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Simultaneous Polynomial Approximations
of the Lerch Function

Tanguy Rivoal

Abstract. We construct bivariate polynomial approximations of the Lerch function that for certain

specialisations of the variables and parameters turn out to be Hermite–Padé approximants either of the

polylogarithms or of Hurwitz zeta functions. In the former case, we recover known results, while in the

latter the results are new and generalise some recent works of Beukers and Prévost. Finally, we make a

detailed comparison of our work with Beukers’. Such constructions are useful in the arithmetical study

of the values of the Riemann zeta function at integer points and of the Kubota–Leopold p-adic zeta

function.

1 Introduction

In this article, we consider polynomial approximations for the Lerch function, de-
fined to be the multivariate series

Φs(x, z) =

∞∑

n=1

zn

(n + x)s
.

Here, s is a positive integer and z, x are complex numbers such that |z| ≤ 1, x is

not a negative integer, and (s, z) 6= (1, 1). These conditions ensure the convergence

of the above series, which can be analytically continued in z for any fixed s, x. The
Lerch function admits as special cases the Hurwitz function1 ζ(s, x) = Φs(x, 1), the

polylogarithms Lis(z) = Φs(0, z), and the Riemann zeta function ζ(s) = Φs(0, 1).

The Hermite–Padé approximants of polylogarithms have been extensively stud-
ied, with numerous applications to the diophantine theory of ζ(s); see for exam-

ple [4, 5, 9–11, 15] and the references therein. On the other hand, the Hermite–Padé

approximants of Hurwitz functions seem to have received much less attention; see
for example Beukers [7], Prévost [14] (in which he uses Wilson’s orthogonal polyno-

mials [20]) and Rivoal [17]. Our aim is to prove simple formulae for certain diagonal

Hermite–Padé type approximants of the Lerch function that provide a unifying ap-
proach to these problems.

We remind the reader of the definition of the n-th diagonal Hermite–Padé prob-

lem (whose solutions are Hermite–Padé approximants) at z = z0 ∈ C ∪ {∞} of a
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1In the literature, [1, eq. (1.3.1)], the Hurwitz zeta function is sometimes defined as Φs(x − 1, 1).
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family of formal powers series2

Fk(z) =

∞∑

j=0

f j,k(z − z0)k ∈ C[[z]], k = 1, . . . , K.

The problem is to find K polynomials P1(z), . . . , PK(z) ∈ C[z] of degree at most n
such that the order at z = z0 of the power series

R(z) = P1(z)F1(z) + P2(z)F2(z) + · · · + PK(z)FK(z)

is at least K(n + 1) − 1 if z0 ∈ C and at least (K − 1)(n + 1) if z0 = ∞, which is the-

oretically the best possible order. Uniqueness (up to a multiplicative constant) is not

always ensured. It is sometimes useful to have an order Ω that is less than K(n+1)−1
(or (K − 1)(n + 1)); we will say that we have obtained diagonal Hermite–Padé type

approximants. In diophantine approximation, these approximants are useful when

Ω is an increasing function of n, typically Ω ≈ cK n for some constant cK > 0; see [4,
15] for an example showing that the best possible value for Ω does not necessarily

yield the best number-theoretical results. In all cases, we use the notation R(z) =

O
(

(z − z0)Ω
)
.

The functions Φs(x, z) being convergent Taylor series in z, we can consider Her-

mite–Padé type approximants at z = 0 for the family

(1, Φ1(x, z), Φ2(x, z), . . . , ΦA(x, z))

for any fixed integer A ≥ 1 and any fixed x. Explicit formulae in the diagonal case
have been known for a long time for x = 0, and the general case is little different.

Surprisingly, it has so far not been mentioned in the literature that these formulae

contain more. They also provide, with almost no change, diagonal Hermite–Padé
type approximants at x = +∞ for the family (1, Φ1(x, z), Φ2(x, z), . . . , ΦA(x, z)) for

any fixed integer A ≥ 1 and any fixed z. Indeed, let us consider the following problem:

given any integers A ≥ 2, n ≥ 0, r ≥ 0 such that A(n + 1) ≥ r + 2, find A + 1
polynomials P0(x, z), P1(x, z), . . . , PA(x, z) in Q[z, x], of degree at most r in x and at

most n in z, and P̂0(x, z) ∈ Q(x)[z] of degree at most n in z, such that

RA,n,r(x, z) = P0(x, z) +

A∑

j=1

P j(x, z)Φ j(x, 1/z)

= O(x−A(n+1)+r+1) at x = +∞,

SA,n,r(x, z) = P̂0(x, z) +

A∑

j=1

P j(x + r, z)Φ j(x, 1/z)

= O(z−r−1) at z = ∞.

