THE HILBERT PROBLEM-A DISTRIBUTIONAL APPROACH

M. A. CHAUDHRY AND J. N. PANDEY

Abstract. A distributional solution to the Hilbert problem in dimension >1 is given.

1. Introduction. Let $F(z)$ be a holomorphic function in the region $\operatorname{Im} z \neq 0$ of the n-dimensional complex space \mathbb{C}^{n}. Assume that

$$
\begin{equation*}
F_{+}(x)=\lim _{y \rightarrow 0_{+}} F(z) \text { in } D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{-}(x)=\lim _{y \rightarrow 0_{-}} F(z) \text { in } D_{I^{p}}^{\prime}\left(\mathbb{R}^{n}\right) \tag{1.2}
\end{equation*}
$$

and

$$
z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\left(x_{1}+i y_{1}, x_{2}+i y_{2}, \ldots, x_{n}+i y_{n}\right)
$$

and $y \rightarrow 0_{+}$means $y_{1} \rightarrow 0_{+}, y_{2} \rightarrow 0_{+}, \ldots, y_{n} \rightarrow 0_{+}$simultaneously, with a similar interpretation for $y \rightarrow 0_{-}$. $\operatorname{Im} z \neq 0$ means $\operatorname{Im} z_{i} \neq 0$ for $i=1,2,3, \ldots n$. We shall consider the following Hilbert Problem. Let $f \in D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$. Then we wish to find a function $F(z)=F\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ holomorphic in the region $\operatorname{Im} z_{i} \neq 0 \forall i=1,2,3, \ldots n$ such that

$$
\begin{equation*}
F_{+}(x)+F_{-}(x)=f(x), \tag{1.3}
\end{equation*}
$$

where $F_{+}(x), F_{-}(x)$ are as defined in (1.1) and (1.2) respectively. The convergence in (1.1), (1.2) and the equality (1.3) is interpreted in the sense of $D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$. We will show that in one dimension the Hilbert Problem can always be solved while in higher dimensions a number of compatibility conditions must be satisfied by $f(x)$.
2. Preliminaries. An infinitely differentiable complex valued function $\varphi(x)$ defined over \mathbb{R}^{n} is said to belong to the space $D_{L^{p}}\left(\mathbb{R}^{n}\right)$ if and only if $D^{\alpha} \varphi(x) \in L^{p}\left(\mathbb{R}^{n}\right)$, for every multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ with $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ being non-negative integers. The space $D_{L^{p}}\left(\mathbb{R}^{n}\right)$ is equipped with the topology generated by the separating and countable collection of semi-norms $\left\{\gamma_{m}\right\}_{m=0}^{\infty}$, given by

$$
\begin{equation*}
\gamma_{m}(\varphi)=\left[\sum_{|\alpha|=m} \int_{\mathbb{R}^{n}}\left|D^{\alpha} \varphi(x)\right|^{p} d x\right]^{1 / p}, \quad[1,13] \tag{2.1}
\end{equation*}
$$

[^0]where
$$
|\alpha|=\sum_{j=1}^{n} \alpha_{j}
$$

Hence, a sequence $\left\{\varphi_{m}\right\}_{m=1}^{\infty}$ in $D_{L^{p}}\left(\mathbb{R}^{n}\right)$ converges to φ in $D_{L^{p}}\left(\mathbb{R}^{n}\right)$ if and only if $\gamma_{|\alpha|}\left(\varphi_{m}-\varphi\right) \rightarrow 0$ as $m \rightarrow \infty$ for each $|\alpha|=0,1,2, \ldots$ The space $D_{L^{p}}\left(\mathbb{R}^{n}\right)$ is a locally convex, sequentially complete, Hausdorff linear space [10,13]. Note that if $\varphi \in D_{L^{p}}\left(\mathbb{R}^{n}\right)$ then $D^{\alpha} \varphi(x) \rightarrow 0$ as $|x| \rightarrow \infty$ for each $|\alpha| \in \mathbb{N}[10]$, and if $\varphi_{m} \rightarrow 0$ in $D_{L^{p}}\left(\mathbb{R}^{n}\right)$ as $m \rightarrow \infty$, then $\phi_{m} \rightarrow 0$ uniformly for all $x \in \mathbb{R}^{n}$ along with all its derivatives [10].

