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Curvature Bounds for Surfaces in
Hyperbolic 3-Manifolds

William Breslin

Abstract. A triangulation of a hyperbolic 3-manifold is L-thick if each tetrahedron having all vertices in

the thick part of M is L-bilipschitz diffeomorphic to the standard Euclidean tetrahedron. We show that

there exists a fixed constant L such that every complete hyperbolic 3-manifold has an L-thick geodesic

triangulation. We use this to prove the existence of universal bounds on the principal curvatures of

π1-injective surfaces and strongly irreducible Heegaard surfaces in hyperbolic 3-manifolds.

1 Introduction

Surfaces in a 3-manifold can be complicated for two reasons. A surface may have

small handles and local topology, with regions where the curvature is large. Also, a

surface may be locally well-behaved, but globally fold back on itself in a complicated

manner. It follows from work of Schoen and Yau [SY79], Freedman, Hass, and Scott

[FHS83], and Schoen [Sch83] that a π1-injective embedding (resp. immersion) of

a closed surface into a closed hyperbolic 3-manifold can be isotoped (resp. homo-

toped) to a surface with principal curvatures bounded in absolute value by a universal

constant that is independent of the surface and the ambient 3-manifold. Using dif-

ferent techniques, we extend this to strongly irreducible Heegaard surfaces and to

noncompact complete hyperbolic 3-manifolds.

Theorem 1.1 There exists a constant ω > 0 such that the following holds. If S is

a π1-injective orientable embedded (resp. immersed) closed surface or a strongly irre-

ducible Heegaard surface in a complete, orientable, hyperbolic 3-manifold M, then S

is isotopic (resp. homotopic) to a surface whose principal curvatures are bounded in

absolute value by ω.

These results are new in two ways. First, the methods of [FHS83] do not apply

in the presence of geometrically infinite ends or cusps, but Theorem 1.1 holds for

any complete hyperbolic 3-manifold. Second, the curvature bounds of [Sch83] hold

only for stable minimal surfaces, and Heegaard surfaces are not, in general, isotopic

to stable minimal surfaces.

Theorem 1.1 follows from an existence theorem about geodesic triangulations

of hyperbolic 3-manifolds. A geodesic triangulation of a complete hyperbolic 3-

manifold M may be forced by the geometry of M to have tetrahedra with very short

edges or small dihedral angles. Big tetrahedra without small dihedral angles cannot

live in the thin part of M. In this paper, we show that a complete hyperbolic 3-
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manifold has a geodesic triangulation such that the tetrahedra contained in the thick

part have edge lengths contained in a fixed interval and dihedral angles bounded be-

low by a fixed constant. The bounds depend only on the constant used to define

the thick-thin decomposition of the manifold. We call such a triangulation a thick

geodesic triangulation of M.

Theorem 1.2 Let µ be a Margulis constant. There exist positive constants a := a(µ),

b := b(µ), and θ := θ(µ) such that the following holds: A complete hyperbolic 3-man-

ifold M has a geodesic triangulation such that every tetrahedron contained in the thick

part of M has dihedral angles bounded below by θ and edge lengths in [a, b].

The existence of thick geodesic triangulations holds for higher dimensions as well,

which can be found in [Bre]. Emil Saucan has shown that hyperbolic n-orbifolds have

triangulations whose simplices are uniformly round (called “fat” triangulations), and

he uses this to prove the existence of quasi-meromorphic maps that are automorphic

with respect to the corresponding Kleinian group (see [Sau06a, Sau06b, Sau05]).

To prove Theorem 1.2, we examine Delaunay triangulations of “well-spaced”

point sets in 3-dimensional hyperbolic space and the problem of eliminating small

dihedral angles. The corresponding question for 3-dimensional Euclidean space has

been well studied. The only tetrahedra in such a triangulation that can have small

dihedral angles are slivers, and it was a problem to show how to remove them with-

out creating new ones. Several techniques for removing slivers have been developed

in the Euclidean setting (see [ELM+00, MTTW96, Li00]). We adapt the technique

introduced in [ELM+00] of perturbing vertices of a Delaunay triangulation in order

to remove slivers to the hyperbolic setting.

The paper is organized as follows. Section 2 contains some definitions and lemmas

about geodesic tetrahedra in 3-dimensional hyperbolic space, and Section 3 contains

the proof of Theorem 1.2. We discuss how to use thick triangulations to obtain prin-

cipal curvature bounds in Section 4.

2 Definitions and Lemmas

Definition Let t be a tetrahedron in H
3. Let p be a vertex of t . Let Rt be the

circumradius of t . Let cp be the circumradius of the face opposite p. Let lt be the

length of the shortest edge of t . Let dp be the distance from p to the plane opposite

p. Let σ > 0 , ρ > 0. Call t a (σ, ρ)-sliver if Rt/lt ≤ ρ and dp/cp ≤ σ for some vertex

p of t . Once we have fixed σ and ρ, we will just refer to t as a sliver.

The first lemma says that if the edge lengths are bounded between two positive

constants and the circumradius is bounded from above, then the only way to have

arbitrarily small dihedral angles is to be a sliver.