(1.1)

2If z0 = ∞, we replace every occurrence of z− z0 by 1/z. Hermite–Padé approximants are also known
as Padé approximants of the first type, not to be confused with our use of the word “type” in this article.
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When we fix x, resp. z, the first, resp. second, equation is a diagonal Hermite–Padé
type problem in z, resp. in x. Before going further, we warn the reader that the func-

tions Φs(x, z) are not holomorphic nor even real analytic at x = ∞. Therefore, the
expression “Hermite–Padé type approximants at x = +∞” in Problem (1.1) is a pri-

ori an abuse of language. For the moment, it is enough to consider that in (1.1) we ask

that limx→+∞ xA(n+1)−r−1RA,n,r(x, z) be finite. In fact, this is not a real abuse of lan-

guage, because the Lerch function Φs(x, z) admits an asymptotic expansion Φ̂s(x, z)
in powers of 1/x and the polynomials P j(x, z) in Problem (1.1) provide a solution to

the Hermite–Padé problem for
(

1, Φ̂1(x, z), Φ̂2(x, z), . . . , Φ̂A(x, z)
)

at x = ∞. This

is a well-known generalisation of Hermite–Padé approximants; see [12, p. 66]. How-
ever, since this distinction will be useful, we give more details in Section 2.

We cannot expect to have a unique solution for Problem (1.1) (even up to multi-

plicative constant). The following result provides a possible solution.

Theorem 1 When r ≥ n, Problem (1.1) admits the following explicit solution:

RA,n,r(x, z) =
n!A

r!

∞∑

k=1

(k)r

(k + x)A
n+1

z−k,(1.2)

SA,n,r(x, z) =
n!A

r!

∞∑

k=1

(k)r

(k + x + r)A
n+1

z−k−r,(1.3)

which are holomorphic functions in the variables x, z in the domain defined by |z| ≥ 1
(including z = ∞) and x 6∈ {−1,−2,−3, . . .}. We also have

Ps(x, z) =

n∑

j=0

(−1) jA+rz j

(A − s)!

( d

d j

) A−s

×

((
n

j

)A(
x + j

r

))
∈ Q[x, z] for s ≥ 1,

P̂0(x, z) =

A∑

s=1

n∑

j=1

j∑

ℓ=1

(−1) jA+r+1z j−ℓ

(ℓ + x)s(A − s)!

( d

d j

) A−s

×

((
n

j

)A(
x + j

r

))
∈ Q(x)[z],

P0(x, z) =
n!A

(A − 1)!r!

n∑

j=1

(
d

dℓ

)A−1

×

(
(−ℓ − x)r(ℓ − j)A

(−ℓ)A
n+1

j−1∑

k=0

zk

ℓ + x − k

)

|ℓ= j

∈ Q[x, z].

(1.4)

Remarks. (a) The explicit expression for the polynomials Ps is obtained by partial

fraction expansion with respect to k of the rational function (k)rn/(k + x)A
n+1. For Ps
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(s = 1, . . . , A − 1 and P̂0), the symbol (d/d j)A−s is a formal derivative that must be
handled carefully: we refer to the proof for the exact meaning of this statement. On

the other hand, the derivative (d/dℓ)A−1 in P0 is well defined.
(b) Equations (1.2) and (1.3) enable us to control explicitly the error terms in the

approximations, which is not the case of the formal O
(

z−r−1
)

and O
(

x−A(n+1)+r+1
)

we initially asked for. This could be useful for arithmetical applications of our results
although, as Beukers pointed out to the author, the series for RA,n,r(x, z) does not give

its asymptotic expansion in 1/x and such an expansion is an important tool in [7].

(c) The most difficult part of the theorem is proving that P0(x, z) is a polynomial
in x, which is done by transformation of a complicated formula for P0(x, z) into (1.4)

(Incidentally, the degrees of P0(x, z) in x and z are only r − 1 and n − 1 respectively).
On the other hand, P̂0(x; z) is a polynomial in z but not in x; it would be a polynomial

in both variables if we replaced the numerator (k)r of the series in (1.2) and (1.3) by

(k)2r. This would be a completely different approximation problem: in particular,
Corollary 2(ii) below would no longer hold, because r would have to be essentially

≤ An/2.

Theorem 1 has a number of consequences; we mention two of these in the follow-
ing corollary.

Corollary 2 (i) When r = n and z = 1, the series RA,n,r(x, 1) in (1.2) is a solu-
tion of the n-th diagonal Hermite–Padé problem at x = +∞ for the A functions

(1, ζ(2, x), ζ(3, x), . . . , ζ(A, x)).

(ii) When r = A(n + 1) − 1 and for any fixed x, the series SA,n,r(x, z) in (1.3) is
a solution of the n-th diagonal Hermite–Padé problem at z = ∞ for the A + 1

functions (1, Φ1(x, 1/z), Φ3(x, 1/z), . . . , ΦA(x, 1/z)).

Remarks. (a) Assertion (ii) is well known to experts and we mention it for complete-

ness. When x = 0, it is part of a theorem of Nikishin [11] (which was generalised
in [16] to arbitrary values of r).

(b) The case A = 2 and r = n in (i) was obtained by Prévost [14] and Beukers [7]
independently in different forms and settings (see Section 4.1 for a comparison of

Beukers’ solution and ours); Beukers even mentions that his solution is implicit in

Stieltjes’ classical work on continued fractions. On the other hand, the second case,
which deals with Hurwitz functions, seems to be new when A ≥ 3.