In conformity with the notation of L. Schwartz [10], we denote the dual space of $D_{L^{q}}\left(\mathbb{R}^{n}\right)$ by $D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$, where $\frac{1}{p}+\frac{1}{q}=1, q>1$.

Definition 2.1. The space $X\left(\mathbb{R}^{n}\right)$ is a subspace of the Schwartz testing function space $D\left(\mathbb{R}^{n}\right)$ consisting of all the finite linear combinations of the functions of the type $\prod_{i=1}^{n} \varphi_{i}\left(t_{i}\right)$, where $\varphi_{i}\left(t_{i}\right) \in D(\mathbb{R})$. The space $X\left(\mathbb{R}^{n}\right)$ is endowed with the topology induced on it by the space $D\left(\mathbb{R}^{n}\right)$. The space $X\left(\mathbb{R}^{n}\right)$ is dense in $D\left(\mathbb{R}^{n}\right)$ [11]. The space $D\left(\mathbb{R}^{n}\right)$ is dense in $D_{L^{p}}\left(\mathbb{R}^{n}\right)$ [10]. Since the topology of $X\left(\mathbb{R}^{n}\right)$ is the same as the topology induced on it by that of $D\left(\mathbb{R}^{n}\right)$ and the topology of the space $D\left(\mathbb{R}^{n}\right)$ is stronger than the topology induced on it by the space $D_{L^{p}}\left(\mathbb{R}^{n}\right)$, it follows that the space $X\left(\mathbb{R}^{n}\right)$ is dense in the space $D_{L^{p}}\left(\mathbb{R}^{n}\right)$. Hence, for an element $\varphi(x) \in D_{L^{p}}\left(\mathbb{R}^{n}\right)$, we can find a sequence $\left\{\varphi_{v}\right\}_{v=1}^{\infty}$ in $X\left(\mathbb{R}^{n}\right)$ such that

$$
\left\|D^{\alpha}\left(\varphi_{v}-\varphi\right)\right\| \rightarrow 0, \text { as } v \rightarrow \infty
$$

for each $|\alpha|=0,1,2, \ldots$.
Definition 2.2. The n-dimensional Hilbert transform, $(H f)(x)$, of $f \in L^{p}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\begin{align*}
(H f)(x) & =\frac{1}{\pi^{n}} \lim _{|\varepsilon| \rightarrow 0} \int_{\left|t_{i}-x_{i}\right|>\varepsilon_{i}} \frac{f(t)}{\prod_{i=1, \ldots, n}^{n}\left(t_{i}-x_{i}\right)} d t \tag{2.2}\\
& =\frac{1}{\pi^{n}} P \int \frac{f(t)}{\prod_{i=1}^{n}\left(t_{i}-x_{i}\right)} d t, \quad[2,10]
\end{align*}
$$

where

$$
|\varepsilon|=\left(\sum_{i=1}^{n} \varepsilon_{i}^{2}\right)^{1 / 2}
$$

Note that $(H f)(x)$ exists almost everywhere and that H is a bounded linear operator from $L^{p}\left(\mathbb{R}^{n}\right)$ into itself i.e.,

$$
\begin{equation*}
\|H f\|_{p} \leq C_{p}^{n}\|f\|_{p}, \quad[4,12] \tag{2.3}
\end{equation*}
$$

where C_{p} is a constant independent of f. The first nontrivial result on multidimensional Hilbert transforms was due to C. Fefferman [3]. Recently, Singh and Pandey [11] established the following inversion formula for H :

$$
\begin{equation*}
H^{2} f=(-1)^{n} f \tag{2.4}
\end{equation*}
$$

and obtained that, for $\varphi \in D_{L^{p}}\left(\mathbb{R}^{n}\right)(p>1)$,

$$
\begin{equation*}
D^{\alpha}(H \varphi)=H\left(D^{\alpha} \varphi\right) \tag{2.5}
\end{equation*}
$$

