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SUMMARY

Models of two linked overdominant loci in moderately large, but finite,
populations are examined by looking at the variance-covariance matrix
of the two gene frequencies and the linkage disequilibrium around
stable deterministic equilibrium points. In particular, the effect of
genetic drift is examined in cases where, in infinite populations, two stable
equilibria with non-zero linkage disequilibrium, D, are maintained.
Theoretical formulae are produced and checked by computer simulation.
In general, the results show that unless the population size is very
large indeed, genetic drift causes the values of D to vary considerably
about the equilibrium values and that for many models, where stable
equilibria exist at non-zero D values, a wide range of values of D have a
high probability. Thus it is very difficult to draw conclusions about the
selection regime by measuring Linkage disequilibrium in a finite popula-
tion.

1. INTRODUCTION

Much theoretical work has been done on selected Linked loci in order to see
how linkage disequilibrium could be maintained between pairs of loci. However,
in nearly all studies a deterministic approach has been taken, i.e. the populations
have been assumed to be infinitely large, and then different models have been
examined to see if polymorphic equilibria exist and what conditions are necessary
for these equilibria to be stable. Bodmer & Felsenstein (1967) and, more recently,
Karlin (1975) have given a very comprehensive review of the work done using a
deterministic approach. The assumption of infinite population size, however, is a
very restrictive one and it is necessary to test how large populations need to be
before the deterministic results become useful. The analysis of selected linked
loci in finite populations is, on the whole, very complicated and thus relatively
little work has been done in this area. Levin (1969), Hill (1969) and Hill & Robert-
son (1968) examined the rate of fixation of Linked overdominant loci. Sved (1968)
and Hill & Robertson (1968) have considered the unfixed population for two
loci, and Franklin & Lewontin (1970) and Yamazaki (1977) have considered this
for particular multi-locus models, but most of the work is computer simulation.
The only major theoretical work on the examination of unfixed populations for
selected Linked loci is by Felsenstein (1974). In the absence of mutation or migra-
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tion, finite population size will cause loci to eventually be fixed. However, if
selection is quite strong and population size moderately large, fixation will be
put off virtually indefinitely. In his paper, Felsenstein has considered this case
with models which have a single stable equilibrium in linkage equilibrium. After
an initial transient stage, the finite population size causes a stable probability
distribution of values of the gamete frequencies around the equilibrium values
and this distribution was examined by Felsenstein (1974). In this paper we will
clarify Felsenstein's approach and extend it to the solution of models which
have stable deterministic equilibria with linkage disequilibrium. By examining
various selection models we hope to examine the validity of deterministic equilibria
analysis to the explanations of experimental determinations of linkage dis-
equilibrium in finite populations, particularly laboratory populations.

2. MODEL AND GENERAL METHOD

The model and method which will be used is the same as used in Felsenstein
(1974). A summary will be given in this section but the original paper should be
consulted for a more complete explanation. We consider a diploid population of
constant size N with discrete generations, mating being at random (i.e. selfing is
allowed). Two loci, each with two alleles (i.e. A and a, and B and b) will be con-
sidered. Let x{ (i = 1, 2, 3, 4) be the frequencies of gametes AB, Ab, aB, ab
respectively, let p be the gene frequency of A, let q be the gene frequency of B,
and let D be the linkage disequilibrium between the two loci (i.e. D = x1xi — x2x3).
Let wti be the fitness of the genotype whose two gametes have frequencies xt and
Xj in the population. Then the marginal fitnesses, w^ and the average fitness w are
given by

Wi = S «,«>« (i = 1, 2, 3, 4) (1)
3 = 1

__ i

and w = 2 xjwj- (2)

These two equations are exact if the xt's are measured in an infinite population.
However, if they are measured from the chromosomes of a finite population at a
particular generation they will only be approximately true due to departures
from Hardy-Weinberg proportions in the pairing of gametes to form individuals.
We will be concerned with fairly large populations and thus these departures
will be small and can be ignored.

We shall consider the effect of finite population size by looking at the variance-
covariance matrix of p, q and D around a stable equilibrium position (i.e. $, q
and f)). If a model has more than one stable equilibria we shall assume that they
are far enough apart that they can be considered as two separate distributions
around each equilibrium point.