(c) For any fixed z 6= 1, there is no value of r such that the series RA,n,r(x, z) is a

solution of the n-th diagonal Hermite-Padé problem at x = +∞ for the A + 1 func-
tions (1, Φ1(x, 1/z), Φ2(x, 1/z), . . . , ΦA(x, 1/z)). This is due to the presence of the

function Φ1(x, z), whose polynomial coefficient “unexpectedly” vanishes identically
when z = 1 (yielding (i)).

We now consider another Hermite–Padé type problem. Given any integers A ≥ 2,

n ≥ 0, and r ≥ 0 such that A(n+1) ≥ 2r+3, find A−1 polynomials Q0(x), Q2(x), . . . ,
QA−1(x) in Q[x], of degree at most 2r + 1, such that

TA,n,r(x) = Q0(x) +
∑

j=2,...,A−1
j≡A−1 (mod 2)

Q j(x)Φ j(x; (−1)A)

= O(x−A(n+1)+2r+2) at x = +∞.

(1.5)
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When A is even and r = n, Problem (1.5) is by definition the (2n + 1)-th diagonal
Hermite–Padé problem for

(
1, ζ(3, x), ζ(5, x), . . . , ζ(A − 1, x)

)
. When r = n, the

case A = 4 was solved by Prévost [14] and Beukers [7] in different forms; their solu-
tions also have a different form from the one proposed here, which has the advantage

of being generalisable to larger values of A and r. See Section 4.2 for a comparison

with Beukers’ solution for A = 4, r = n.

Theorem 3 When r ≥ n, Problem (1.5) admits the following solution:

TA,n,r(x) =
n!A

r!2

∞∑

k=1

(−1)kA
(

k + x +
n

2

) (k)r(k + 2x + n − r + 1)r

(k + x)A
n+1

,

which converges for all x ∈ C \ {−1,−2,−3, . . .}. We also have that

Qs(x) =
(−1)r

(A − s)!

n∑

j=0

(
d

d j

)A−s ((
n

2
− j

)(
n

j

)A(
x + j

r

)(
x + n − j

r

))
∈ Q[x]

for s ≥ 2 and

Q0(x) =
(−1)rn!A

(A − 1)!r!2

n∑

j=1

( d

dℓ

)A−1

×
(( n

2
− ℓ

) (−ℓ − x)r(ℓ − x − n)r(ℓ − j)A

(−ℓ)A
n+1

j−1∑

k=0

1

ℓ + x − k

)

|ℓ= j
∈ Q[x].

Remark. When A is odd, there is no choice of r such that Problem (1.5) becomes the

(2r + 1)-th diagonal Hermite–Padé for
(

1, ζ̃(2, x), ζ̃(4, x), . . . , ζ̃(A − 1, x)
)
, where

ζ̃(s, x) = Φs(x,−1).

The rest of the article is organised as follows. In Section 2, we compare Hermite–

Padé approximants with the similar approximations obtained by replacing formal

series by asymptotic expansions; this result is stated as Proposition 4. We prove The-
orem 1, Corollary 2, and Theorem 3 in that order in Section 3. Finally, in Section 4,

we compare our results with the results of Beukers quoted above, which present in-
teresting differences.

2 Asymptotic and Formal Hermite–Padé Approximants

For fixed s, z, the function Φs(x, z) is not defined as a formal power series in x and,
as indicated in the introduction, it is not holomorphic or real analytic at x = ∞
(and hence cannot be expanded as a convergent power series in 1/x). Therefore,
strictly speaking, we cannot seek Hermite–Padé type approximants at x = ∞ for

it. Nevertheless, this problem can be fixed by a classical extension of the notion of

Hermite–Padé approximants; see [12, p. 66] for more details and references.
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Indeed, the Lerch function admits an asymptotic expansion

Φs(x, z) ∼

∞∑

k=1

φk(s, z)x−k

in Poincaré’s sense: for all N ≥ 0, we have that

Φs(x, z) =

N∑

k=0

φk(s, z)x−k−s+1 + O
(

x−s−N
)
,

uniformly in the half-plane ℜ(x) > 0, where

φk(s, z) =





(
k + s − 2

s − 2

)
Bk

s − 1
if z = 1, s ≥ 2,

(−1)k

(
k + s − 1

s − 1

)
ϑk

( z

1 − z

)
if z 6= 1, s ≥ 1.

Here, Bk is the k-th Bernoulli number and ϑ = zd/dz. Since a function admits at

most one asymptotic expansion in powers of 1/x, it is natural to use the following

notion of “order at infinity”: given a function g defined in a ray S = (eiϑA, eiϑ∞)
(for a certain A ∈ R) and which admits an asymptotic expansion as x → eiϑ∞, we

say that g is of order at least K at x = eiϑ∞ if for every integer k with 0 ≤ k ≤ K − 1,
limx→eiϑ∞,x∈S x j f (x) = 0. In this case, we write g(x) = O

(
x−K

)
. It may happen

that the asymptotic expansion holds in a much larger domain than a ray, typically in

an open angular sector: the definition extends accordingly. For example, Φs(x, z) has
order s − 1 in x at infinity in the half-plane ℜ(x) > 0.