A consequence of (2.4) and (2.5) was a very simple proof of the fact that the Hilbert transform operator H is a homeomorphism from $D_{L^{p}}\left(\mathbb{R}^{n}\right)$ onto itself [11]. For $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $g \in L^{q}\left(\mathbb{R}^{n}\right), p>1$ and $\frac{1}{p}+\frac{1}{q}=1$, we have

$$
\int_{\mathbf{R}^{n}}(H f)(x) g(x) d x=\int_{\mathbf{R}^{n}} f(x)(-1)^{n}(H g)(x) d x .
$$

In analogy with this fact, the operator H of the Hilbert transform on $D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$ was defined in $[9,11]$ as follows:

$$
\begin{equation*}
\langle H f, \varphi\rangle=\left\langle f,(-1)^{n} H \varphi\right\rangle, \quad \varphi \in D_{L^{q}}\left(\mathbb{R}^{n}\right), \tag{2.6}
\end{equation*}
$$

where the generalized function space $D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$ is the dual space of $D_{L^{q}}\left(\mathbb{R}^{n}\right)\left(\frac{1}{p}+\frac{1}{q}=1\right)$, and $H \varphi$ is the Hilbert transform of φ given by (2.2).

Let $\left\{\varphi_{\nu}\right\}_{v=1}^{\infty}$ be a sequence in $X\left(\mathbb{R}^{n}\right)$ converging to φ in $\left(D_{L^{q}}\left(\mathbb{R}^{n}\right)\right)$, that is

$$
\left\|D^{\alpha}\left(\varphi_{v}-\varphi\right)\right\|_{q} \rightarrow 0 \text { as } v \rightarrow \infty,
$$

then the Hilbert transform $H f$ of a generalized function $f \in D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$ can also be defined by

$$
\begin{equation*}
\langle H f, \varphi\rangle=\lim _{v \rightarrow \infty}\left\langle f,(-1)^{n} H \varphi_{v}\right\rangle=\left\langle f,(-1)^{n} H \phi\right\rangle . \tag{2.7}
\end{equation*}
$$

Using the above definition, it is easy to see that,

$$
\begin{equation*}
\left(D^{\alpha} H\right) f=\left(H D^{\alpha}\right) f, \quad f \in D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right) \tag{9,11}
\end{equation*}
$$

The definition (2.7) of the Hilbert transform of the elements of $D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$ is equivalent to the one given in [9,11]. Using the following structure formula

$$
\begin{equation*}
f=\sum_{|\alpha| \leq m}(-1)^{\alpha} D^{\alpha} f_{\alpha} \tag{2.8}
\end{equation*}
$$

where each $f_{\alpha} \in L^{p}\left(\mathbb{R}^{n}\right)$, we obtain

$$
\begin{equation*}
\langle H f, \varphi\rangle=\lim _{v \rightarrow \infty} \sum_{|\alpha| \leq m} \int_{\mathbb{R}^{n}}(-1)^{n} f_{\alpha}(x) D^{\alpha}\left(H \varphi_{v}\right)(x) d x, \tag{2.9}
\end{equation*}
$$

for each $\varphi \in D_{L^{q}}\left(\mathbb{R}^{n}\right)$.
The Hilbert transform technique is a powerful tool in solving some singular integral equations. For further details see [2,5,8,11].
3. The Hilbert problem. Given a function f on the real line satisfying certain prescribed conditions, we wish to find a holomorphic function $F(z)$ in the complex plane such that

$$
\begin{equation*}
F_{+}(x)+F_{-}(x)=f(x) \tag{3.1}
\end{equation*}
$$

where

$$
F_{+}(x)=\lim _{y \rightarrow 0_{+}} F(z), \quad z=x+i y
$$

and

$$
\begin{equation*}
F_{-}(x)=\lim _{y \rightarrow 0_{-}} F(x) \tag{3.2}
\end{equation*}
$$

The mode of convergence may be suitably chosen. The solution to the problem in the classical sense is given by Lauwerier [5] and in the distributional sense is given in [7]. We attempt to solve the n-dimensional Hilbert problem for the distribution space $D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$.

