BULL. AUSTRAL. MATH. SOC. Vol. 38 (1988) [87-92]

APPROXIMATION BY FOURIER STIELTJES SERIES

S.M. MAZHAR

In this paper certain estimates of the rate of convergence of triangular matrix means of the Fourier Stieltjes series and its conjugate series are obtained.

1. INTRODUCTION

Let $F \in BV[0; 2\pi]$. Then the Fourier Stieltjes series of F or the Fourier series of dF is defined as

(1.1)
$$dF(x) \sim \sum_{\nu=-\infty}^{\infty} c_{\nu} e^{i\nu x},$$

where $c_{\nu} = \frac{1}{2\pi} \int_0^{2\pi} e^{-i\nu t} dF(t), \nu = 0, \pm 1, \pm 2, \dots$ The series conjugate to (1.1) is given by

The series conjugate to (1.1) is given by

(1.2)
$$-i\sum_{\nu=-\infty}^{\infty}(\operatorname{sign}\nu)c_{\nu}e^{i\nu x}$$

We denote (1.1) by S[DF] and (1.2) by $\tilde{S}[DF]$.

It is convenient to define F(x) for all values of x by $F(x + 2\pi) - F(x) = F(2\pi) - F(0)$. This enables us to integrate, in the formula for c_{ν} , over any interval of length 2π .

We write

$$F_{x}(t) = F(x+t) - F(x-t) - 2tF'(x),$$

$$G_{x}(t) = F(x+t) + F(x-t) - 2F(x),$$

and denote the total variation of f(t) over the interval [0,t] by $V_0^t(f)$.

Let $\Lambda = (\lambda_{n,k}), n = 0, 1, 2, \dots, k = 0, 1, 2, \dots, n$ be a triangular matrix and let

$$\sigma_n = \sum_{k=0}^n \lambda_{n,k} s_k,$$

Received 11 October 1987

This research was supported by Kuwait University Research Council Grant, No. SM038

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

where $\{s_k\}$ is a given sequence of numbers. σ_n is called the *n*th Λ -mean of $\{s_k\}$. We suppose that $\{\lambda_{n,k}\}$ is non-negative with $\sum_{k=0}^n \lambda_{n,k} = 1, n = 0, 1, 2, \ldots$ For $\lambda_{n,k} = \frac{p_{n-k}}{P_n}$, $P_n = p_0 + p_1 + \cdots + p_n$ the Λ -means reduce to Nörlund means (N, p_n) . Similarly for $\lambda_{n,k} = \frac{p_k}{P_n}$ we get (\overline{N}, p_n) means.

In what follows we assume that C is a positive constant not necessarily the same at each occurrence.

We prove the following theorem.

THEOREM. Let $\{\lambda_{n,k}\}$ be non-decreasing with respect to k and let $t_n(x)$ and $\tilde{t}_n(x)$ denote respectively the Λ -means of the series S[dF] and $\tilde{S}[dF]$. Then

(1.3)
$$|t_n(x) - F'(x)| \leq C \sum_{k=0}^n V_0^{\frac{\pi}{k+1}}(F_x) \sum_{\nu=0}^k \lambda_{n,n-\nu},$$

(1.4)
$$\left| \tilde{t}_{n}(x) - \left\{ -\frac{1}{\pi} \int_{\pi/n+1}^{\pi} \frac{G_{x}(t)dt}{\left(2\sin t/2\right)^{2}} \right\} \right| \leq C \sum_{k=0}^{n} V_{0}^{\frac{\pi}{k+1}}(G_{x}) \sum_{\nu=0}^{k} \lambda_{n,n-\nu}.$$
2. PROOF OF THE THEOREMS

PROOF OF (1.3): Writing $K_n(t) = \sum_{\nu=0}^n \lambda_{n,k} D_k(t)$, with $D_k(t) = \frac{\sin(k+\frac{1}{2})t}{2\sin t/2}$ and denoting by $s_n(x)$ the *n*-th partial sum of (1.1) we have

$$t_{n}(x) = \sum_{k=0}^{n} \lambda_{n,k} s_{k}(x)$$

= $\sum_{k=0}^{n} \lambda_{n,k} \frac{1}{\pi} \int_{-\pi}^{\pi} D_{k}(x-t) dF(t)$
= $\frac{1}{\pi} \int_{0}^{\pi} \sum_{k=0}^{n} \lambda_{n,k} D_{k}(t) d[F(x+t) - F(x-t)]$
= $\frac{1}{\pi} \int_{0}^{\pi} K_{n}(t) d[F(x+t) - F(x-t)]$

and hence

$$t_n(x) - F'(x) = \frac{1}{\pi} \int_0^{\pi} K_n(t) d[F(x+t) - F(x-t) - 2tF'(x)]$$