Let us now consider K complex valued functions F1(x), F2(x), . . . , FK(x) defined

on an interval (A, +∞) (A ∈ R). Let us suppose that all these functions have an
asymptotic expansion to all orders when x = +∞, i.e.,

Fk(x) =

N−1∑

j=0

f j,kx− j + O(x−N)

as x → +∞ for every integer N ≥ 0. For each k = 1, . . . , K , we denote by F̂k(x) =∑∞
j=0 f j,kx− j the formal power series associated with Fk (this series may be not con-

vergent or may converge to a function different from Fk(x)). Let us also suppose that

for a given integer n ≥ 0, we can find K polynomials P1(x), . . . , PK(x) ∈ C[x] of

degree at most n such that

(2.1) lim
x→+∞

x(K−1)(n+1)−1
K∑

k=1

Pk(x)Fk(x) = 0.

In this situation, we have the following easy result, which will be used in what

follows. We prove it for completeness.
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Proposition 4 The set of polynomials
(

P1(x), P2(x), . . . , PK(x)
)

is a solution of the

n-th diagonal Hermite–Padé problem at x = ∞ for (F̂1(x), F̂2(x), . . . , F̂K(x)).

Remarks. (a) Obviously, by a change of variable, we obtain similar results when the

asymptotic is taken along a ray direction x → eiϑ∞ or in the case of an asymptotic
expansion in a neighborhood of a complex x0, where

Fk(x) =

N−1∑

j=0

f j,k(x − x0) j + O((x − x0)N).

(b) This theorem shows that it is consistent with the usual definition of Hermite–

Padé approximants of formal series to consider P’s to be solutions of the “n-th Her-
mite–Padé (type) problem at x = +∞ of F1(x), F2(x), . . . , FK (x)”. To emphasize the

difference between these notions, we could say that we compute the “n-th asymptotic

Hermite–Padé (type) approximants at x = +∞” for these functions. In Theorems 1
and 3 the convergence is even stronger than just x → +∞ since, in those cases, the

asymptotic expansion Φs(x, z) ∼
∑∞

k=1 φk(s, z)x−k holds uniformly in the half-plane
ℜ(x) > 0.

Proof It is easier to work at x = 0. Changing the variable x to 1/x, we suppose given

functions G1(x), . . . , GK(x) (obtained from the F’s by the formula G j(x) = F j(1/x))
which all admit an asymptotic expansion at x = 0 in an interval [0, A]. We then

have Gk(x) =
∑N−1

j=0 f j,kx j + O(xN for each N ≥ 0. By hypothesis (2.1), there exist K

polynomials Q1(x), . . . , QK (x) ∈ C[x] of degree at most n (obtained from the P’s by
the formula Q j(x) = xnP j(1/x)) such that

(2.2) lim
x→0+

x−K(n+1)+2

K∑

k=1

Qk(x)Gk(x) = 0.

Set Ĝk(x) =
∑∞

j=0 f j,kx j ∈ C[[x]] and Qk(x) =
∑n

j=0 q j,kx j . We have that

K∑

k=1

Qk(x)Gk(x) =

K∑

k=1

( n∑

j=0

q j,kx j
)( K(n+1)−2∑

j=0

f j,kx j
)

+ O(xK(n+1)−1),

and condition (2.2) ensures that the polynomial

K∑

k=1

( n∑

j=0

q j,kx j
)( K(n+1)−2∑

j=0

f j,kx j
)

is identically 0. But this means exactly that Q1(x), . . . , QK (x) are solutions of the n-th

diagonal Hermite–Padé problem for the formal series Ĝ1(x), . . . , ĜK(x).
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3 Proofs of the Results

3.1 Proof of Theorem 1

Under the conditions of Problem 1.1, let us define the function

ŜA,n,r(x, z) =
n!A

r!

∞∑

k=1

(k)r

(k + x + r)A
n+1

z−k−r,

which is clearly holomorphic in z in |z| ≥ 1 (including z = ∞) and meromorphic in

x in C \ {−1− r,−2− r,−3− r, . . .}. Furthermore, we obviously have ŜA,n,r(x, z) =

O(z−r−1). With k = ℓ − r, we have that

ŜA,n,r(x, z) =
n!A

r!

∞∑

ℓ=r+1

(ℓ − r)r

(ℓ + x)A
n+1

z−ℓ
=

n!A

r!

∞∑

ℓ=1

(ℓ − r)r

(ℓ + x)A
n+1

z−ℓ,

where the second equality holds because (ℓ − r)r = 0 for all ℓ ∈ {1, 2, . . . , r}. By

partial fraction expansion, we have

n!A

r!

(ℓ − r)r

(ℓ + x)A
n+1

=

A∑

s=1

n∑

j=0

C j,s(x)

(ℓ + x + j)s

with

C j,s(x) =
1

(A − j)!