Lemma 2.1 If a geodesic tetrahedron t in H
3 with edge lengths in [a, b] and circum-

radius at most R has a dihedral angle less than

θ(a, b, σ) := arcsin
( sinh(σ · a/2)

sinh(b)

)

for some σ > 0, then t is a (σ, R
a

)-sliver.
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Figure 1: (a) The plane containing [q, r, s] is shown as a vertical Euclidean plane in the upper

half space model of H
3. The circumradius of [q, r, s] is cp. The distance from p to the plane

containing [q, r, s] is dp. (b) The angle between [p, r, q] and [q, r, s] is ∠pp ′′p ′ in the geodesic

triangle [p, p ′, p ′′].

Proof Suppose that t has a dihedral angle of less than θ along the edge [q, r]. Project

p orthogonally to the plane containing the face [q, r, s] to a point we will call p ′. Also

project p orthogonally to the hyperbolic line containing [q, r], to a point we will call

p ′ ′. See Figure 1. Now consider the triangle in H
3 with vertices p, p ′, and p ′ ′. The

edge between p and p ′ ′ has length at most b. We have:

sinh(‖[p, p ′]‖)

sin(θ)
=

sinh(‖[p, p ′ ′]‖)

sin( π
2

)
≤ sinh(b).

Thus,

‖[p, p ′]‖ ≤ arcsinh(sin(θ) · sinh(b)) = σ · a/2

so that 2‖[p, p ′]‖/a ≤ σ.

The first equality follows from the hyperbolic law of sines [Fen89]. Since the

lengths of the edges of the triangle t are at least a, the circumradius of [q, r, s] is

at least a/2. Also, Rt/lt ≤ R/a. Thus t is a (σ, ρ)-sliver.

Lemma 2.2 A geodesic triangle in H
2 with edge lengths in [a, b] and circumradius at

most R has altitudes bounded from below by a positive constant h0 := h0(a, b, R).

Proof Since the sum of the angles of t are less than π, there are at least two angles

of t that are less than π/2. Let p be the vertex opposite these angles. The orthogonal

projection of p onto the line containing the opposite edge [q, r] is contained in the

interior of [q, r]. Now suppose we have fixed the circumradius r0 ∈ [a/2, R] of t and

consider all triangles with edges of length at least a such that p projects to the interior

of [q, r]. The triangle with the shortest altitude at p is an isosceles triangle that lies on

https://doi.org/10.4153/CJM-2010-056-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-056-8


Curvature Bounds for Surfaces in Hyperbolic 3-Manifolds 997

p

r

q

x

α
β

c

r0

a

p

c

(a) (b)

}

}
}h

Figure 2: (a) If the radius r0 is fixed, then moving q and r closer to p makes the altitude from p

smaller. (b) Both ‖[p, x]‖ and h are bounded from below in terms of a,b, and R.

a hyperbolic circle of radius r0 with ‖[p, q]‖ = ‖[p, r]‖ = a (see Figure 2). Let c be

the center of the hyperbolic circle containing p, q, r. Let x be the intersection of [p, c]

and [q, r]. Let β = ∠pqx. Now the altitude of [p, q, r] from p is ‖[p, x]‖. Using the

law of cosines, we get

cosh(‖[p, x]‖) = cosh(a) cosh(‖[q, x]‖) − sinh(a) sinh(‖[q, x]‖) cos(β)

≥ cosh(a) cosh(‖[q, x]‖) − sinh(a) sinh(‖[q, x]‖).

Let h1(a, r0) = arccosh(cosh(a) cosh(‖[q, x]‖) − sinh(a) sinh(‖[q, x]‖). So far we

have shown that the altitude from a vertex that projects to the interior of the op-

posite face is at least h1(a, r0) if the circumradius of [p, q, r] is r0. The triangle for

which β is minimized and ‖[q, x]‖ is maximized has circumradius R. Since h1(a, r0)

is minimized when r0 = R, we have that h1(a, R) is a lower bound on the altitude

from a vertex that projects to the interior of the opposite face for triangles satisfying

the hypotheses of the lemma. Let h be the altitude from r. We have

sin(β) =

sinh(‖[p, x]‖)

sinh(‖[p, q]‖)
≥

sinh(h1(a, R))

sinh(b)
.

Also,

sinh(h) = sinh(‖[q, r]‖) sin(β) ≥ sinh(a) ·
sinh(h1(a, R))

sinh(b)
,

so that

h ≥ arcsinh
( sinh(a)

sinh(b)
· sinh

(

h1(a, R)
)

)

.
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Figure 3: (a) To bound ds/cs, let p ′′ be the projection of p to the line containing [q, r] and

consider [p, p ′, p ′′]. (b) ∠ss′′s′ = α = ∠pp ′′p ′ is small if dp = ‖[p, p ′]‖ is small.

A similar argument works for the altitude from q. Let

h0(a, b, R) = arcsinh
( sinh(a)

sinh(b)
· sinh

(

h1(a, R)
)

)

.