Given values of p, q and D at a particular time t, we can approximate their
values at the next generation by splitting them into two components. The first
part is that obtained by ignoring finiteness and using the deterministic equations
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due to selection and recombination and the second is a random sampling term.
We further approximate the deterministic part by assuming that p, q and D
at time t are near ji, Q and D, the equilibrium values, so that the deviations from
the equilibrium values at the next generation are linear functions of the deviations
at the previous generation. Putting this in matrix form, we obtain

(Pt+i-P\
dt+i = ? m - S I = Adt + e, (3)

where A is a matrix of the first terms of the multivariate Taylor Series expansions
for pt+1, qt+1 and Dt+1 as functions of pt, qt and Dt evaluated at fi, q and D and
the subscript denotes generation number, e is assumed to follow a multivariate
normal distribution with mean zero and variance-covariance matrix, Q. Q is
assumed to be independent of the current position, dt. This independence and the
multivariate normal nature of e are only approximately true. If C is the variance-
covariance matrix of d for the stable distribution, then as proved by Felsenstein

(1974)> C = ACA' + O, (4)

where a prime denotes the transpose of a matrix. This is a standard result in time
series analysis for a multivariate first-order autoregressive process.

In the following sections we shall consider the symmetric viability model of
Bodmer & Felsenstein (1967), i.e.

BB Bb bb

= 1 - f i w22 = l - «
= 1 — y wu = w41 = Wja = w32 = 1 wu = w42 = 1 — y

= w 4 3 =1-/3 wu =1 — 8

A more general model could be assumed and followed, if the deterministic equili-
bria and their stability were known. However, in general, this is not the case and
thus in order to try to see the overall trends we shall examine the above fitness
model.

3. LINEARIZATION MATRIX

Bodmer & Felsenstein (1967) showed that for the symmetric viability model,
an equilibrium of the form x1 = xx = x, x2 = x3 = \ — x always occurred, where
0 ^ x ^ 0-5 and x is a function of the recombination fraction, c, between the two
loci and the fitness parameters. Thus we shall consider the behaviour of the
system around a stable equilibrium point given by p = q = \ and 3 = — J + x.
From deterministic theory (e.g. Lewontin & Kojima, 1960) we know that

xt,t+l — \xi,twt,t~~CKiwlt1Jt>lwt \" ~ *> "i "> */> \°)

where &x = kt = 1, k2 = k3 = — 1 and wu = w23 (i.e. no difference between
coupling and repulsion phase),

Pt+l = (Xl,tWl,t + X2,tW2,t)/™t> (^)

(7)

(8)
The equilibrium solutions for a particular model can be found from equations

17-2

AA
Aa
aa

wlx

^ 3 3

= 1-S
= w31 =
= 1 - a
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(5)-(8) by putting xiit+1 = xi>t,pt+1 = pt, qt+1 = qt and Dt+1 = Dt. All the
equilibrium points for the models which we shall consider are given by Bodmer
& Felsenstein (1967). Using equation (1) and dropping the subscript, t, used
above, we obtain ~

^ + (9)

-^ = wia-wu+pet, (10)

<">

for * = 1,2, 3, 4, where e1 = e4 = (2S-8), e2 = e3 = -(2S-a) and 5 = UP + 7)-
From equation (6) we find, after correcting a few typographical errors of Felsen-
stein (1974), that

dw-, 8w2 8w] _ „ ,
^ + X ^ P ^ (12)

= =

r 3M>I . ,.

[ ~pt+1 W\ • ( *
As stated above, we are evaluating the first-order derivatives with respect to

p, q and D at the equilibrium values. If we substitute the equilibrium values in
equations (9)—(11) and use the fact that

Sw i , 8xt * 8wt

we obtain that, at equilibrium,

Similarly we can show that

and ^ = 4xe1 + 2{l-2z)e2. (18)

In general, therefore,

and thus the equilibrium point is not a maximum or minimum for w in the three-
dimensional space of p, q and D. In the special case of all double homozygotes
having equal fitness (i.e. a = 8), an equilibrium exists at D = 0 and at this point
8w/dD = 0, giving a maximum or minimum point for w.