( d

dℓ

) A− j( n!A

r!

(ℓ − r)r

(ℓ + x)A
n+1

(ℓ + x + j)A
)

|ℓ=− j−x
.

Note that we have used here the property that A(n + 1) ≥ r + 2, which ensures

that there is no polynomial part in the expansion. Hence, we have ŜA,n,r(x, z) =

P̂0(x, z) +
∑A

s=1 P̂ j(x, z)Φs(x, z) with

P̂0(x, z) = −

A∑

s=1

n∑

j=1

C j,s(x)

j∑

ℓ=1

z j−ℓ

(ℓ + x)s

and, for s ≥ 1, P̂s(x, z) =
∑n

j=0 C j,s(x)z j .
Let us now define

R̂A,n,r(x, z) = zr
ŜA,n,r(x − r, z) =

n!A

r!

∞∑

k=1

(k)r

(k + x)A
n+1

z−k,

which is holomorphic in z for |z| ≥ 1 (including z = ∞) and meromorphic in x in

C \ {−1,−2,−3, . . .}. By partial fraction expansion, we have

n!A

r!

(k)r

(k + x)A
n+1

=

A∑

s=1

n∑

j=0

D j,s(x)

(k + x + j)s
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with

(3.1) D j,s(x) =
1

(A − j)!

( d

dk

)A− j( n!A

r!

(k)r

(k + x)A
n+1

(k + x + j)A
)

|k=− j−x
.

Hence, we have R̂A,n,r(x, z) = P0(x, z) +
∑A

s=1 P j(x, z)Φs(x, z) with

P0(x, z) = −

n∑

j=1

A∑

s=1

D j,s(x)

j∑

k=1

z j−k

(k + x)s

and, for s ≥ 1, Ps(x, z) =
∑n

j=0 D j,s(x)z j . We have C j,s(x) = D j,s(x + r) and therefore

for all s ≥ 1, P̂s(x, z) = Ps(x + r, z).

The right-hand side of equation (3.1) shows clearly that, for s ≥ 1, Ps(x, z) and

Qs(x, z) are both polynomials in z of degree (at most) n and polynomials in x of

degree (at most) r. We have the following symbolic expression for Ps:

Ps(x, z) =
1

(A − s)!

n∑

j=0

(−1) jA+r
( d

d j

)A−s
((

n

j

)A(
x + j

r

))
z j.

We also have that P0(x, z) is a polynomial in z of degree at most n − 1, but it is much
less obvious that P0(x, z) is also a polynomial in x. To prove this, we first note that

D j(x) =
(−1)A−s

(A − s)!

( d

dℓ

)A−s( n!A

r!

(−ℓ − x)r

(−ℓ)A
n+1

( j − ℓ)A
)

|ℓ= j
,

and

j∑

k=1

z j−k

(k + x)s
=

(−1)s−1

(s − 1)!

( d

dℓ

) s−1( j−1∑

k=0

zk

ℓ + x − k

)

|ℓ= j
.

Hence, by Leibniz’ formula,

A∑

s=1

D j,s(x)

j∑

k=1

z j−k

(k + x)s

=
(−1)A−1

(A − 1)!

A∑

s=1

(
A − 1

s − 1

)( n!A

r!

(−ℓ − x)r

(−ℓ)A
n+1

( j − ℓ)A
) (A−s)

|ℓ= j

( j−1∑

k=0

zk

ℓ + x − k

) (s−1)

|ℓ= j

=
(−1)A−1

(A − 1)!

( d

dℓ

) A−1( (−ℓ − x)r( j − ℓ)A

(−ℓ)A
n+1

j−1∑

k=0

zk

ℓ + x − k

)

|ℓ= j
.

We have not yet used the hypothesis that r ≥ n, and this enables us to use the fol-

lowing trivial but crucial fact; for any j ∈ {1, . . . , n} and any k ∈ {1, . . . , j − 1},
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the polynomial x − k is a factor of the polynomial (−x)r for any r ≥ n. Hence, the
rational function in x, ℓ,

F(x, ℓ) =
(−x)r( j − ℓ)A

(−ℓ)A
n+1

j−1∑

k=0

zk

x − k

is actually a polynomial in x of degree at most r − 1 and a rational function of ℓ; the

same is true of the function

∂A−1

∂ℓA−1
F(x + ℓ, ℓ) =

( d

dℓ

)A−1( (−ℓ − x)r( j − ℓ)A

(−ℓ)A
n+1

j−1∑

k=0

zk

ℓ + x − k

)
.

Finally, the formula

P0(x, z) =
n!A

(A − 1)!r!

n∑

j=1

( d

dℓ

) A−1( (−ℓ − x)r(ℓ − j)A

(−ℓ)A
n+1

j−1∑

k=0

zk

ℓ + x − k

)

|ℓ= j

shows that P0(x, z) is a polynomial in x of degree at most r − 1.
To complete the proof of the theorem, it remains to show that

lim
x→+∞

xA(n+1)−r−2
R̂A,n,r(x, z) = 0.