= $\frac{1}{\pi} \int_0^{\pi} K_n(t) dF_x(t)$
= $\frac{1}{\pi} \left(\int_0^{\pi/n+1} + \int_{\pi/n+1}^{\pi} \right) K_n(t) dF_x(t)$
= $I_1 + I_2$, say.

Since $|K_n(t)| \leq 2n$ uniformly in t, we have

(2.1)
$$|I_{1}| \leq \frac{1}{\pi} \int_{0}^{\pi/n+1} 2n |dF_{x}(t)|$$
$$= \frac{2n}{\pi} V_{0}^{\pi/n+1}(F_{x})$$
$$\leq C \sum_{k=0}^{n} V_{0}^{\pi/k+1}(F_{x}) \sum_{\nu=0}^{k} \lambda_{n,n-\nu},$$

in view of the fact that $\left(\sum_{\nu=0}^{k} \lambda_{n,n-\nu}\right)/k+1$ is non-increasing. Let $\gamma_n(t)$ be a linear function on [k, k+1] such that $\gamma_n(k) = \lambda_{n,n-k}, k = 0, 1, 2, ..., n$ and let

$$\Gamma_n(t) = \int_0^t \gamma_n(u) du, \quad t \ge 0.$$

Then

$$\Gamma_n(k) = \sum_{\nu=0}^{k-1} \frac{\gamma_n(\nu+1) + \gamma_n(\nu)}{2} = \sum_{\nu=0}^{k-1} \frac{\lambda_{n,n-\nu-1} + \lambda_{n,n-\nu}}{2}$$
$$\leq \sum_{\nu=0}^k \lambda_{n,n-\nu} \leq 2\Gamma_n(k).$$

Using the well-known estimate of McFadden [2]

(2.2)
$$\left|\sum_{k=a}^{b} \lambda_{n,n-k} e^{i(n-k)t}\right| \leq 2(2\pi+1)\Gamma_n(\pi/t),$$

where $0 \leqslant a \leqslant b \leqslant \infty$, $0 < t \leqslant \pi$ and n is any non-negative integer, we have

$$(2.3)$$

$$|I_{2}| \leq \frac{1}{\pi} \int_{\pi/n+1}^{\pi} |K_{n}(t)| |dF_{x}(t)| \leq C \int_{\pi/n+1}^{\pi} |dF_{x}(t)| \frac{\Gamma_{n}(\pi/t)}{t}$$

$$= C \int_{\pi/n+1}^{\pi} \frac{\Gamma_{n}(\pi/t)}{t} dV_{0}^{t}(F_{x})$$

$$= C\{[\frac{\Gamma_{n}(\pi/t)}{t} V_{0}^{t}(F_{x})]_{\pi/n+1}^{\pi} + \int_{\pi/n+1}^{\pi} V_{0}^{t}(F_{x}) \frac{\Gamma_{n}(\pi/t)}{t^{2}} dt$$

$$+ \int_{\pi/n+1}^{\pi} \pi V_{0}^{t}(F_{x}) \frac{\gamma_{n}(\pi/t)}{t^{3}} dt\}$$