On substitution of equation (16) and the equilibrium values of equation (9),
equation (12) evaluated at the equilibrium point, is

^ | - e 2 ( i - a ! ) ) , (19)

https://doi.org/10.1017/S0016672300018024 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300018024


Models of linked overdominant loci 243

where Tv = 1 — S + 2e1x
2 — 2e2(\ — a;)2. Similarly, we can get all the elements of

the linearization matrix, A, as, for example
8(Pt+i ~ P) fyPt+i

d(p-p) ~ dp
Thus we have

-2y3 + e1x + e2(%-x) 0
™ c (i ™\ A

where

(20)

- c(w - 43(ejX + e2(i -a;)))].

4. SAMPLING MATRIX

Because selection is involved, we must be careful about the ordering of the
events selection, recombination and sampling in the evaluation of the sampling
matrix. Felsenstein (1974) used a model of differential viability in that he assumed
an infinitely large gametic pool which paired at random to form individuals,
which survived differentially. N individuals were then chosen and recombination
occurred when these N individuals gave gametes to form the new infinite gametic
pool. Thus p, q and D are measured in the infinite gametic pool obtained from a
set of individuals in Felsenstein's model. As pointed out by Avery & Hill (1978),
while p and q remain unchanged in the production of a gametic pool, D decreases.
This model we have called SNR ordering. An alternative model which we have
used because it lends itself more easily to simulation and experimental verifi-
cation, is that of differential fertility. Here 2N gametes combine randomly to
form individuals. The individuals give gametes according to their fertilities to an
infinite gametic pool, recombination taking place. 2N gametes are then sampled
to form the new generation. Thus here p, q and D are measured amongst the
chromosomes of a particular generation. This we shall call SRN ordering. Because
in SRN ordering, gametic frequencies are measured amongst a finite number of
chromosomes, the deterministic equations for changes in gametic frequencies
are not exactly correct due to departures from Hardy-Weinberg proportions
when gametes pair. However as N is fairly large, these departures are of negligible
importance. In SNR ordering, the deterministic equations are exact.

(i) SBN ordering

After selection and recombination, we have gametic frequencies, x\ say (=
xi,t+i) given by equation (5). Sampling of 2N gametes from the gametic pool
with frequencies, x\, is a case of multinomial sampling. Thus if x\ are the final
gametic frequencies,

cov « , x',) = - ^ + Si, | | = cov (**„ dx,), (21)
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where dti = 1 (i = j) and zero otherwise, and 8xt is the change in xi due to random
sampling. Using equations (21) and (5), and a similar assumption to one made by
Felsenstein (1974), i.e.

8D = x'18xi + x'i8x1-x'28x3-x38x2, (22)
O = var (dd)

— _L
8 ^

2Nw

0

1

where wx = 1 — 8 + exx and w2 = 1 — 8 — e 2 ( | — x).
(23)

(ii) 8NR ordering

Here care must be taken because N individuals are selected rather than 2JV
gametes. Let Pi:j be the frequency after selection of the genotype whose gametes
had frequencies xt and Xj in the unselected population, and let P'ti be the frequency
of the same genotype after selection and sampling. Then,

(i,j = 1, 2, 3, 4). (24)

Let x\, x"it x'l' (i = 1, 2, 3, 4) be respectively the gametic frequencies after selection,
after selection and sampling, and after selection, sampling and recombination.
Then, as shown by Felsenstein (1974) using the theory of multinomial sampling,
but this time with sample size N rather than 2N as with SRN ordering,

cov (P'ip PiJ = - (i, j * k, m),

cov (P'u,xl) = - 1 PM«i + 2 ^ Pu,

±

(25)

(26)

(27)

(28)

(29)

(30)

where, for example, x'r = + -?«)•
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Using these above results it is then straightforward to show that

cov (Sxi, 8xt) = ±piJ-LatiXrj + ±-X'i8ii

- jj K P * + atPa + (P2 3- P14)(ktxi + kjxi)] + ktkt ^ [1(PM + P « ) - (PM~ -P23)2]

(31)
where ax = \(kt + fy + 2^^) and a2 = ^(2^^-- ^ — hj).