But for ℜ(x) > 0 we have that

|xA(n+1)−r−2
R̂A,n,r(x, z)| ≤

∞∑

k=1

(k)r|x|
A(n+1)−r−2

|k + x|A(n+1)

≤

∞∑

k=1

(k)r|x|
A(n+1)−r−2

|x|A(n+1)−r−2|k + x|r+2
=

∞∑

k=1

(k)r

|k + x|r+2
.

(3.2)

Obviously this last series tends to 0 as |x| → ∞ uniformly in the half-plane ℜ(x) > 0.

Since R̂A,n,r(x, z) admits an asymptotic expansion as x → +∞, we therefore have that

R̂A,n,r(x, z) = O
(

x−A(n+1)+r+1
)
. Hence, the series R̂A,n,r(x, z) and ŜA,n,r(x, z) are a

solution to the approximation Problem 1.1.

3.2 Proof of Corollary 2

Case (ii) does not need a proof because this is the definition of Hermite–Padé ap-
proximants at z = ∞.

This is almost true for case (i), except that we must explain how the divergent se-

ries ζ(1, x) disappears. This follows from a general fact. Under the conditions of The-
orem 1, for all r ≥ n, the polynomial P1(x, z) is identically zero for z = 1. This can

be proved as follows: the series RA,n,r(x, z) in equation (1.2) is convergent for any z

such that |z| ≥ 1 and x 6∈ {−1,−2,−3, . . .}. In particular RA,n,r(x, 1) is convergent,
and the only potentially divergent term amongst the Ps(x, 1)Φs(x, 1) is s = 1. Abel’s

continuity theorem implies that limz→1 Ps(x, z)Φs(x, z) exists and is finite. Therefore,

for all x ∈ C, P1(x, 1) = 0 and RA,n,r(x, 1) = P0(x, 1) +
∑A

s=2 Ps(x, 1)ζ(s, x).
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3.3 Proof of Theorem 3

The proof is similar to that of Theorem 1. We first define the series

TA,n,r(x, z) =
n!A

r!2

∞∑

k=1

(
k + x +

n

2

) (k)r(k + 2x + n − r + 1)r

(k + x)A
n+1

z−k,

which, under the conditions of the theorem, converges for

|z| ≥ 1 and x 6∈ {−1,−2,−3, . . .}.

We also define the rational fraction of k

R(k) =

(
k + x +

n

2

) (k)r(k + 2x + n − r + 1)r

(k + x)A
n+1

,

which satisfies the functional equation R(k) = (−1)A(n+1)+1R(−k−2x−n). By partial
fraction expansion, we have

R(k) =

A∑

s=1

n∑

j=0

E j,s(x)

(k + x + j)s

where

E j,s(x) =
1

(A − j)!

( d

dk

)A− j(
R(k) (k + x + j)A

)
|k=− j−x

.

By uniqueness of this expansion, the functional equation for R(k) implies that

(3.3) En− j,s(x) = (−1)s+A(n+1)+1E j,s(x).

By the same process as in Section 3.1, we deduce that

TA,n,r(x, z) = Q0(x, z) +

A∑

s=1

Qs(x, z)Φs(x, z),

where Qs(x, z) =
∑n

j=0 E j,s(x)z j for s ≥ 1 and

Q0(x, z) =
(−1)rn!A

(A − 1)!r!2

n∑

j=1

( d

dℓ

) A−1

×
(( n

2
− ℓ

) (−ℓ − x)r(ℓ − x − n)r(ℓ − j)A

(−ℓ)A
n+1

j−1∑

k=0

zk

ℓ + x − k

)

|ℓ= j
.

Clearly, for s ≥ 1, the Qs(x, z) are polynomials of degree (at most) n in z and 2r in x,

while Q0(s, z) is of degree (at most) n − 1 in z and 2r − 1 in x.
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Equation (3.3) implies that znQs(x, 1/z) = (−1)A(n+1)+s+1Qs(x, 1/z) and, in par-
ticular, that

(3.4) Qs(x, (−1)A) = (−1)A+s+1Qs(x, (−1)A).

Therefore, Qs(x, (−1)A) = 0 if s ≡ A (mod 2), and we have

(3.5) TA,n,r(x, (−1)A) = Q0(x, (−1)A) +
∑

1≤s≤A

s≡A+1 (mod 2)

Qs

(
x, (−1)

)
Φs

(
x; (−1)A

)
.

The term Q1(x, (−1)A)Φ1(x; (−1)A) appears only when A is even, in which case the

series Φ1(x; (−1)A) is divergent. By the same argument as in Section 3.2, this implies

that Q1(x, (−1)A) = 0 identically. Furthermore, we also have QA(x, (−1)A) = 0
identically for any A ≥ 3 by the functional equation (3.4). Therefore, the sum in

(3.5) starts at j = 2 and stops at j = A − 1. Finally, the order at x =+ ∞ of
TA,n,r(x, (−1)A) is obtained by upper bounds similar to (3.2), and Problem (1.5) is

completely solved.