Let $F(z)$ be a function defined on the complex plane which is holomorphic in the upper half plane $\operatorname{Im} z>0$ and also in the lower half plane $\operatorname{Im} z<0$ satisfying the following conditions:
(i) $F(z)=o(1)$ as $|y| \rightarrow \infty$ uniformly for every $x \in \mathbb{R}$,
(ii) $\sup _{x \in \mathbf{R}, y \geq \delta}|F(z)| \leq A_{\delta}<\infty$,
(iii) $\lim _{y \rightarrow 0_{+}} F(z)=F_{+}(x)$ in $D_{L^{p}}^{\prime}(\mathbb{R})$,
(iv) $\lim _{y \rightarrow 0-} F(z)=F_{-}(x)$ in $D_{L^{p}}^{\prime}(\mathbb{R})$.

Then we have

$$
\begin{equation*}
F(z)=\frac{1}{(2 \pi i)}\left\langle F_{+}(t)-F_{-}(t), \frac{1}{t-z}\right\rangle, \quad \operatorname{Im} z \neq 0 \tag{3.3}
\end{equation*}
$$

If we consider the convergence in $D^{\prime}(\mathbb{R})$, then

$$
F(z)=\frac{1}{(2 \pi i)}\left\langle F_{+}(t)-F_{-}(t), \frac{1}{t-z}\right\rangle+P(z), \quad \operatorname{Im} z \neq 0
$$

where $P(z)$ is a polynomial in z. From now onwards, we will consider the convergence in the space $D_{L^{\prime}}^{\prime}(\mathbb{R})$ only, for $p>1$. Writing $g=F_{+}-F_{-}$, we have

$$
F(z)=\frac{1}{(2 \pi i)}\left\langle g(t), \frac{t-x+i y}{(t-x)^{2}+y^{2}}\right\rangle .
$$

Then we have

$$
\begin{equation*}
\lim _{y \rightarrow 0_{+}} F(z)=F_{+}(x)=\frac{1}{2 i}[H g+i I g] \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{y \rightarrow 0_{-}} F(z)=F_{-}(x)=\frac{1}{2 i}[H g-i I g], \tag{3.5}
\end{equation*}
$$

where I is the identity operator. A detailed proof of the identities (3.4) and (3.5) is given in [7]. Adding (3.4) and (3.5), we obtain

$$
\begin{equation*}
F_{+}(x)+F_{-}(x)=\frac{1}{i} H g=f . \tag{3.6}
\end{equation*}
$$

Hence, using the inversion formula (2.4), we deduce

$$
g=-i H f
$$

so the required function $F(z)$, holomorphic for $\operatorname{Im} z \neq 0$, is given by

$$
\begin{equation*}
F(z)=-\frac{1}{2 \pi}\left\langle H f, \frac{1}{t-z}\right\rangle, \quad \operatorname{Im} z \neq 0 \tag{3.7}
\end{equation*}
$$