Using (31) and (22), we can now derive the elements of 0 for SNR ordering, i.e.

(y-/?) 4(15(1 -2S) + e1 z* 0

where

0
8Nw

+ ei(i-x)') -2{ex' + a[t-x)')
8Nw var (SD)_

(32)

x' = xwx/w and D =—

If we again take the simple model of all double homozygotes being of equal
fitness and consider a stable equilibrium at 3 = 0 (i.e. no linkage disequilibrium)
as was done by Felsenstein (1974), we find that

This is in contradiction to that given by Felsenstein (1974). His expression ignores
the terms in c and c2.

5. EVALUATION OF FORMULAE

Thus A and 0 are block diagonal, and C, the variance-covariance matrix of the
departures from equilibrium, has a similar form. Because of this

(34)

covB(p, D) = covE(q, D) = 0, (35)
and

/ varE(#) \ / 1-afj -2ana12 -a\2 \ - 1 / var (dp)

I corE(p, q) I = I - a n a 2 i l - a 1 2 a 2 1 - o u o 2 2 -a i 2a2 2 l I cov (5p, *g) I. (36)

\ rarE(q) / \ -a\x -2a21a22 l - a | 2 / \ var (Sq)

The suffix, E, is used to denote that these are variances about a single stable
equilibrium point. ati denotes the (i, j)th element of A. In the simple case of all
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double homozygotes having equal fitness and all single homozygotes having
equal fitness, varE(p) = varE(q) and simpler equations are possible.

We thus can easily evaluate the variance-covariance matrix around a stable
equilibrium if we know N, c and x. In order to exemplify the use of the equations
obtained above we shall consider the completely symmetric model (cf. Lewontin &
Kojima, 1960) where all double homozygotes have fitness 1—a and all single
heterozygotes have fitness 1 — 8. Trends are more easily observed in this case and
the values, stability and zone of attraction of the equilibrium points are well
known. For this symmetric model we either have an equilibrium with no linkage
disequilibrium (i.e. £ = 0 and x = 0-25) which is stable if c > £ (2<ST — a), or we
have two equilibria at D = ± J^/(l -4c/(2# — a)) which are stable if c < 1(28 — a).
The behaviour for the former case is straightforward as E(D2) = varJE(Z)) is
given by the above expressions. However, when there are two stable equilibria
there is a bimodal distribution, the two modes being at the two equilibrium points.
If all populations are initially at D = ^-J{1 — 4c/(2$ — a)), most populations will
remain close to this value of D. By chance, however, the disequilibrium in a
population may become negative and then D will tend to move towards D =
— £i/(l — 4c/(2$ — a)). When there is a bimodal distribution the variance of D
will depend on the initial value of D in the populations. However, E(D2) ~ D2 +
va,TE(D) regardless of which equilibrium point a replicate is initially nearest to
as long as the assumption holds that the two distributions around each equilibrium
are reasonably separate. From the above information we can derive approxi-
mations for o-f, (Ohta & Kimura (1969)) where o% = E{D2)/E(p(l-p)q(l-q)).
We have been considering equilibria at fi = § — \ for reasonably large N. Under
these assumptions, E(p(l-p)q(l-q)) ~ $(1 - p)q{l - q) =^.Thuscr% ~ 16#(D2).
We shall mainly look at erf, in our consideration of the effects of different selection
schemes. When c is close to (2S — a)/4, i.e. the deterministic system is going
from one stable equilibrium to two stable equilibria, the assumptions of inde-
pendence of the two distributions and normality of the sampling distributions
no longer hold and thus the approximation breaks down. However, the range of
c values for which the approximation is poor is relatively small and decreases with
increase in N. This is shown in Figs. 1-3, where erf, is plotted against c. The
dotted vertical lines mark the value of c when the system changes from having
one stable equilibrium to two stable equilibria. Figs. 1 and 2 are for a symmetric
multiplicative model. In this case, all single homozygotes have fitness 1—8, all
double homozygotes have fitness (1 — 8)2 and the limit of stability is at c = *S2/4.
Fig. 3 is for an epistatic model, i.e. all genotypes except the double heterozygotes
have fitness 1 — S, and the stability limit is at c = $/4. cr\, is plotted against c
for only a limited range of values of c in Figs. 1-3. In the range of c values not
given, the approximation works very well. Also on the figure we have marked
simulation results to show how the approximations deviate from them. The
evaluation of these simulation results will be discussed in the following section.
As c is increased from zero for fixed N, S and a we find that varE (D) increases to a
maximum and then declines (using simulation results in the range of instability

https://doi.org/10.1017/S0016672300018024 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300018024