4 Comparison with Some Results of Beukers

In this section, we compare our formulas with those obtained by Beukers in certain
special cases. The example in Subsection 4.2 is particularly instructive, since it shows

the relevance of asymptotic Padé approximants.

4.1 Theorem 1 for A = 2 and r = n

Let us define the formal series R(x) =
∑∞

k=0 Bkx−k−1, which is the asymptotic ex-

pansion of ζ(2, x) at x = +∞. Up to change of notation, Beukers [7] showed that

(4.1)

∞∑

k=1

(k − n)n

(k)n+1

(k − 1)!

(x + 1)k

= pn(x)R(x) + qn(x) = O(x−n−1),

where pn(x) and qn(x) are polynomials in C[x] of degree n. It is important to note

that these equalities are equalities of formal series; this is a solution to the n-th di-

agonal Padé problem for (1, R(x)). Our Corollary 2 (case (ii) with A = 2, r = n)
produces a solution to the n-th Padé problem for (1, ζ(2, x))

R2,n,n(x, 1) = n!

∞∑

k=1

(k)n

(k + x)2
n+1

= P2,n(x)ζ(2, x) + P0,n(x) = O(x−n−1),

where the equalities have an analytical meaning. Since R(x) is the asymptotic ex-
pansion of ζ(2, x), Proposition 4 shows that (P2,n(x), P0,n(x)) is also a solution of the

formal Padé problem for (1, R(x)).
Let us call Rn(x) the series on the left-hand side of (4.1). It is not just a formal

series: it converges uniformly on ℜ(x) > −1, where it defines a holomorphic func-
tion. Since p0(x) = 1 and q0(x) = 0, Rn(x) can be viewed as a solution to the n-th
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(asymptotic) Padé problem at x = +∞ for (1, R0(x)). It is natural to compare the
series Rn(x) and R2,n,n(x, 1), because R0(x) and ζ(2, x) have the same asymptotic ex-
pansion. We will prove that they are actually equal3 on ℜ(x) > −1. For this, we first
express them as hypergeometric functions:

Rn(x) =
Γ(n + 1)3

Γ(x + 1)

Γ(2n + 2)Γ(x + n + 2)
3F2

»

n + 1, n + 1, n + 1

x + n + 2, 2n + 2
; 1

–

,

R2,n,n(x, 1) =
Γ(n + 1)2

Γ(x + 1)2

Γ(x + n + 2)2 3F2

»

n + 1, x + 1, x + 1

x + n + 2, x + n + 2
; 1

–

.

We can now apply Thomae’s 3F2 relation [19, (4.3.1)], and we obtain that

R2,n,n(x, 1) = Rn(x)

on ℜ(x) > −1.
In particular, for n = 0, the equality R2,0,0(x, 1) = R0(x) reads

(4.2) ζ(2, x) =

∞∑

k=1

k!

k2(x + 1)k

,

and we remark that the right-hand side is the expansion of ζ(2, x) in a série de facultés,

(see [13, Ch. VI]). Equation (4.2) can also be proved as follows:

ζ(2, x) =

∫ ∞

0

t

1 − e−t
e−t(x+1) dt = −

∫ 1

0

log(1 − u)

u
(1 − u)x du

=

∞∑

k=1

1

k

∫ 1

0

uk−1(1 − u)x du =

∞∑

k=1

k!

k2(x + 1)k

,

(4.3)

where we have used the change of variable t = − log(1− u). All steps are justified by

the absolute convergence on ℜ(x) ≥ δ > −1. Nörlund [13, pp. 213–214] mentions
that the functions admitting an expansion in a série de facultés are exactly those which

admit an asymptotic expansion of the form considered by Borel, i.e., coming from a

suitable Laplace transform, which is the case for ζ(2, x) by the first equality of (4.3).

4.2 Theorem 3 for A = 4 and r = n

Let us define the formal series

T(x) = −
1

2
R′(x) =

1

2

∞∑

k=0

(k + 1)Bkx−k−2,

which is the asymptotic expansion of ζ(3, x) at x = +∞. Beukers [7] also showed

that

(4.4)
(−1)n+1

2

∞∑

k=1

(k − n)n

(k)n+1

(k − 1)!2

(x + 1)k(−x)k

= un(x)T(x) + vn(x) = O(x−2n−2),

3This is by no means obvious; see Section 4.2 for a counterexample in an apparently similar situation.
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where un(x) and vn(n) are polynomials in C[x] of degree 2n. Again, these equalities
are equalities of formal series. This is a solution to the (2n + 1)-th diagonal Padé

problem for (1, T(x)). In Theorem 3 (case (ii) with A = 4, r = n), we have also pro-
duced an analytic solution to the (2n + 1)-th diagonal Padé problem for (1, ζ(3, x)),

and we now proceed to compare the two approaches.

Let us call Tn(x) the series on the left-hand side of (4.4). It is convergent and

holomorphic for any x ∈ C \ Z. Since T4,n,n(x) is holomorphic at any

x ∈ C \ {−1,−2,−3, . . .},

both series cannot be equal for all complex non-integral x; for example, numeri-
cally, T0(1/2) ≈ 1.4704, while T4,0,0(x)(1/2) = ζ(3, 1/2) = 7ζ(3) − 8 ≈ 0.4143.