S.M. Mazhar

$$\begin{split} &= \frac{C}{\pi} \Gamma_n(1) V_0^{\pi}(F_x) - \frac{(n+1)C}{\pi} \Gamma_n(n+1) V_0^{\frac{\pi}{n+1}}(F_x) \\ &+ \frac{C}{\pi} \int_1^{n+1} V_0^{\pi/t}(F_x) \Gamma_n(t) dt + \frac{C}{\pi} \int_1^{n+1} t V_0^{\pi/t}(F_x) \gamma_n(t) dt \\ &\leq C \lambda_{n,n} V_0^{\pi}(F_x) + C(n+1) V_0^{\frac{\pi}{n+1}}(F_x) \\ &+ C \sum_{k=1}^n \int_k^{k+1} V_0^{\pi/t}(F_x) \Gamma_n(t) dt + C \sum_{k=1}^n \int_k^{k+1} V_0^{\pi/t}(F_x) t \gamma_n(t) dt \\ &\leq C \sum_{k=0}^n V_0^{\frac{\pi}{k+1}}(F_x) \sum_{\nu=0}^k \lambda_{n,n-\nu}, \text{ as shown in (2.1),} \\ &+ C \sum_{k=1}^n V_0^{\pi/k}(F_x) \Gamma_n(k+1) + C \sum_{k=1}^n V_0^{\pi/k}(F_x)(k+1) \left(\frac{\gamma_n(k) + \gamma_n(k+1)}{2}\right) \\ &\leq C \sum_{k=0}^n V_0^{\frac{\pi}{k+1}}(F_x) \sum_{\nu=0}^k \lambda_{n,n-\nu} + C \sum_{k=1}^n V_0^{\pi/k}(F_x)(k+1) \lambda_{n,n-k} \\ &\leq C \sum_{k=0}^n V_0^{\frac{\pi}{k+1}}(F_x) \sum_{\nu=0}^k \lambda_{n,n-\nu}. \end{split}$$

Thus from (2.1) and (2.3) we get the required result. PROOF OF (1.4): We have

$$\widetilde{t}_n(x) = -\frac{1}{\pi} \int_{-\pi}^{\pi} \widetilde{K}_n(t) dF(x+t),$$

where

$$\widetilde{K}_n(t) = \sum_{\nu=0}^n \lambda_{n,k} \widetilde{D}_k(t)$$

with

$$\widetilde{D}_{k}(t) = \sum_{\nu=1}^{k} \sin \nu t = \frac{\cos t/2 - \cos \left(k + \frac{1}{2}\right)t}{2 \sin t/2}.$$

Now

.

$$\begin{split} \widetilde{t}_n(x) &= -\frac{1}{\pi} \int_0^{\pi} \widetilde{K}_n(t) d[F(x+t) + F(x-t)] \\ &= -\frac{1}{\pi} \int_0^{\pi} \widetilde{K}_n(t) dG_x(t), \end{split}$$

90

so that

$$\begin{split} \widetilde{t}_n(x) &- \left(-\frac{1}{\pi} \int_{\pi/n+1}^{\pi} \frac{G_x(t)}{\left(2\sin t/2\right)^2} dt \right) \\ &= -\frac{1}{\pi} \int_0^{\pi/n+1} \widetilde{K}_n(t) dG_x(t) \\ &+ \frac{1}{\pi} [-\frac{G_x(t)}{2\tan t/2}]_{\frac{\pi}{n+1}}^{\pi} + \frac{1}{\pi} \int_{\pi/n+1}^{\pi} \{ \frac{1}{2\tan t/2} - \widetilde{K}_n(t) \} dG_x(t) \\ &= L_1 + L_2 + L_3, \text{ say }. \end{split}$$

Since $|\widetilde{K}_n(t)| \leq n$, as shown in (2.1) we have

(2.4)
$$|L_{1}| \leq \frac{n}{\pi} \int_{0}^{\frac{\pi}{n+1}} |dG_{x}(t)| \leq C \sum_{k=0}^{n} V_{0}^{\frac{\pi}{k+1}} (G_{x}) \sum_{\nu=0}^{k} \lambda_{n,n-\nu}.$$

Also

(2.5)

$$|L_{2}| = \frac{1}{\pi} \left| G_{x} \left(\frac{\pi}{n+1} \right) - G_{x}(0) \right| \frac{1}{2 \tan \frac{\pi}{2(n+1)}}$$

$$\leq \frac{(n+1)}{\pi^{2}} V_{0}^{\frac{\pi}{n+1}}(G_{x})$$

$$\leq C \sum_{k=0}^{n} V_{0}^{\frac{\pi}{k+1}}(G_{x}) \sum_{\nu=0}^{k} \lambda_{n,n-\nu}.$$