Lemma 2.3 If a geodesic tetrahedron t in H
3 with edge lengths in [a, b] and circum-

radius at most R is a (σ, R
a

)-sliver for some σ > 0, then dv/cv is bounded above by a

constant n := n(σ, a, b, R) for each vertex v of t. Moreover, n can be chosen so that

n → 0 as σ → 0 and a, b, R remain fixed.

Proof Since t is a (σ, R
a

)-sliver, we have dv/cv ≤ σ for some vertex v. Say dp/cp ≤ σ.

Let p ′ be the orthogonal projection of p onto the plane containing [q, r, s]. Let p ′ ′

be the orthogonal projection of p onto the line containing [q, s]. Let α = ∠pp ′ ′p ′

be the angle between the planes containing [p, q, r] and [q, r, s]. Using the hyperbolic

law of sines, we get (see Figure 3)

sin(α) =

sinh(‖[p, p ′]‖)

sinh(‖[p, p ′ ′]‖)
.

Now ‖[p, p ′]‖ = dp and ‖[p, p ′ ′]‖ ≥ h0(a, b, R), where h0(a, b, R) is the constant

provided in Lemma 2.2. Thus,

sin(α) ≤
sinh(dp)

sinh(h0(a, b, R))
≤

sinh(σ · R)

sinh(h0(a, b, R))
.

Now let s ′ be the orthogonal projection of s onto the plane containing [p, q, r] and let

s ′ ′ be the orthogonal projection of s onto the line containing [q, r]. Now ∠ss ′ ′s ′ = α
and ds = ‖[s, s ′]‖, so that

sinh(ds)) = sinh(‖[s, s ′ ′]‖) · sin(α) ≤ sinh(b) ·
sinh(σ · R)

sinh(h0(a, b, R))
.
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Figure 4: This shows the circle S∩Q in the plane Q. The plane P contains [q, r, s] and p is either

(x0, y0) or (x, y). N is the d(p, P)-neighborhood of P. L is the Euclidean line in Q through

(x0, y0) that is tangent to S ∩ Q.

Also, the circumradius cs of [p, q, r] is at least a
2
. Thus,

ds/cs ≤
2 arcsinh

(

(sinh(b) · sinh(σ·R)
sinh(h0(a,b,R))

)

a
=: n(σ, a, b, R).

By projecting p to the other edges of [q, r, s], we can show that dq/cq and dr/cr are

also no more than n(σ, a, b, R).

The next lemma shows that the vertices of a sliver with bounded edge lengths and

bounded circumradius all lie near a hyperbolic circle.

Lemma 2.4 If a geodesic tetrahedron t = [p, q, r, s] in H
3 with edge lengths in [a, b]

and circumradius at most R is a (σ, R
a

)-sliver for some σ > 0, then the distance from p to

the circumcircle of [q, r, s] is at most an explicit constant K := K(σ, a, b, R). Moreover,

K can be chosen so that K → 0 as σ → 0 and a, b, R remain fixed.

Proof Let S be the circumsphere of [p, q, r, s]. Let Rt be the radius of S. Let C be

the circumcircle of [q, r, s]. Let c be the radius of C . We will use an upper-half space

model for H
3 such that C is contained in the plane P = {x = 0}, the smaller com-

ponent of S − P is contained in {x ≤ 0}, the hyperbolic center of S has coordinates

(A, 0, 1), p is contained in the plane Q = {y = 0}, and the z-coordinate of p is

greater than or equal to 1. Figure 4 shows the plane Q. From now on, we will use
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(x, z)-coordinates when working in Q. Since S ∩ Q is a hyperbolic circle of radius Rt

centered at (A, 1), it is a Euclidean circle of radius sinh(Rt ) centered at (A, cosh(Rt )).

We can express A as a function of Rt and c:

A = A(Rt , c) =

√

(sinh(Rt ))2 − (sinh(c))2,

and describe S ∩ Q by the equation

(x − A)2 + (y − cosh(Rt ))2
= (sinh(Rt ))2.

Let w be the orthogonal projection of p to P. Since [p, q, r, s] is a sliver, we have

d(p, w) ≤ n(σ, a, b, R) · c ≤ n(σ, a, b, R) · R,

where n(σ, a, b, R) is the constant from Lemma 2.3.

Now we will find an upper bound for d(w,C) = d(w, u), where u = S ∩ Q ∩ P.

Let β = ∠wup. We have

sin(β) =

sinh(c)

sinh(Rt )
≥

sinh(a/2)

sinh(R)
.

Let N be the d(p,P)-neighborhood of x = 0 in Q. Now N is the region in y ≥
0 between the Euclidean lines y = x/tan(α) and y = −x/tan(α), where α =

π − 4arctan(e−d(p,P)) is the angle between each line and the y-axis. Note that

α ≤ J(σ, a, b, R) := [π − 4arctan(e−n(σ,a,b,R)·R)] and J(σ, a, b, R) → 0 as σ → 0.

We have

dE(w, p) = tan(α) · dE(w, {z = 0}) ≤ tan( J(σ, a, b, R)) · 2 cosh(R),

where dE denotes Euclidean distance. We also have

dE(w, u) =

dE(w, p) cos(β)

sin(β)

≤
2 tan( J(σ, a, b, R)) cosh(R) sinh(R)

sinh(a/2)
.