We now extend the problem to $D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$. Let $f \in D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$ and let $F\left(z_{1}, z_{2}\right)$ be a function holomorphic in the region $\operatorname{Im} z_{1} \neq 0, \operatorname{Im} z_{2} \neq 0$ satisfying similar conditions as in the case of one dimension, i.e.,
(1) $F\left(z_{1}, z_{2}\right)=o(1)$ as $\left|y_{1}\right|,\left|y_{2}\right| \rightarrow \infty$,
(2) $\sup _{\left|y_{1}\right| \geq \delta_{1}>0}\left|F\left(z_{1}, z_{2}\right)\right| \leq A_{\delta}<\infty \quad \delta=\left(\delta_{1}, \delta_{2}\right)$.
(3) (i) $\lim _{y_{1} \rightarrow 0_{+}, y_{2} \rightarrow 0_{+}} F\left(z_{1}, z_{2}\right)=F_{++}\left(x_{1}, x_{2}\right)$,
(ii) $\lim _{y_{1} \rightarrow 0_{+}, y_{2} \rightarrow 0_{-}} F\left(z_{1}, z_{2}\right)=F_{+-}\left(x_{1}, x_{2}\right)$,
(iii) $\lim _{y_{1} \rightarrow 0-y_{2} \rightarrow 0_{+}} F\left(z_{1}, z_{2}\right)=F_{-+}\left(x_{1}, x_{2}\right)$, and
(iv) $\lim _{y_{1} \rightarrow 0_{-} y_{2} \rightarrow 0_{-}} F\left(z_{1}, z_{2}\right)=F_{--}\left(x_{1}, x_{2}\right)$,
in $D_{L^{p}}^{\prime}\left(\mathbb{R}^{2}\right)$, where

$$
z_{j}=x_{j}+i y_{j}, \quad j=1,2 .
$$

Then we have

$$
\begin{equation*}
F\left(z_{1}, z_{2}\right)=\left(\frac{1}{2 \pi i}\right)^{2}\left\langle\left(F_{++}-F_{+-}-F_{-+}+F_{--}\right)(t), \frac{1}{\left(t_{1}-z_{1}\right)\left(t_{2}-z_{2}\right)}\right\rangle \tag{3.8}
\end{equation*}
$$

Writing $g=F_{++}-F_{+-}-F_{-+}+F_{--}$, we have

$$
F\left(z_{1}, z_{2}\right)=\frac{1}{(2 \pi i)^{2}}\left\langle g(t), \frac{1}{\left(t_{1}-z_{1}\right)\left(t_{2}-z_{2}\right)}\right\rangle .
$$

It was proved in $[9,11]$ that

$$
F_{++}=\frac{1}{(2 i)^{2}}\left(H_{1}+i I_{1}\right)\left(H_{2}+i I_{2}\right) g
$$

where I_{1}, I_{2} are the identity operators i.e.,

$$
\begin{aligned}
I_{1} g\left(t_{1}, t_{2}\right) & =g\left(x_{1}, t_{2}\right), \\
I_{2} g\left(t_{1}, t_{2}\right) & =g\left(t_{1}, x_{2}\right), \\
H_{1}\left(g\left(t_{1}, t_{2}\right)\right) & =\frac{1}{\pi} P \int_{\mathbb{R}} \frac{g\left(t_{1}, t_{2}\right)}{t_{1}-x_{1}} d t_{1},
\end{aligned}
$$

and

$$
H_{2}\left(g\left(t_{1}, t_{2}\right)\right)=\frac{1}{\pi} P \int_{\mathbb{R}} \frac{g\left(t_{1}, t_{2}\right)}{\left(t_{2}-x_{2}\right)} d t_{2} .
$$

Similarly we have

$$
F_{--}=\frac{1}{(2 i)^{2}}\left(H_{1}-i I_{1}\right)\left(H_{2}-i I_{2}\right) g
$$