Models of linked overdominant loci 247

10

0-8 -

0-6 -

0-4 -

0-2 -

o

\

o ^
— o

1 1 1

001 002 003 004 005

Fig. 1. Predicted values of (rj, are plotted against c for a multiplicative model with
N = 128, S = 0-25. Circles are simulation results, a. = 2S -<S2.

001 002 0-03 004 005

Fig. 2. Predicted values of cr^ are plotted against c for a multiplicative model with
N = 512, S = 0-25. Circles are simulation results, a = 2S-/S2.
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of the approximations), varg, (p) = varE (q) increases to a maximum at %(28 — a)
and then remains constant while cov (p, q) decreases to zero at %(2S — a) and then
remains zero.

0025 005 0075 0-125 015

Fig. 3. Predicted values of crjj are plotted against c for an epistatic model with
N = 512, S = 0-25. Circles are simulation results, a — S.

6. SIMULATION CHECKS

So far in this paper, we have derived approximations for var s (p), covg, (p, q),
varE (q), VSLTE (D) and <T|, about stable equilibrium points. In order to validate
these approximations, two simulation programs were produced. One was merely a
direct simulation of the process using SRN ordering where 2JV gametes are
produced each generation. The second program was an adaptation of an approach
suggested by Pederson (1973). Gamete frequencies were changed by selection and
recombination (i.e. equation (5)) and then the new values were formed by use of
multi-normal sampling. The multi-normal distribution is an approximation to
the actual multinomial sampling which takes place in the direct simulation.
In the simulation, however, unlike the approximation, the variances and covari-
ances of the multi-normal distributions change with changes in gametic fre-
quencies. For full details, Pederson (1973) should be consulted. As recommended by
Pederson (1973), binomial and Poisson distributions were used when the number
to be sampled was small or when the probability of a particular gamete became
small. The two simulations agreed very well over all values of N and c for o%,
but the second method was far quicker and cheaper on computer time, particularly
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for large values of N. Replication was taken high enough to give convergence in
cr|> to 2-3 significant figures.

In Tables 1 and 2 predicted and simulation values for o% for SRN ordering
(i.e. sampling gametes) are given for an additive and a multiplicative model.

Table 1. Predicted and simulation values for a% for an additive selection model
(a = 2S), and values of the standard deviation of r (= *Jo%), obtained from the
predicted SRN values (S = 0-25)

N

32

64

128

512

c

001
0015625
0025

001
0025
0 0 5
0 1
0-2
0-5

0-01
0-025

0-01
0-025

t
Predicted

(SNR)

0-574
0-363
0-223

0-287
0-111
0-053
0024
0010
0-003

0144
0-056

0036
0014

Predicted
(SRN)

0-590
0-379
0-238

0-295
0119
0061
0031
0017
0009

0-148
0060

0037
0015

Simulation
(SRN)

0-508
0-391
0-242

0-299
0126
0063
0034
0-017
0-009

0138
0-058

0-037
0015

s.D. (r

0-768
0-616
0-488

0-543
0-345
0-251
0176
0130
0095

0-385
0-245

0192
0122

Table 2. Predicted and simulation values of o~% and the deterministic part of
(i.e. Wf)*) for a multiplicative model (a = 28-Sz): S = 0-25

N

32

64

128

512

c

0 0 1
0025

0 0 1
0-025
005
0 1
0-2
0-5

001
0025

001
0025

16.fr
0-36
0

0-36
0
0
0
0
0

0-36
0

0-36
0

Predicted
(SRN)

0-705
0-642

0-533
0-321
0-089
0038
0018
0009

0-446
0161

0-382
0040

Simulation
(SRN)

