)

e, = y=(ex + iey), eo = ez, e_, = - ^ ( e , - iey), (64)
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where the complex reference components are given by BK = B • eM for \x = — 1, 0, 1.
The complex reference components of the gradient operator V and the angular mo-
mentum operator L = — ir x V are given by

1 / 9 . 3 \ _ 1 , - , / . 3 cos6> 3 i 3 \

Vo = — = c o s 0 — - — — , (67)
oz or r 89

_ J_ fd__ .d_\ _ J_ _f> / . _3_ c ^
• " ^ V ^ " ' ^ / ^ e Vsin a7 +~T"

(68)

Expressions for the vector spherical harmonics in terms of complex reference
vectors are

0) = V(B + 1)
1
(2/I + 3) y

/ m + l) Y?+1(9, 0)eo

+ 1)

- m

l \y/(n-m-l)(n-m)/2 Y?+
n — 1) L

m)/2 yn
m-V(«, 0)e,] , (69)

and a single formula equivalent to (69) can be given using 3—j coefficients to "couple"
together scalar spherical harmonics Y"(9, <f)) and complex reference vectors ei, eo,
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e_,. Thus for v = - 1 , 0 , 1,

^=-1 \ ' " m + l

The triangle rule for nonzero 3 - ; coefficients requires that the parameters «, «+v, 1
should be able to form a triangle, and indicates that only three vector spherical
harmonics as given in (69) are defined, corresponding to v = 1, 0, — 1.

Vector spherical harmonics transform like scalar surface spherical harmonics under
rotation of the reference frame and satisfy the orthogonality condition

1 r2" r" _ M N M v

4?r JO JO
 Ml" ' M

The expressions given in (69) can be used to show directly that vector spherical
harmonics satisfy the addition theorem

Y"n(02, 02) = (2« + 1 )/»„+„(cos©), v = - 1 , 0 , 1 , (72)

and also satisfy a tensor form requiring a sum of direct products over the degree n,

1 n

+v(02> <Pi) = (2n + 2v + D/V^cos 0)U, (73)
^=—1 m=—n

where U is the unit tensor

U = e,e, + e^ej, + e2ez = eTe, + ê eo + eI7e_,.

The addition theorems (72) and (73) are very difficult to verify directly using the
spherical polar forms for vector spherical harmonics, because of the need to evaluate
all scalar products such as e6l • e^. The relative simplicity of proofs of (72) and (73),
based on the Cartesian forms given in (69) or the equivalent 3 - j coefficient form
in (70) may persuade the reader of the merit in using Cartesian expressions when
working with spherical harmonics. Differentiation of the addition theorem in (72)
produces the vector analogues of (53)-(60)

m=—n

1 ^ H X C O S G ) .

=(2n +1)—de—sin*" (75)
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[14] Derivatives of addition theorems for Legendre functions 225

= ( 2 / i + 1 ) r d2Pn+v(cos@) 2 dPn+v(cos@) . 2
co X de Xid@2 2

"1

" 3Y^(0,,0,)

[d2Pn+v(c

L a©2

(cos@)
c o s X\ C0SX2

dPn+v(cos 0 ) sin Xi sin xi"| ™,
^ r r-pr , (77)

@ sin© J
1

30, sin 02

= -(2n
—i

sin vi o(b\ IJ

^ - -cot©
a© J

(79)

1 3
30,

C 0 S X l s i n x i sin©

30, sin 02 302

sinXl

>„+„ (COS©

J

l
(81)

- 2
s i n * ( 8 2 )

These lead to the following special cases when 0 = 0, and 0i = 02, 0, = 02, Xi = ^.

= (2/1 + 1), (83)

https://doi.org/10.1017/S0334270000007670 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007670


226 D.E. Winch and P.H. Roberts

n i

y —
^-^ sin#

dcfi

[15]

(84)

(85)

3E

sin6>

E
m=—n

sin 0 d(j>

(87)

(88)

(89)

The tensor form of the addition theorem given in (73) can also be differentiated to
yield formulae analogous to those of (74) to (81). Perhaps we need record here only
three of the special cases

E Yln+V&, «Y?.»+,,(e. 0) =
£=—1 m=—n

(90)

^—' Afi
£=—1 m——n

1 n

2v

—1 tn=—n sin26»

2v

(91)

(92)

6. Tensor spherical harmonics of the second rank

Tensor spherical harmonics can be defined in a number of ways, but the systematic
method of James [5], which allows repeated generation up to any rank, will be used
here, namely

(93)
/i=—1 \ i A* M1 /

which corresponds to the following forms, as in (70)
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1

(n + D(2n + 3)

-m

l ) Y™n + 1(0,

2)/2 Y^J.P, 0)e,]

. 0) =

™;!,^, 0)e,] .