Hence $f=F_{++}+F_{--}$gives

$$
-\frac{1}{2}\left[H_{1} H_{2}-i_{1} I_{2}\right] g=f
$$

that is

$$
\begin{equation*}
(H-I) g=-2 f \tag{3.9}
\end{equation*}
$$

where $H=H_{1} H_{2}$ and $I=I_{1} I_{2}$ are the 2-dimensional Hilbert transform and identity operators on $D_{L^{\prime}}^{\prime}\left(\mathbb{R}^{2}\right)$ respectively. Using the inversion formula (2.4), we obtain

$$
\begin{equation*}
(I-H) g=-2 H f \tag{3.10}
\end{equation*}
$$

Adding (3.9) and (3.10), we deduce that

$$
\begin{equation*}
f+H f=0 \tag{3.11}
\end{equation*}
$$

Hence, if f does not satisfy (3.11), the solution of the aforesaid Hilbert problem does not exist. In [11], it was shown that there do exist functions satisfying (3.11). So let f satisfy (3.11) and let $g_{1}, g_{2}, \ldots, g_{m}$ in $D_{L^{p}}\left(\mathbb{R}^{n}\right)$ be such that they satisfy

$$
\begin{equation*}
y-H y=0 \tag{3.12}
\end{equation*}
$$

Then we have that

$$
\begin{equation*}
g=\sum_{j=1}^{m} c_{j} g_{j}+f \tag{3.13}
\end{equation*}
$$

where $c_{j}(j=1, \ldots, m)$ are constants, satisfies (3.9). Substituting $F_{++}-F_{+-}-F_{-+}+F_{--}$ for g in (3.13), a class of solutions to the Hilbert problem is obtained.

Let us now consider the solution to the Hilbert problem in the next higher dimension. Let $F\left(z_{1}, z_{2}, z_{3}\right)$, where $z_{j}=x_{j}+i y_{j}(j=1,2,3)$ be a function of z_{1}, z_{2}, z_{3} which is analytic in the region

$$
\left\{\left(z_{1}, z_{2}, z_{3}\right): \operatorname{Im} z_{1} \neq 0, \quad \operatorname{Im} z_{2} \neq 0, \quad \operatorname{Im} z_{3} \neq 0\right\}
$$

of C^{3} and satisifes the following conditions:
(i) $\left|F\left(z_{1}, z_{2}, z_{3}\right)\right|=o(1)$ as $\left|y_{1}\right|,\left|y_{2}\right|,\left|y_{3}\right| \rightarrow \infty$, the asymptotic order being valid uniformly $\forall x_{1}, x_{2}, x_{3} \in \mathbb{R}^{n}$
(ii) $\lim _{y_{1} \rightarrow 0_{ \pm}} F\left(z_{1}, z_{2}, z_{3}\right)=F_{ \pm \pm \pm}$in $D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$ $y_{2} \rightarrow 0_{ \pm}$
$y_{3} \rightarrow 0_{ \pm}$
(iii) $\sup _{\substack{\left|y_{1}\right| \geq \delta_{1}>0 \\ y_{2} 2 \\\left|y_{3}\right| \geq \delta_{3}>0}}\left|F\left(z_{1}, z_{2}, z_{3}\right)\right|=A_{\delta}<\infty$, where $\delta=\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$.

Now in view of the results proved in $[9,11]$ there exists $g \in D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$ such that

$$
F\left(z_{1}, z_{2}, z_{3}\right)=\frac{1}{(2 \pi i)^{3}}\left\langle g(t), \frac{1}{\prod_{i=1}^{3}\left(t_{1}-z_{i}\right)}\right\rangle .
$$

Therefore using results in $[9,11]$ we obtain

$$
F_{+++}=\frac{1}{(2 i)^{3}}\left(H_{1}+i I_{1}\right)\left(H_{2}+i I_{2}\right)\left(H_{3}+i I_{3}\right) g
$$

and

$$
F_{---}=\frac{1}{(2 i)^{3}}\left(H_{1}+i I_{1}\right)\left(H_{2}+i I_{2}\right)\left(H_{3}+i I_{3}\right) g
$$

so that

$$
f=F_{+++}+F_{---}=\frac{2}{(2 i)^{3}}\left(H_{1} H_{2} H_{3}-H_{1}-H_{2}-H_{3}\right) g
$$

that is

$$
\begin{equation*}
-4 i f=\left(H-H_{1}-H_{2}-H_{3}\right) g . \tag{3.14}
\end{equation*}
$$