0-621
0-358

0-486
0-203
0086
0036
0020
0010

0-425
0115

0-382
0040

For the additive model, all double homozygotes have fitness 1 — 2S as compared
with 1—8 for single homozygotes and there is only one stable polymorphic
equilibrium at 3 = 0. The approximations in this case break down if c gets
very close to zero. As can be seen from Table 1, the fit is reasonably good for all
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c and N for the additive model. For the multiplicative model the error is greatest
for small N and when c is near the boundary of the stability range. Also in Table 1
we have tabulated the predicted values of a% under SNR ordering. For the most
part the ordering makes no difference at all. When c is large the difference is
quite marked but by then the values of <rf> have got very small.

10

0-8

0-6

0-4

0-2

c=0025.£

c=001, M

Fig. 4. Simulation results for cr̂  are plotted against N for fixed c and given model
(E — epistatic, M = multiplicative). 8 = 0-25.

In Fig. 4 the results of simulation runs for various values of N are given for
three multiplicative models and two epistatic models. The three multiplicative
models have only slightly different c values (c = 0-015625 = #2/4 is the boundary
of stability of 3 = 0) but are quite different for all N even though two of them
have 3 = 0 when N -*• <x>. The two epistatic cases show the rather surprising
results that a% falls below its asymptotic value as N increases and then increases
again. This appears to be due to a decrease in the mean of |D| caused by the non-
normality of the distribution and cannot be predicted theoretically. Thus in the
epistatic model when two stable equilibria exist we always overpredict as the
approximation gives a monotonically decreasing curve asymptoting at the
deterministic value as shown in Table 3.

7. DISCUSSION

From the previous sections we can see that unless selection is very intense and
N exceptionally large, the deterministic solutions are not very useful. The problem
of having pairs of stable disequilibria means that two replicate Unes can have
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very different amounts of linkage disequilibrium even if the selection scheme is
the same in both. This is because a replicate line, which is originally near one
equilibrium point, may, by chance, become closer to the other equilibrium point
and thus tend to move nearer to it. Lines moving from around one equilibrium
to near the other is more common when the equilibrium values of D are not
large. If there is strong epistatic selection and tight linkage, the chance of wander-
ing from one equilibrium to the other will be very small. This is shown by Table 3,

Table 3. Predicted and simulation values of a% for an epistatic model (a = S):
S = 0-25

N

8
16
32
64

128
512

-*• 0 0

c =

Predicted
(SRN)

0-748
0-674
0-637
0-619
0-609
0-602
0-600

: 0-025

Simulation
(SRN)

0-751
0-646
0-578
0-563
0-566
0-594
0-600

c

Predicted
(SRN)

> 1
0-619
0-409
0-305
0-252
0-213
0-200

= 005

Simulation
(SRN)

0-566
0-417
0-313
0-258
0-203
0-178
0-200

where the contribution to a% of variation about equilibria is small. The values
for N -> oo give the deterministic contribution to o%. When selection is multipli-
cative, the variance about an equilibrium point contributes quite a large part of
a%, as can be seen from Table 2 where 16.D2, the deterministic contribution to a%,
is tabulated. As the equilibrium values of D, i.e. V, approach zero, the two
distributions begin to overlap greatly and the normal approximation, used for
the predicted values, breaks down.

In producing the above theoretical results, a symmetric viability model was
used. Theoretically, any model can be analysed in this way as long as the stable
equilibria are known. Karlin & Carmelli (1975) have shown that when viabilities
are general, numbers of polymorphic equilibria and their stability are difficult
to predict. Also when there are two stable equilibria, they will not in general be
symmetric about D = 0 and thus the zones of attraction will not easily be defined
and can only be obtained by computer simulation in the three-dimensional
system of p, q and D. Thus generalization of formulae would present considerable
difficulties.