In operator form, the nine tensor spherical harmonics are given by

, </.) = r"+3V

= L
_ 1

r"

= L

y/n(2n -..*.('.*> = ^ V [ r " Y £ n ( 0 , 0 ) ] ,

i -i n(0, 0) = rn+x V F—Y" n(0, 0)1 ,

,0)e_,

(94)

;.li,(91« = Lru(9,0),
/ 1 r •

v/(/i - l)(2/i - 1)Y?\ _. (9, 0) = — - V r^- 'Y^. (9, 0)1.

The scalar form of the addition theorem for tensor spherical harmonics is

(95)

(cos (96)

https://doi.org/10.1017/S0334270000007670 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007670


228 D.E. Winch and P.H. Roberts [17]

where the superscript T denotes transpose. This addition theorem can be differentiated
as before to yield a sequence of addition theorems. We record here only three special
cases or sum rules

E

E
n i

E ^
*—^ sin-1

(97)

(98)

^ sin2 6 dcf>

(99)

The three equations (97)-(99) each contain nine separate special cases or sum rules.
Using the spherical polar forms for the tensors given by James [5], a typical such
special case obtained, for example, from (97) with £ = 1, v = 1, is

2)2

2)2

sin 0 36>2

de2 + 2
3 r i 3 * 7 ( 0 , 0 ) ] I 2

36> |_sin<9 3</> J |
2)(2« + l)(2n + 3),

which can be verified using the sum rules given in Section 4.

(100)

7. Addition theorems for Chebyshev functions

The Chebyshev polynomials of the second kind, MP(COS \J/), are defined by

uJcosf) =
(p

(101)

and the first few are given by

M0(cOSi/r) = 1, M](COS1/0 = COS

«2(COS \ff) = | COS2 ^ — },
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[18] Derivatives of addition theorems for Legendre functions 229

«3(cos xjr) = 2cos3 xj/ — cos xjr, (102)

«4(cos rl/) = j cos4 xj/ - y cos2 xj/ + \,

«5(cos xj/) = y cos5 xj/ — y cos3 ^ + cos V̂ ,

M6(cos xjr) = f cos6 V - y cos4 V + y cos2 \j/ - \.

The associated Chebyshev functions of the second kind, «p(cos xjr), are defined by

sin" xj, (TT
d cos xjs

sin" xjr ( -j—— ) up(cos xjr),

(103)
so that u°p(cos xj/) = up(cos xjr). The first few are found to be

a [(cos xjr) = sinx/r,

u}
2(cos xjr) = ^ cos xjr sin xjr,

M2(COS xjr) = ^Y s m 2 V'.

u\(cosxjr) = ^ ( 6 c o s 2 xjr — l)sin^r,

M2(cos xjr) = 2 cos xjr sin2 xjr, (104)

Mj(cos xj/) = ^ p sin31/'',

«4(cos i^) = ^ (8 cos2 xjr — 3) cos ^ sin ^ ,
2(cosV) = ^ ( 8 cos2 i ^ - l ) sin2

3

M2(cosV) = ^ ( 8 cos2 i ^ - l ) sin

xj/) = ^ cos V' sin

M4(COS ^r) = ^52 sin4 xjr.

The associated Chebyshev functions arise as solutions of the Laplace equation in
four dimensions, and with the parameterization of the four dimensional Cartesian
space (x, y, z, t) by means of

x = rsinxj/sinO cos0,
y = r sin xjr sin# sin</>,

z = r sin ^ c o s # , (105)

t = r cos xjr,

the separable solutions of the Laplace equation, V2 V = 0, are found to be of the form

p=O n=O m=0

x(C;n cosm<f> + D"pn sinm<j>)P^(cose)u"p(cos xjr), (106)
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the individual functions forming an orthogonal set under integration over the unit
(r = 1) three-dimensional hypersphere parameterized by the angular coordinates
{\fr,9,<p) and embedded in the four-dimensional space (x, y, z, t).

The basic addition theorem for the Chebyshev polynomials is a special case of a
general addition theorem for Gegenbauer polynomials first given by Gegenbauer [4]
and is

p

^ ) , (107)
n=0

which in its simplest case p = 1 defines the angle * by

cos ^ = cos ̂ i cos yjr2 + sin Vi sin \(r2 COS 0 .

