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ABSTRACT. A novel ‘selection curve’ method is developed to interpret annual layers in the West
Antarctic ice sheet (WAIS) Divide ice core based on dielectric properties (DEP). Because dielectric
measurements are non-contact and represent the integrated response of the ice volume, they are
particularly useful for the brittle zone of the core. Seasonal differences in ice chemistry create an annual
signal in DEP, though multiple peaks of varying strength within a year may complicate the interpretation
of annual layers. The selection curve algorithm uses a spline curve whose shape selects successive
annual peaks in plots of DEP. This spline curve was scaled to the average annual-layer thickness at a
given depth, where the layer thickness was best estimated using the fast Fourier transform (FFT) power
spectrum within a sliding 10 m window. To explore the accuracy and stability of the method, several
spline curves were generated from varying lengths of calibration data taken from multiple depths in the
WAIS core. Using 50 m of manually interpreted calibration data, the selection curve method matched a
manual interpretation throughout the entire 1200 m dataset to within 2% root-mean-square error
(RMSE). This method is equally applicable to glaciochemical and other time/depth series measurements.

INTRODUCTION

Analysis of ice cores provides critical information for
determining past conditions on the planet, documenting
changes in temperature and atmospheric chemistry (Wolff
and others, 1995), biomass burning and volcanic events
(McConnell and others, 2007) and anthropogenic impacts
(McConnell and Edwards, 2008). Fundamental to these
studies is determining the age of the ice, i.e. how long ago
the ice fell as snow on the surface. Continuous flow analysis
(CFA; Sigg and others, 1994) provides high-resolution
measurements of chemical species by progressively melting
sticks of ice cut from the core and sampling the water with
techniques like inductively coupled plasma mass spec-
trometry (ICP-MS) (McConnell and others, 2002) or ion
chromatography (Cole-Dai and others, 1997). CFA can
readily identify seasonal variation in chemical properties,
and multivariate chemical analysis provides very accurate
annual dating (Anklin and others, 1998; Banta and
McConnell, 2007; Banta and others, 2008). CFA works very
well in shallow firn/ice and in deep ductile ice. However, in
brittle ice from intermediate depths at which air bubbles are
forced into clathrates in the crystal structure, the ice cores
shatter almost spontaneously and the physical integrity
needed for CFA often cannot be maintained. In contrast, the
dielectric properties (DEP) of the ice can be measured with
a non-contact method to indicate annual variation in
electrical conductivity, even in partially shattered brittle
ice cores. DEP measures alternating current (a.c.) conduc-
tance continuously along the core. Several studies attribute
the DEP signal to acidity and neutral salt concentrations
(Moore and others, 1994; Wilhelms and others, 1998), as
well as density variations (Wilhelms, 2005). Working with
data collected by the Greenland Icecore Project (GRIP;
72.58°N, 37.63°W), Moore and others (1994) found that
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electrical conductivity measurements were in large part
explained by acidity, ammonium salts and chloride within
the ice core. Chemical impurities deposited in the snow
may represent timescales from long-term trends in atmos-
pheric chemistry (Wolff and others, 1995) to shorter-term
seasonal cycles (Moore and others, 1992; Curran and
others, 1998).

Numerous studies have used electrical conductivity or
DEP as part of an ice-core dating strategy, though many of
these depend on extracting volcanic peaks from a single ice
core (Kaczmarska and others, 2005; Karlof and others, 2005)
or aligning volcanic signals between multiple cores (Wolff
and others, 1995; Vinther and others, 2006; Rasmussen and
others, 2008) rather than identifying individual annual
cycles. Annual snow layers will have varying thickness
depending on the amount of precipitation, but sublimation,
wind erosion/deposition and melt layers may also compli-
cate the interpretation of annual cycles (Wolff and others,
1995). The selection curve method presented here provides
a consistent means of machine-assisted identification of
annual layers in an ice core to increase the efficiency of DEP
dating and provide a check on the consistency of manual
interpretations. The method accounts for the complexities of
the annual DEP signal that is non-stationary (e.g. changing
average layer thickness) and potentially composed of mul-
tiple peaks of varying magnitude within a single season.
While multi-parameter dating methods provide a more
robust approach, DEP remains one of the few quantitative
methods for identifying annual cycles in the brittle zone.
This paper tests the selection curve method on DEP
measurements beginning in the firn and continuing into
the brittle zone of the WDCO6A ice core of the West
Antarctic ice sheet (WAIS) Divide project (79.467°S,
112.085°W) (http://waisdivide.unh.edu).
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METHODS

The selection curve method develops a spline curve whose
shape is used in selecting successive annual peaks in plots of
DEP. This spline curve must be scaled to the average annual
layer thickness at a given depth, T,. Here we describe the
datasets and the parameter estimation method and describe
three methods that were tested for estimating T, and how
the selection curve functioned.