In the preceding section, rather unwieldly expressions have been produced.
By making certain assumptions, some more tractable expressions can be obtained.
Let us take the simple case of all double homozygotes having equal fitness, 1 — a,
and assume that a, S and c are such that there is one stable equilibrium with
linkage equilibrium (i.e. ji = q = £ and 3 = 0). Then for SRN sampling,

o% = l /[2tf(l-(l+(J(2,S-a)-c)/t tO2)], (37)
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and for SNR sampling,

D

where w = 1 — \S — Ja in both cases. The difference between the two formulations
can now be seen to increase with c. The reason for the difference, as mentioned
previously, is that in equation (37), linkage disequilibrium is measured amongst
the gametes of individuals of a generation and in equation (38), the linkage
disequilibrium is measured in the conceptual gametic pool formed from the
individuals of a generation. While gene frequencies do not change in the formation
of a gametic pool, the moments of the linkage disequilibrium, D, do.

Table 4. Predicted values of o% for different models and values of 8 and c
N = 64

c

001
0-025
0-05
0-1
0-2
0-5

<S = 0-

0-295
0119
0061
0031
0017
0-009

Additive

25 S = 0-1

0-354
0-143
0072
0037
0-020
0-010

Multiplicative
K

S = 0-25

0-533f
0-203J
0089
0-038
0-018
0-009

S = 0-1

0-472
0159
0-076
0-038
0-020
0010

Neutral

S = 0

0-393
0-158
0080
0041
0022
0010

f D ^ O .
J Simulated value used as prediction breaks down at these parameter values.

When there is no selection or selective parameters are small, then equation
(37) simplifies to o% = l/(22Vc(2-c)) (= 2/(3iV) when c = \) which is a well-
quoted result for erf) in a finite population (e.g. Bulmer, 1976), while equation (38)
gives o% = ( ( l - c ) 2 + c2)/(2iVc(2-c)) (= l/(3iV) when c = £), which is the same
as that given in Avery & Hill (1978) for the value of a% in a conceptually infinite
offspring generation of a finite population, which is equivalent to the infinite
gametic pool of SNR ordering. In Avery & Hill (1978) it was also shown that if
0% was measured in a finite population of size N and departure from Hardy-
Weinberg proportions was taken into account, 0% = (l+c2)/(22Vc(2-c)) (= 5/(6N)
when c = £). The departure from Hardy-Weinberg proportions is only of very
minor importance unless c is large and thus was not considered in this analysis.
Its inclusion would considerably complicate the expressions used.

Calculation of either higher moments of D or its exact distribution does not at
present seem tractable. However, an impression of the magnitude of the dis-
persion around equilibrium values caused by finiteness can be obtained by looking
at the standard deviation of r (= D/J(p{l—p) q(l — q))), the correlation of
gene frequencies. As p and q vary little from p and <?, the variance of r about an
equilibrium point is approximately equal to var£ (D)/(P(l — P)c[(l — q)), which
equals 16 varE (D) when p = q = \ as we have taken in our examples.
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r will have a mean value of approximately £)/J(p(l — p)q(l — q)) (= 4J) when
p = q = -|) and, being a correlation, lies in the range [—1, 1]. Values of the
standard deviation of r as calculated from the predicted formulae are given for
the additive model in Table 1. If any value of r was equally probable (i.e. r had a
uniform distribution on [—1, 1]) then its standard deviation would be 1/^/3,
i.e. 0-577. Thus it can be seen that, even with large N, the approximate normal
distribution must have a wide dispersion unless linkage is very loose. In Tables
1-3, large selection pressures (i.e. S = 0-25) have been used. By doing so, fixation
due to finiteness is delayed almost indefinitely. However, selection in itself has
little effect on a% and the standard deviation of r when 3 = 0. To exemplify this,
Table 4 gives values of cr% for various values of c and S for an additive and a
multiplicative model. The values for S = 0 have less direct meaning as fixation
occurs relatively quickly and a steady distribution of p, q and D does not exist.

Thus care must be taken before using deterministic results when a population
is, or has recently been, finite. Also we must be cautious about declaring that
different populations have different selection regimes because their linkage
disequilibria are different, or in declaring that different population have the
same selection regime because their linkage disequilibria are equal.

The author is indebted to Dr W. G. Hill for his comments upon this work as well as on the
paper itself and to Dr J. Felsenstein for his comments on the first draft of the paper. The
author is grateful to the Science Research Council for financial support.
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