Since the z-coordinates of w and u are at least 1, the upper bound on dE(w, u) gives

us an upper bound on d(w, u):

d(w, u) ≤
2 tan( J(σ, a, b, R)) cosh(R) sinh(R)

sinh(a/2)
.

We now have

d(p,C) ≤ d(p, w) + d(w, u)

≤ n(σ, a, b, R) · R +
2 tan( J(σ, a, b, R)) cosh(R) sinh(R)

sinh(a/2)
.

Let

K(σ, a, b, R) := n(σ, a, b, R) · R +
2 tan( J(σ, a, b, R)) cosh(R) sinh(R)

sinh(a/2)
.
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Figure 5: The dots are the circumcircle of [q, r, s], which has radius R. The shaded region is

A ∩ B, which contains the vertex p.

Definition Let T = [q, r, s] be a geodesic triangle in H
3 with edge lengths in [a, b]

and circumradius at most R. Let σ > 0. The (σ, a, b, R)-sliver region of T is the set

of points p in H
3 such that [p, q, r, s] is a (σ, R

a
)-sliver with edge lengths in [a, b] and

circumradius at most R. We will denote this region by sliver(σ,a,b,R)[q, r, s].

Lemma 2.5 The volume of the (σ, a, b, R)-sliver region of a geodesic triangle T =

[q, r, s] in H
3 with edge lengths in [a, b] and circumradius at most R is at most an explicit

constant V := V (σ, a, b, R). Moreover, V can be chosen so that V → 0 as σ → 0 and

a, b, R remain fixed.

Proof It follows from Lemma 2.4 that sliver(σ,a,b,R)[q, r, s] is contained in a K-neigh-

borhood U of the circumcircle of [q, r, s], where K := K(σ, a, b, R) is the constant

provided by Lemma 2.4. Let V := V (σ, a, b, R) be the volume of U , so that V is an

upper bound on the volume of sliver(σ,a,b,R). Since K → 0 as σ → 0, we have that

V → 0 as σ → 0.

3 Thick Geodesic Triangulations

We will prove Theorem 1.2 in this section. Let M be a complete, orientable, hyper-

bolic 3-manifold.
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Definition Let µ > 0. The µ-thick part of M, denoted by M[µ,∞), is the set of

points where the injectivity radius is at least µ/2. The µ-thin part of M, denoted by

M(0,µ], is the closure of the complement of M[µ,∞).

The Margulis lemma [KM68] implies that there exists a constant µ0 (a Margulis

constant) such that for µ ≤ µ0, every component of the µ-thin part of any com-

plete orientable hyperbolic 3-manifold is either a tubular neighborhood of a closed

geodesic or the quotient of a horoball by an abelian parabolic subgroup. We will refer

to a component of the µ-thin part that is a tubular neighborhood of a closed geodesic

as a µ-tube. Let µ ≤ µ0.

Let S be a generic set of points in M such that for any p ∈ M, the ball

B(p,inj(M, p)/5) centered at p with radius inj(M, p)/5 contains a point of S in its

interior. We require the points to be denser where the injectivity radius is smaller so

that the Delaunay triangulation of S is defined.

Definition The Delaunay triangulation of S is the geodesic triangulation of M de-

termined as follows: A set {p, q, r, s} of four vertices in S determines a tetrahedron in

T if and only if the minimal radius circumscribing sphere contains no points of S in

its interior.

See [LL00] for the existence of Delaunay triangulations in Riemannian manifolds.

One disadvantage of using a Delaunay triangulation is that without further assump-

tions on the set of points, the tetrahedra may have arbitrarily small dihedral angles.

We now add a further restriction on the set S that will restrict the way a tetrahe-

dron that intersects the thick part can have small dihedral angles. Assume that S is

maximal with respect to the condition that for each point p in S ∩ M[µ,∞), we have

d(p, q) ≥ ǫ := µ/100 for every q in S\{p}. We have defined ǫ to be sufficiently small

with respect to the injectivity radius so that if we perturb a point p ∈ S, any changes

to the Delaunay triangulation of S will occur in a ball that lifts to the universal cover.

Thus we may work in H
3.

This extra assumption on S also implies that a tetrahedron t in the Delaunay tri-

angulation of S has circumradius at most ǫ and edge lengths in the interval [ǫ, 2ǫ].

Thus, such a tetrahedron has small dihedral angles only if it is a sliver (Lemma 2.1),

and such a tetrahedron is a sliver only if its vertices are close to a circle (Lemma 2.4).

Let δ := δ(µ) = ǫ(µ)/10.

Definition A good perturbation of S is a collection of points S ′ in M such that there

exists a bijection φ : S → S ′ with d(p, φ(p)) ≤ δ for every p ∈ S. Denote φ(p) by

p ′. If T and T ′ are the Delaunay triangulations of S and S ′, then we will say that T ′

is a good perturbation of T.