Measurements

The dataset analyzed here covers 1200 m of the WDCO06A
ice core from 250 to 1450 m depth (~1000 CE to 5600 BCE).
The 12.2 cm wide core was drilled electromechanically, and
sections of ice were extruded from the drill directly into
plastic netting that maintained the physical structure of the
core even through the brittle zone. DEP measurements were
made at the drill site before the core was exposed to the
possibility of physical damage during shipment. The DEP
instrument used electrodes that wrapped 100° around the
circumference of the core, forming a 5mm wide capacitor
with ice as the dielectric between the electrodes. The
conductance at 100kHz was measured using an Agilent
E4980A LCR meter. Measurements were made every
millimeter as the electrodes were moved along the core.
The measurement was made through the plastic netting,
which tightly held together any loose pieces of ice. Fractures
in the core that were tight-fitting did not adversely influence
the DEP measurement, though such ice could not be
physically processed for continuous, high-resolution chem-
ical measurement.

DEP measurements vary with the density and internal
temperature of the ice core (Wolff and others, 1995). Each
~1m section of the WDCO6A core had a consistent
temperature history and internal temperature, but there
were temperature differences among 1m sections. This
dataset had already been normalized to compensate for
these changes. For each 1m section, the mean DEP was
subtracted and resulting values were divided by the average
absolute value so the normalized series had a mean of 0 and
an average absolute value of 1. This type of normalization
would be expected to create occasional small false peaks at
section boundaries owing to imprecision in the adjustments.
However, missing data at the section breaks and deletion of
edge effects where the electrodes encountered and departed
each section generally ensured that the gradient across
section gaps was larger than the imprecision in matching
sections, so such false peaks were infrequent.

For calibrating and testing the selection curve method,
two experienced analysts independently interpreted plots of
DEP versus depth and separately recorded their interpret-
ation of annual peaks for the WDCO6A core. The total
annual counts for the analysts’ initial interpretations were
very similar at 6153 and 6151, but the two diverged on their
way to that total. Using a 20 year moving average of widths
between successive counts as an estimate of actual annual-
layer thickness, the mean absolute difference in annual
counts across all depths was 6.3 years with a standard
deviation of 9.4 years, representing <1% difference between
analysts. The analysts jointly reconciled the two visual
interpretations into one list of 6152 annual peaks between
250 and 1450m depth. The sensitivity of results to
calibration inputs was tested by analyzing variability among
four different lengths of calibration data (12.5, 25, 50 and
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100 m) extracted from this list of annual picks at six depths in
the core (262, 622, 712, 862, 1162 and 1312 m). These
depths were selected to cover a wide range and to avoid any
sections of missing data.

Parameter estimation

Parameter estimation was performed using the multi-object-
ive complex (MOCOM) global optimization method of Yapo
and others (1998) that had been successfully applied in a
previous ice-core study (McGwire and others, 2008).
MOCOM starts with multiple sets of input parameters
whose values are randomly distributed. Each parameter set
is independently run through the program being optimized,
and the outputs are evaluated with a set of user-defined
objective functions (e.g. root-mean-square error (RMSE),
bias). Using a downhill search method, each parameter set is
independently optimized with respect to these objective
functions. The process continues until every parameter set is
optimal with respect to at least one objective function
(Pareto-optimal). The multiple Pareto-optimal solutions
represent trade-offs between the objective functions (e.g.
lower RMSE at the cost of higher bias).

Estimating average layer thickness

The average layer thickness at a given depth, T,, varies
throughout an ice core owing to changes in net snowfall and
other climate variables at the time of deposition, increasing
compression with burial, and eventually by flow-induced
layer thinning. Three methods were tested for estimating T :
(1) fitting a polynomial to the average layer thickness of a few
calibration segments from different depths, (2) using a
running mean of prior annual picks and (3) Fourier analysis.
The first method used a second-order polynomial and was
evaluated using either three or five equally spaced cali-
bration segments that were 50m in length. The two
polynomial fits were very similar, so the three-segment
approach (depths 200-250m, 800-850m, 1400-1450m)
was selected as representing a more reasonable level of effort
for calibration. While capturing the overall change in T, due
to compression and thinning, the polynomial could only
capture the coarsest scale of changes in T, due to climate.

The second option of using a running mean of prior
annual picks to estimate T, provided a convenient approach
that was integrated directly into the calibration of the
selection curve by including an additional parameter, N, as
the number of prior years used in the running mean (range
15-60 years). The running mean of prior picks provided a
way to capture continuous low-frequency variation in T,
but since it was retrospective it could fall ‘out of sync” with
dynamic changes in T,.