A rotation through an angle 2\fr, about an axis with polar coordinates (9, <j>), can be
specified in terms of a quaternion with components k, n,v, p defined by

= cos\js.
(108)

(109)

A. = sinifr sin6>cos</>, fx = sinty sin6 sin</>, v = si

On forming the complex Cay ley-Klein parameters u and v, where

u = p - iv, v = —ix — ik,

the result of two successive rotations is given by the SU(2) product

/ M3 V3 \ _ / U2 U2 W «1 V\ \

\ -V3 M3 / \ -V2 U2 ) V ""I «1 / '

and this implies the following two relations and their conjugates,

M3 = U2U\ -V2VU U3 = U2V\ + (HO)

An overbar is used to denote complex conjugate. The results of (110) can be written
in matrix form as

k3 >

A*3
V3

P3 )
v\ -*1 \-h

-v2

Pi
k2

— fl2

-k2

Pi
-V2

k2

Hi
v2

Pi

The equation for p3 is now given by

cos xjr3 = cos iff] cos ^2 — sin ^1 sin T/T2[COS 0, cos 62 + sin Gx

= cos T/TJ COS t/»2 + sin V'I sin \//2 cos(n — 0 )
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showing that to reconcile the basic result of the addition theorem and that of the
quaternion formula for the combination of successive rotations, the resultant rotation
angle 2^3 from the quaternion formula can be equated with the angle 2 * of the
addition formula, only if 0 of the addition theorem is replaced by its complement
n - 0 .

By virtue of (108), a rotation can be thought of as being specified by a point on the
unit three-dimensional hypersphere in a four-dimensional space, and that distributions
of rotations can be specified in terms of the functions given in (106) with r = 1, for
example, Roberts and Winch [6].

FIGURE 2. Nomenclature used on the hypersphere. Note that 0 of Figure 1 becomes an internal angle
of the spherical triangle.

Let C($\,0\,<t>\) and D(\J/2, 92, &) be points on the unit hypersphere, correspond-
ing to rotations through angles 2^1 and 2^2. about axes with polar coordinates (#i, <pi),
(02, <fa), respectively. Then the cosine rule

cos 0 = cos9\ cos92 + sin6\ sin92 cos(0i — $2), (111)

gives the great circle distance 0 between the rotation axes. In the following we shall
use, from the general addition theorem

cos * = cos x//1 cos rj/2 + sin ̂ 1 sin \j/2 cos 0 , (112)
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which is the scalar product of two unit vectors corresponding to (A.,, fiu vu px) and
(̂ •2, M-2. V2, Pi) and is therefore between —1 and 1, so that * is a real angle.

The determination of the various addition theorems requires the derivatives of the
angles *, X\ and Xi with respect to Vi, to and © and these follow directly from
the results of Section 2, with substitutions which are obvious from a comparison of
Figures 1 and 2:

3 *
d\l/
3 *

at.'
3 0
3^2

3 to
3£2

3 0

-cosf,,

= sin to s

= — sin £

si
sin£i
s i n * '

sini/r

i cot * ,

n * C O t ^

lCOS§,

s in*

3 *
3i/r
3 *

(/Ci

3 | 2

3§2

30

- C O S ^ 2 ,

= sin to sinf2,

sin £2

s i n *

— — sin £2 cot *

sin to sin £2

s in* cot§,.

Differentiation of the addition theorem, (107), with respect to \jf\ and 0 , gives
directly that

_, d J dycosf,, (114)

E
Differentiating (114) with respect to V̂ i. V*2 and 0 , gives the results

n=0

(cos 0-,) «/M" (COS to) „ , ^N
^ ^ ^ (cos 0 )

:
sin*

(117)

(118)
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Differentiate (119) with respect to î i and 0 to obtain

233

*- dt
-[ d *

i sicot* sin£, cos£,, (119)

u"p (cos Vi)^—w"(cos f2)

sin £] sin £2 —

dS2

d«p(cos' cos£2

s in*
• (120)

In the special case

= 0, & = 7T, 9 = 0,

n=0

we obtain the following duplication formulae from (113), (114), (116), (117) and
(120), respectively

(121)

(122)

(123)

(124)

2^
n=0

rd2«p(cos*)]

2n=0 s im

1 dup (cos*) "I
sin*

In the further special cases, making use of the results

[Mp(COS*)]*=o = 1,

[sin* = ~~P(P
*=o

= 0,

* = 0
= --p{p

(125)

(126)

(127)

(128)

(129)
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the duplication formulae, (121)—(125), reduce to the following sums

= l, (130)
n=0

//)

0 = 0, (131)
" (COST//)

n=0

d2u"(cosf) l
——; M"(COS \js) = — p ( p + 2), (132)

n=o d*2 3

dun (cos \jr)~\2 1
—S. =-p(p + 2), (133)

dijr J 3

( 1 3 4 >

The derivatives required in (126)-(129) may be obtained by using the hypergeometric
form for the Chebyshev polynomials,

uPQi) = iFx {-P, P + 2; §; |(1 - n)), (135)

where /x = cos \}f. The r derivative evaluated at /x = 1 is therefore given by
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