Note that if t is a tetrahedron in the Delaunay triangulation of a good perturbation

of S that is contained in M[µ,∞), then t has circumradius no more than ǫ+δ and edge

lengths between ǫ−2δ and 2ǫ+ 2δ. We can still apply our lemmas to such tetrahedra.

Lemma 3.1 Let p ∈ S∩M[µ,∞). The number of triples {q, r, s} of points in S such that

[p ′, q ′, r ′, s ′] is a tetrahedron in some good perturbation of T is bounded from above by

a constant N := N(µ).
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Proof The ( ǫ
2
− δ)-balls centered at the points of S ∩ M[µ,∞) are mutually disjoint,

since no two points of S ∩ M[µ,∞) are closer than ǫ − 2δ to each other. If p ′ and q ′

are vertices of a tetrahedron in the Delaunay triangulation T ′ of S ′, then d(p ′, q ′) ≤
2ǫ+2δ, so that the ( ǫ

2
−δ)-ball centered at q ′ is contained in the (2ǫ+2δ)-ball centered

at p ′. There can be at most

m := m(µ) =

[ vol(B(2ǫ + 2δ))

vol(B( ǫ
2
− δ))

]

mutually disjoint ( ǫ
2
− δ)-balls contained in a (2ǫ + 2δ)-ball, where [w] is the integer

part of w. One of these is centered at p ′. So, there are at most m− 1 vertices in S that

may be the vertex of a tetrahedron in T ′ that also has p ′ as a vertex. Thus the number

of triples {q, r, s} of points in S such that [p ′, q ′, r ′, s ′] is a tetrahedron in some good

perturbation of T is at most
(

m
3

)

. Let N(µ) :=
(

m
3

)

.

Proof of Theorem 1.2 Our proof is based on a method introduced in [ELM+00] to

remove slivers from triangulations of E
3. The plan is to perturb one point of S ∩

M[µ,∞) at a time as follows. Let ρ = (ǫ + δ)/(ǫ − 2δ). Let σ be a positive constant to

be determined later. Let p1 ∈ S ∩ M[µ,∞). Let U1 be the set of triangles [q, r, s] ∈ T

such that there exists a good perturbation T ′ of T that is obtained by perturbing

only the point p1 and such that [p1
′, q, r, s] ∈ T ′. We want to pick p1

′ in the ball of

radius δ centered at p1 (so that the perturbation is good) and outside the (σ, ρ)-sliver

region of every triangle in U1. Assume that we can find such a point p1
′ and call the

new set of points S1 and the new triangulation T1. Assume we have perturbed the

points p1, . . . , pn to p1
′, . . . , pn

′ and now have a set of points Sn and a triangulation

Tn such that none of p1
′, . . . , pn

′ is the vertex of a sliver. Let pn+1 be a point in

[Sn ∩ M[µ,∞)] − {p1
′, . . . , pn

′}. Let Un+1 be the set of triangles [q, r, s] ∈ Tn such

that there exists a good perturbation Tn
′ of Tn, which is obtained by perturbing only

the point pn+1 and such that [pn+1
′, q, r, s] ∈ Tn

′. We choose a point pn+1
′ in the

ball of radius δ centered at pn+1 and outside the (σ, ρ)-sliver region of every triangle

in Un+1.

Suppose M has finite volume. Let T ′ be the triangulation we get after perturbing

every point of S ∩ M[µ,∞) once and only once, (There are only finitely many, since

M has finite volume.) Let [p ′, q ′, r ′, s ′] ∈ T ′. Suppose that p ′ was the last point

perturbed among these four points. We chose p ′ to be outside sliver [q ′, r ′, s ′], so

that [p ′, q ′, r ′, s ′] is not a sliver. Thus any tetrahedron of T ′ contained in M[µ,∞) is

not a sliver.

If M has infinite volume, then the above procedure can be used to perturb the

vertices contained in an N-ball centered at some fixed point x0, giving us a geodesic

triangulation TN of M such that any tetrahedron contained in M[µ,∞) ∩ B(x0, N) is

not a sliver. Suppose we want to define the final triangulation on B(x0, N). Since the

triangulations Tn can be chosen to agree on the ball B(x0, N) for n ≥ 100N, we can

use the triangulation T100N to define the triangulation inside B(x0, N).

We will now prove that for suitable σ, it is always possible to find a point within δ
of the original point and outside the concerned (σ, ρ)-sliver regions.

Suppose we are considering the point p at some step in our process. We will use

a = ǫ − 2δ, b = 2ǫ + 2δ, and R = ǫ + δ in what follows. Any tetrahedron in a
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good perturbation of T that is contained in M[µ,∞) has edge lengths in [a, b] and

circumradius no more than R. The total volume of all the sliver regions we need

to consider when perturbing p is at most N(µ) ∗ V (σ, a, b, R), where N(µ) is the

constant from Lemma 3.1 and V (σ, a, b, R) is the constant from Lemma 2.5. Since

V (σ, a, b, R) → 0 as σ → 0, we may choose σ > 0 so small that the total volume of

the sliver regions under consideration is less than the volume of the δ-ball centered

at p. This implies that we may find a point p ′ in the δ-ball centered at p that is not

contained in any of the concerned sliver regions.