Using the estimate (2.2) we observe that

$$\begin{aligned} \left| \frac{1}{2\tan t/2} - \widetilde{K}_n(t) \right| &= \left| \sum_{k=0}^n \lambda_{n,k} \left\{ \frac{1}{2\tan t/2} - \frac{\cos t/2 - \cos \left(k + \frac{1}{2}\right)t}{2\sin t/2} \right\} \right| \\ &= \left| \sum_{k=0}^n \lambda_{n,n-k} \frac{\cos \left(n - k + \frac{1}{2}\right)t}{2\sin t/2} \right| \\ &\leqslant \frac{C}{t} \Gamma_n\left(\frac{\pi}{t}\right), \end{aligned}$$

and hence

(2.6)
$$|L_3| \leq C \int_{\frac{\pi}{n+1}}^{\pi} \frac{1}{t} \Gamma_n\left(\frac{\pi}{t}\right) |dG_x(t)|$$
$$\leq C \sum_{k=0}^n V_0^{\frac{\pi}{k+1}} (G_x) \sum_{\nu=0}^k \lambda_{n,n-\nu}$$

as shown in I_2 .

The proof now follows from (2.4)-(2.6).

[5]

3. ESTIMATES OF MEANS

Taking $\lambda_{n,k} = \frac{p_{n-k}}{P_n}$, $P_n = p_0 + p_1 + \cdots + p_n$, we get the following estimates for Nörlund means $N_n(x)$ of S[dF] and $\tilde{N}_n(x)$ of $\tilde{S}[dF]$. [1].

COROLLARY 1. If $\{p_k\}$ is non-increasing sequence of positive numbers, then

$$|N_n(x) - F'(x)| \leq \frac{C}{P_n} \sum_{k=0}^n V_0^{\frac{\pi}{k+1}}(F_x)P_k,$$

and

$$\left|\widetilde{N}_{n}(x)-\left\{-\frac{1}{\pi}\int_{\frac{\pi}{n+1}}^{\pi}\frac{G_{x}(t)}{\left(2\sin t/2\right)^{2}}dt\right\}\right| \leq \frac{C}{P_{n}}\sum_{k=0}^{n}V_{0}^{\frac{\pi}{k+1}}(G_{x})P_{k}.$$

We can similarly obtain estimates for (\overline{N}, p_n) means by taking $\lambda_{n,k} = \frac{p_k}{P_n}$, where $\{p_k\}$ is a non-decreasing sequence of positive numbers.

As a special case for $p_k = A_k^{\alpha-1}$, $0 < \alpha \leq 1$, we get the following estimates for (C, α) means.

COROLLARY 1. Let $\sigma_n^{\alpha}(x)$ and $\tilde{\sigma}_n^{\alpha}(x)$ be the (C, α) means of S[dF] and $\tilde{S}[dF]$ respectively. If $0 < \alpha \leq 1$, then

$$|\sigma_n^{\alpha}(x) - F'(x)| \leq C n^{-\alpha} \sum_{k=0}^n (k+1)^{\alpha} V_0^{\frac{\pi}{k+1}}(F_x),$$

and

$$|\tilde{\sigma}_{n}^{\alpha}(x) - \{-\frac{1}{\pi}\int_{\frac{\pi}{n+1}}^{\pi}\frac{G_{x}(t)}{(2\sin t/2)^{2}}dt\}| \leq Cn^{-\alpha}\sum_{k=0}^{n}(k+1)^{\alpha}V_{0}^{\frac{\pi}{k+1}}(G_{x}).$$

In view of known results: $F \in BV[0, 2\pi] \Rightarrow V_0^t(F_x) = o(t)$ and $V_0^t(G_x) = o(t)$ for almost all x ([3], p.105) we deduce the following result of Zygmund [3]:

$$\sigma_n^{lpha}(x) o F'(x), \, n o \infty \, \, ext{and} \, \, \widetilde{\sigma}_n^{lpha}(x) + rac{1}{\pi} \int_{rac{\pi}{n+1}}^{\pi} rac{G_x(t)}{\left(2\sin t/2
ight)^2} dt o 0, n o \infty$$

for almost all x.

References

- S.M. Mazhar, 'On the rate of convergence of Nörlund means of Fourier Stieltjes series and its conjugate series', Indian J. Math 28 (1986), 203-209.
- [3] L. McFadden, 'Absolute Nörlund summability', Duke Math J. 9 (1942), 168-207.
- [3] A. Zygmund, Trigonometric Series: Vol. I (University Press, Cambridge, 1959).

Department of Mathematics Kuwait University P.O. Box 5969 Kuwait