Applying the operation $\left(H+H_{1}+H_{2}+H_{3}\right)$ to both sides of (3.14) we deduce

$$
\begin{align*}
-4 i & \left(H+H_{1}+H_{2}+H_{3}\right) f \\
\quad & =\left[H^{2}-\left(H_{1}+H_{2}+H_{3}\right)^{2}\right] g \\
\quad & =\left[-1-\left(H_{1}^{2}+H_{2}^{2}+H_{3}^{2}+2 H_{1} H_{2}+2 H_{1}+H_{3}+2 H_{2} H_{3}\right)\right] g \tag{3.15}\\
& =\left[-1+3-2\left(H_{1} H_{2}+H_{2} H_{3}+H_{1} H_{3}\right)\right] g \\
\quad & =\left[2+2 H\left(H_{1}+H_{2}+H_{3}\right)\right] g .
\end{align*}
$$

Applying the operator 2 H to both sides of (3.14) and adding the result to (3.15), we obtain

$$
-4 i H f-4 i H\left(H+H_{1}+H_{2}+H_{3}\right) f=2 H^{2} g+2 g=0
$$

or

$$
\begin{equation*}
f+\left(H+H_{1}+H_{2}+H_{3}\right) f=0 \tag{3.16}
\end{equation*}
$$

If the given f satisfies (3.16) then and only then a solution to the Hilbert problem exists. If f satisfies (3.16) then the solution to the Hilbert problem can be obtained by solving for g from (3.14) and substituting in the expression for $F\left(z_{1}, z_{2}, z_{3}\right)$. As we go to higher and higher dimensions the problem becomes more and more difficult. We leave this as an open problem.

References

1. J. Barros-Neto, An introduction to the theory of distributions. Marcel Dekkar, Inc., New York, 1973.
2. E. J. Beltrami and M. R. Wohlers, Distributional boundary values theorems and Hilbert transforms, Arch. Rational Mech. Anal. 18(1965), 304-309.
3. C. Fefferman, Estimates for double Hilbert transforms, Studia Mathematica VXLVI(1972), 1-15.
4. V. M. Kokilashville, Singular integral operators in weighted spaces, Colloquia Mathematica Societatis Janos Bolyai, 35 Functions series operators Budapest-(Hungary) (1980), 707-714.
5. H. A. Lauwerier, The Hilbert problem for generalized functions, Arch. Rational Mech. Anal. 13(1963), 157-166.
6. M. Orton, Hilbert transforms, Plemelj relations and Fourier transforms of distributions, SIAM J. Math. Anal. 4(1973), 656-667.
7. J. N. Pandey and M. A. Chaudhry, Hilbert transform of generalized functions and applications, Canad. J. Math. (3)XXXV, 478-495.
8. \qquad The Hilbert transforms of Schwartz distributions II. Proc. of Cambridge Philosophical Society, England (Part 2)102(1987).
9. J. N. Pandey and O. P. Singh, The characterisation of functions with Fourier transforms supported on orthants, submitted.
10. L. Schwartz, Théories des Distributions. Vol. I, II. Hermann, Paris, 1957, 1959.
11. O. P. Singh and J. N. Pandey, The n-dimensional Hilbert transform of distributions-its inversion and applications, Canad. J. Math. (2)XLII(1990), 239-258.
12. E. C. Titchmarsh, Introduction to the theory of Fourier-integrals. Clarendon Press, Oxford, 1936; 2nd ed., 1948.
13. A. H. Zemanian, Distribution theory and transform analysis. McGraw-Hill, New York, 1965.

Department of Mathematical Sciences
King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario

[^0]: The work of the second author was supported by NSERC grant A-5298.
 Received by the editors November 20, 1989; revised: July 18, 1990.
 AMS subject classification: Primary: 46F12; secondary: 44A15.
 Key words and phrases: Hilbert transform, Hilbert problem, distributional Hilbert transform in n dimension.
 (C) Canadian Mathematical Society 1991.