Note that the tetrahedra in a triangulation provided by Theorem 1.2 that are con-

tained in the thick part of the manifold will be L-bilipschitz diffeomorphic to the

standard Euclidean tetrahedron for a fixed constant L.

4 Obtaining Principal Curvature Bounds

We begin this section with some definitions and results from normal surface theory.

Definition A normal arc on the face of a tetrahedron is a properly embedded arc

with endpoints in distinct edges of the face. A normal curve on the boundary of

a tetrahedron is an embedded closed curve that is transverse to the 1-skeleton and

whose intersection with each face is a collection of normal arcs. A normal disk in

a tetrahedron is a properly embedded disk whose boundary is a normal curve that

intersects the 1-skeleton in 3 or 4 points. An almost normal piece is either a properly

embedded disk whose boundary is a normal curve which meets the 1-skeleton in 8

points or two normal disks joined by an unknotted tube.

In a given tetrahedron, there are finitely many normal disks and almost normal

pieces, up to isotopy preserving the faces, edges, and vertices.

Definition Let M be an orientable 3-manifold with a triangulation T. A closed

surface S embedded in M is normal with respect to T if the intersection of S with each

tetrahedron in T is a union of normal disks. We say an embedded surface S is almost

normal with respect to T if the intersection of S with one tetrahedron of T is a union

of one almost normal piece and a collection of normal disks, and the intersection of S

with every other tetrahedron is a union of normal disks. An immersion f : S → M is

normal with respect to T if for each tetrahedron t in T, every connected component

D of f −1(t) is a disk on which f is injective and f (D) is a normal disk.

Theorem 4.1 ([Hak61]) A closed π1-injective surface embedded (resp. immersed) in

a triangulated irreducible 3-manifold can be isotoped (resp. homotoped) to a surface

that is normal with respect to the given triangulation.

Theorem 4.2 ([Rub97, Sto00]) A strongly irreducible Heegaard surface in a trian-

gulated irreducible 3-manifold can be isotoped to a surface that is almost normal with

respect to the given triangulation.

In this section, we prove the existence of universal bounds on the principal curva-

tures of π1-injective immersed surfaces and strongly irreducible Heegaard surfaces in
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hyperbolic 3-manifolds (i.e., Theorem 1.1). We will use a thick geodesic triangulation

provided by Theorem 1.2 and normal surface theory. Normal surface theory implies

that the surfaces can be put into normal or almost normal form with respect to any

topological triangulation. To obtain bounds on principal curvatures, we assume that

the triangulation is thick. Then we choose specific normal and almost normal pieces

for each tetrahedron in H
3 so that the pieces meet to form a smooth surface when

two tetrahedra are glued together via an isometry and so that the principal curva-

tures of the normal and almost normal pieces vary continuously as the vertices of the

tetrahedron vary. This will provide a universal bound on the principal curvatures of

normal or almost normal surfaces, since tetrahedra from a thick triangulation in the

thick part of a hyperbolic 3-manifold come from a fixed compact set.

Geometric pieces. Theorem 1.2 implies that each hyperbolic 3-manifold M has a

geodesic triangulation such that each tetrahedron contained in the thick part of M

has dihedral angles and edge lengths bounded by fixed constants. The tetrahedra of

such a triangulation contained in the thick part of M are all L-bilipschitz diffeomor-

phic to the standard Euclidean tetrahedron for a fixed constant L. Thus each hyper-

bolic 3-manifold has a geodesic triangulation such that the tetrahedra contained in

the thick part of M are contained in a fixed compact set of tetrahedra that depends

only on the constant L. For a positive constant L, let R(L) be the set of geodesic

tetrahedra in H
3 that are L-bilipschitz diffeomorphic to the standard Euclidean tetra-

hedron considered up to isometry. Fix a parametrization of R(L). For each geodesic

triangle that appears as the face of a tetrahedron in R(L), choose normal arcs of each

type that are smooth, meet each edge orthogonally at the midpoint of the edge, and

meet each other only at the midpoints of the edges. Choose these normal arcs so that

they change continuously as the vertices of the triangle are moved. Choose ρ > 0

so small that for each chosen arc, we can choose two more smooth arcs of the same

type (one on each side) that meet the edges orthogonally a distance 3ρ/2 from the

midpoint and so that the distance of each point of a new arc to the original arc is

between ρ and 2ρ. Again, choose these arcs so that they change continuously as the

vertices of a triangle are moved.