Therefore, it seems paradoxical that both series produce solutions of the same Padé

problem for the formal series T(x).

There is no paradox at all for the following simple reason: Tn(x) can also be viewed
as a solution of the (2n + 1)-th diagonal Padé problem for the convergent series T0(x)

(note that u0(x) = 1 and v0(x) = 0), and it happens that in any sector that does
not contain the real axis, T0(x) and ζ(3, x) have the same asymptotic expansion (al-

though they do not coincide analytically). Hence, Proposition 4 implies that Tn(x)

and T4,n,n(x) enable us to solve the same formal Padé problem for
(

1, T(x)
)

.

It is an interesting problem to identify the difference between Tn(x) and TA,n,n(x).
To do this, we first express them as hypergeometric functions:

Tn(x) =
1

2

Γ(n + 1)4
Γ(x − n)

Γ(x + n + 2)Γ(2n + 2)
4F3

[
n + 1, n + 1, n + 1, n + 1

x + n + 2, n − x + 1, 2n + 2
; 1

]
,

T4,n,n(x) =
1

2

Γ(n + 1)3
Γ(x + 1)4

Γ(2x + n + 3)

Γ(2x + 2)Γ(x + n + 2)4

× 7F6

[
n + 2x + 2, x + 2 + n

2
, n + 1, x + 1, x + 1, x + 1, x + 1

x + 1 + n
2
, 2x + 2, x + n + 2, x + n + 2, x + n + 2, x + n + 2

; 1

]
.

Luckily, we can now apply Bailey’s identity [19, (2.4.4.3)], which relates two Saal-

schutzian 4F3 (like Tn(x)) and one very well-poised 7F6 (like T4,n,n(x)), and we obtain
the desired expression:

(4.5)

T4,n,n(x) = Tn(x) +
1

2

Γ(n − x)Γ(x + 1)4

Γ(2x + 2)Γ(x + n + 2)
4F3

[
x + 1, x + 1, x + 1, x + 1

x + n + 2, x − n + 1, 2x + 2
; 1

]
,

valid for x ∈ C \ Z.

The second term Γ[ · ]4F3[ · ] on the right-hand side of (4.5) cancels the poles of

Tn(x) at x = 0, 1, 2, . . . , and it decreases exponentially to 0 as |x| → +∞ uniformly
in any sector that does not contain the real axis. Its asymptotic expansion in powers

of 1/x is thus necessarily
∑∞

k=0 0 · x−k. This confirms that Tn(x) and T4,n,n(x) have

the same asymptotic expansion in such a sector.
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After some transformations, the case n = 0 of (4.5) gives the identity, valid for
x ∈ C \ Z:

(4.6) ζ(3, x) = −
1

2

∞∑

k=1

k!2

(x + 1)k(−x)kk3

−
π

2 sin(πx)

1(
2x
x

)
∞∑

k=1

(x + 1)2
k

(k − 1)!(2x + 1)k(k + x)3
.

We remark that (4.6) is not the expansion of ζ(3, x) in a série de facultés, which is (for

ℜ(x) > −1)

ζ(3, x) =
1

2

∞∑

k=1

[ k∑

j=1

1

j(k − j + 1)

] k!

(x + 1)k+1

,

by formula [13, (77)]. Hence, it is not at all clear to us how to find Hermite–Padé
approximants for ζ(A, x) when A ≥ 4 in the spirit of Beukers’ approach for A = 2

and A = 3. This adds to the interest of the more flexible method developed in the

present article.

5 Arithmetical Applications

Calegari [8] recently addressed the problem of the irrationality of certain values of

the p-adic zeta function of Kubota–Leopold. In particular, he showed that ζp(3) 6∈ Q

when p = 2 and p = 3, by means of the sophisticated machinery of overconvergent
p-adic modular forms. This method can be viewed as the p-adic analogue of the

“modular proof” of Apéry’s theorem [2] proposed by Beukers [6]. As a matter of

fact, Beukers’s main purpose [7] was to obtain new proofs of Calegari’s theorems by
simpler methods, i.e., by using Padé approximants in the special cases of the Hurwitz

zeta function. In the archimedean case, polylogarithms seemed unavoidable until
recently [5, 10], but see [18] for a new approach. The present article provides a gen-

eralisation of the results of [7] in the hope that it could lead to results analogous to

those in [4, 11, 15, 16] for the p-adic zeta function or related functions.

Acknowledgements I warmly thank Bernhard Beckermann, Marc Prévost, and Frits
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[17] , Nombres d’Euler, approximants de Padé et constante de Catalan, Ramanujan J. 11(2006),

no. 2, 199–214.
[18] , Applications arithmétiques de l’interpolation lagrangienne. Int. J. Number Theory 5(2009),

1–24.
[19] L. J. Slater, Generalized Hypergeometric Functions. Cambridge University Press, Cambridge, 1966.
[20] J. A. Wilson, Some hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 11(1980), no. 4,

690–701.
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