Now we will choose normal and almost normal pieces of each type that are

bounded by the normal arcs chosen above. Let t ∈ R(L). First choose normal pieces

of each type in t and an almost normal octagon that are smooth, bounded by the

original normal arcs chosen above (for the corresponding faces), meet the boundary

of t orthogonally, and meet each other only at their boundaries (except for pairs of

quads and octagons). Choose these normal disks so that they change continuously

as the vertices of the tetrahedron are moved. Note that we have chosen three pieces

for each type of normal or almost normal piece. Also tube pairs of normal disks to-

gether to form the other almost normal pieces, so that they also change continuously

as the shape of a tetrahedron changes. We will call these normal and almost normal

pieces geometric pieces. See Figure 6. We may assume that the geometric pieces are

ruled annuli in a small neighborhood of each face. Since R(L) is compact and there

are finitely many geometric pieces in each tetrahedron, the principal curvatures of

the geometric pieces are uniformly bounded in absolute value. Let B(L) be an upper

bound on the absolute value of the principal curvature of the geometric pieces for
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Figure 6: Some geometric normal and almost normal pieces.

tetrahedra in R(L). Given an embedded normal surface with respect to a triangu-

lation with tetrahedra from R(L), we can isotope each normal and almost normal

piece (keeping it embedded) to be so close (in the C∞ topology) to one of the cor-

responding geometric pieces that the principal curvatures are between −(B(L) + 1)

and B(L) + 1.

Using geometric pieces in a thick triangulation and normal surface theory (i.e.,

Theorem 4.1 and Theorem 4.2), we can bound the principal curvatures of π1-

injective surfaces and strongly irreducible Heegaard surfaces in the thick part of a

hyperbolic 3-manifold. The final step is to extend these bounds to the thin part. This

is easy for Heegaard surfaces because the surface can be isotoped into the thick part

and normalized in the thick part. More work is required in the case of a π1-injective

surface.

Proof of Theorem 1.1 when S is a strongly irreducible Heegaard surface. Let S be

a strongly irreducible Heegaard splitting of a complete orientable hyperbolic 3-man-

ifold M. Using Theorem A from the introduction we can choose 0 < ǫ0 < ǫ1 ≪ 1

so that the following holds. First, ǫ1 is less than the 3-dimensional Margulis con-

stant. Also, if T0 is an ǫ0-tube in a hyperbolic 3-manifold and T1 is the corresponding

ǫ1-tube, then the distance from ∂T0 to ∂T1 is at least 1. Let T be a geodesic triangu-

lation of M provided by Theorem 1.2 with µ = ǫ0. Isotope S so that it is contained

in M[ǫ1,∞). We can do this by first isotoping a spine for one of the handlebodies into

the interior of M[µ,∞) and then isotoping S to the boundary of a small neighborhood

of the spine. The length of an edge of a tetrahedron that has a vertex in M(0,ǫ0] is less

than 1 (since ǫ1 ≪ 1), so that S intersects only tetrahedra with vertices in M[ǫ0,∞).

Theorem B implies that S is isotopic to the surface that is almost normal with re-

spect to T. Also, the normalizing procedure used in [Sto00] does not push S into

any tetrahedra that S does not already intersect. Thus S is isotopic to an almost nor-

mal surface which intersects only tetrahedra having all vertices in M[ǫ0,∞). Each such

tetrahedron is isometric to a tetrahedra in R(L). Isotope each normal and almost

normal piece of S to be so close to the corresponding special normal disk that it has

principal curvatures bounded in absolute value by B(L) + 1.

Proof of Theorem 1.1 when S is π1-injective. Choose ǫ0 < ǫ1 < ǫ2 < ǫ3 ≪ 1 so

that the following holds. First, ǫ3 is less than the Margulis constant. Also, if T0 is an
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Figure 7: A lift of the tube T2, part of S, and some tetrahedra to H
3.

ǫ0-tube in a complete hyperbolic 3-manifold and T1, T2, T3 are the corresponding ǫ1-

, ǫ2-, and ǫ3- tubes, then d(∂T0, ∂T1), d(∂T1, ∂T2), and d(∂T2, ∂T3) are all at least 1.

Let T be a geodesic triangulation of M provided by Theorem 1.2 with µ = ǫ0.

Assume f : S → M is an embedding. Since S is incompressible and closed, we can

isotop it so that it misses any ǫ3-cusps and meets each ǫ3-tube in either the empty

set or a finite set of disjoint totally geodesic disks orthogonal to the boundary of the

tube. Assume that S meets each ǫ3-tube in as few disks as possible. By Theorem A we

can normalize S with respect to T.

Claim 4.3 After normalization, S still meets each ǫ2-tube in either the empty set or a

finite set of disjoint totally geodesic disks orthogonal to the boundary of the tube.

Proof Since the distance between ∂M(0,ǫ2) and ∂M(0,ǫ3) is at least 1 and the edge of

any tetrahedron in T that meets M[ǫ3,∞) is less than 1, any tetrahedron in T that meets

M[ǫ3,∞) is disjoint from M[ǫ2,∞). Also, normalization never pushes a surface into a

tetrahedron previously disjoint from the surface. Thus our normalized surface does

not meet any ǫ2-cusps or ǫ2-tubes that it did not meet before. Now consider one of

our totally geodesic disks D, which meets an ǫ3-tube T3. The intersection of D with a

totally geodesic tetrahedron t is a normal disk if D ∩ t is contained in the interior of

D. So D intersects any tetrahedron t that meets the corresponding ǫ2-tube, T2, in a

normal disk. Suppose that we are forced to isotope D∩T2 after some finite number of

steps. A totally geodesic disk cannot intersect the interior of a face in a trivial curve,

so the isotopy that moves D ∩ T2 is an isotopy that eliminates an arc in S ∩ f that

intersects an edge of f twice, for some face f of a tetrahedron that meets T2. See

Figure 7. This implies that D is connected to another totally geodesic disk in T2 ∩ S

by a strip that is isotopic into ∂T2. This contradicts the assumption that S meets each

ǫ3-tube in as few disks as possible. Thus S still meets each ǫ2-tube in either the empty

set or a set of totally geodesic disks after normalization.

Let S ′ be the surface obtained from S by isotoping the normal pieces of S to be

so close to the corresponding geometric piece that the curvature of S ′ is bounded by

B(L) + 1 in the ǫ2-thick part of M.

We now have two surfaces S and S ′. The surface S is totally geodesic in the ǫ2-

thin part, so its principal curvatures are bounded in the ǫ2-thin part, but we only
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S’

S

Tε2

Figure 8: S is nice inside M(0,ǫ2] and S′ is nice outside M(0,ǫ2]. We will join them by annuli,

keeping the principal curvatures bounded.

know that S is a normal surface in the ǫ2-thick part. The principal curvatures of S ′

are bounded by B(L) + 1 in the ǫ2-thick part, but the geometric pieces in the thin

part must have points where the principal curvatures are large. The last step is to

show that S ∩ M(0,ǫ2] can be joined to S ′ ∩ M[ǫ2,∞) to get a surface isotopic to S with

universally bounded principal curvatures. See Figure 8.

Let D be a totally geodesic disk in S∩M[ǫ2,∞). We may assume that D is transverse

to the 2-skeleton of T. We want to join the totally geodesic disk D to the surface

S ′ consisting of geometric pieces by a surface with universally bounded principal

curvatures. We will replace some of the totally geodesic disks in D by normal disks

that connect D to S ′. The idea is to pin down some of the vertices of a normal disk

in D and drag the others, along with some of the disk to meet the corresponding

geometric piece. In order to use a compactness argument to universally bound the

principal curvatures of these “connecting” disks, we may need to perturb D first so

that it does not come too close to vertices of T in the 1-neighborhood N1(∂M(0,ǫ1])

of ∂M(0,ǫ1].

We will perturb D whenever it comes close to a vertex of T in N1(∂M(0,ǫ1]) as

follows. Let p ∈ H
3 and let F be a foliation of H

3 by totally geodesic planes. Replace

the (µ/100)-ball around p with the a smooth singular foliation F of the complement

of a small region containing p as shown in Figure 9. If D intersects a (µ/100)-ball

centered at a vertex of T, then we can consider it as a disk in a non-singular leaf of the

foliation F (where the vertex is the point p), and replace it by a disk in a nonsingular

leaf of F ′. The principal curvatures of the leaves in F ′ are uniformly bounded.

Let t ∈ R(L) and put t inside H
3. Let F be a foliation of H

3 by totally geodesic

planes. Change F near each vertex of t as above to get a singular foliation F ′. Let d be

the intersection of a non-singular leaf of F ′ with t . For each proper subset of the set of

vertices of d, choose a smooth normal disk that agrees with d near these vertices, and

which agrees with the corresponding geometric disk near the other vertices. Choose

these disks so that they change continuously with the leaves of the foliation. Call

these new disks connecting disks. We can ensure that the connecting disks meet to

form a smooth surface when two tetrahedra are glued together by first defining them

on a small neighborhood of each isometry class of triangles which appear as faces in

R(L), and then extending them to the interiors of the tetrahedra.

The principal curvatures of the connecting disks in a tetrahedron t correspond-

ing to a fixed foliation F ′ are uniformly bounded by compactness. As the foliation
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Figure 9: Cross-section view of how to change a foliation of H
3 by totally geodesic planes near

a vertex.

F ′ in H
3 changes via isotopy while t remains fixed, isotope the connecting disks in

t continuously, so that compactness (of the set of foliations of h3 by totally geodesic

planes) implies that the set of possible connecting disks for t has uniformly bounded

principal curvatures. Finally, the compactness of the set R(L) implies that the prin-

cipal curvatures of any possible connecting disk in any tetrahedron in R(L) for any

foliation F ′ are uniformly bounded in absolute value, say by C(L). Assume that

C(L) ≥ B(L) + 1.

Let X be the union of the set of tetrahedra in T that have at least one vertex in

M(0,ǫ1] and at least one vertex outside M(0,ǫ1]. The union X is homeomorphic to a

torus times a compact interval. Let t be a tetrahedron in X and replace each disk d in

t ∩ D as follows. If d has any vertices on the interior boundary of X (i.e., the compo-

nent of ∂X that is closest to the center of D), then replace d with the connecting disk

that is totally geodesic near the vertices in the interior component of X and meets

the corresponding geometric piece near the other vertices. If d has no vertices on the

interior boundary of X, then replace d with the corresponding geometric piece. We

end up with a disk D ′ that agrees with D near the interior boundary of X, agrees with

S ′ outside M(0,ǫ1], and has principal curvatures bounded in absolute value by C(L).

If f : S → M is an immersion, then the above argument works if we replace “iso-

topy” with “homotopy”.
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