Finally, T, was estimated by Fourier analysis of the DEP
dataset prior to running the selection curve program. Fourier
analysis provides a continuously varying, physically based
method that utilizes the entire dataset in a consistent
manner. In this study, a 10m wide sliding window was
stepped through the DEP dataset to plot changes in the fast
Fourier transform (FFT) power spectrum with depth (Fig. 1).
Darker regions in Figure 1 represent higher FFT intensities at
a given frequency and depth in the core. The power spectra
are noisy because the FFT is sensitive to abrupt disconti-
nuities in the data, and there are multiple signals at seasonal
and annual timescales within the sliding window. Peaks
from these multiple frequencies are also mirrored at
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Fig. 1. The method for estimating T, from a plot of FFT power
spectra versus depth. The grayscale background indicates distri-
bution of FFT intensities at different frequencies. The solid curve
indicates the selected frequency, 1/T,, at each depth for one run of
the algorithm. The diagram extending from the end of this curve
represents the method’s search area.

harmonic frequencies. Despite this noise, a visible trend in
peak power values down the core in Figure 1 corresponds
well with expected changes in T,. It should be possible to
manually interpret a path or to fit a polynomial trend
through the peak frequencies. We developed an automated
method to follow peaks in the FFT power spectra that
allowed dynamic changes in response to relatively short
depth/timescale phenomena. The starting frequency was
manually estimated. Then a triangular search area was
calculated that covered the upcoming half of the 1T0m
sliding window in depth and an increasing range of
frequencies up to +£50% change in thickness. This is
illustrated at the bottom of Figure 1. As the method
progressed through the depth series, peak values of the
log-transformed power spectra within the search area were
down-weighted so that:

_ In(p)
Y@y

where W is the weighted value of FFT intensity, p is the
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Fig. 2. The lower curve represents a series of filtered, normalized
DEP measurements. The upper curve represents the selection curve
(B: datum; T,: average layer thickness; D: curve amplitude at T;
§1/S2: curve control points as a proportion of T,; M: value of curve
at ST and S2 as a fraction of D). The shortest distance, H,, between

local maxima in DEP and the selection curve is used to identify the
annual peak.

original FFT intensity, d is the distance in depth as a
proportion of search extent, Y'is the calibrated exponent for
decay of W in depth dimension, fis the absolute change in
frequency as a proportion of search extent and F is the
calibrated exponent for decay of W in frequency dimension.

A change vector was calculated to adjust T, towards the
greatest W: however, to reduce the influence of noise, the
magnitude of this change vector was divided by an inertia
parameter, I. The three free parameters of the FFT tracing
method (Y, F and /) were calibrated using the MOCOM
method, minimizing both the absolute bias in T, for the
entire calibration segment and the RMS difference from the
manual thicknesses observed within the running window.
For calibration, the FFT method stepped from one manual
annual pick to the next, and the accumulated error statistics
were passed to MOCOM at the end of the program run.
Once calibrated, the FFT method calculated individual T,
estimates at discrete depths down the core with spacing
equal to the average layer thickness of the calibration data.
Continuous estimates of T, were interpolated linearly
between these discrete steps. An example of results from
the tracing method is shown with the solid curve in Figure 1.

Selection curve definition and calibration

The selection curve method is designed to mimic the manual
process of interpreting annual layers. Figure 2 illustrates how
the method uses a spline curve to identify the most probable
peak to represent an annual cycle. An artificial datum (B in
Fig. 2) is established above a series of DEP measurements
from which a spline curve drops towards the observed data.
This spline curve describes a balance between the expected
magnitudes and spacings of annual peaks. The length of the
spline curve is 3 x T,. This length was expected to be
sufficient, given that the greatest ratio of a single annual
thickness to the corresponding 20 year running mean in a
draft CFA-based timescale of the WDCO6A core from 250 to
450m was 1.7. The greatest difference, D, between the
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Fig. 3. A portion of the selection curve analysis, showing original
and filtered DEP, annual peaks selected by manual and selection
curve methods, and the specific selection curve for each
automated pick.

spline and the datum occurs at T,. Two control points on the
spline are positioned at some proportion (S1, S2) of T, and
their values are both a fraction, M, of D. These two control
points are adjusted to control symmetry and to make the
selection curve more sharp or blunt. A Kochanek-Bartels
spline (Kochanek and Bartels, 1984) with a tensioning
parameter of 0.5 provided a smooth interpolation while
preventing large excursions between the defined points.

Prior to using the selection curve, a low-pass filter is
applied to the DEP dataset to reduce much of the high-
frequency, sub-annual information that would be irrelevant
to the selection of annual layers. The full-width, half-
maximum (FWHM) value of this low-pass sinc filter is an
adjustable percentage, P of T, and uses a Blackman
window to avoid aliasing (Smith, 2002). Since T, varies with
depth, the low-pass filter is recalculated and applied
separately to each local segment of data (3 x T,) before
applying the selection curve. Any peaks (local maxima) that
remain after filtering are candidates for selection. The
filtered DEP peak that has the least difference from the
value of the spline curve, H, at that depth is selected as an
annual peak. In the illustrated example, Hs is selected. Then
the selection curve is shifted to start at this new annual peak
(Hs becomes prior pick in Fig. 2), and the process is
repeated. In regions of completely missing data, annual
steps are assigned at intervals equal to T,. At this time there
is no logic to deal with smaller amounts of missing data
specifically in the vicinity of T,, assuming that these cases
will be relatively infrequent and that forced picks at shorter
or longer distances will tend to cancel out.

Because the selection of annual peaks is based on a
simple difference, the spline curve’s datum is set to an
arbitrary large value. The remaining five parameters of the
selection curve method (D, S1, S2, M and P) were calibrated
using MOCOM. MOCOM calculated a set of solutions
representing Pareto-optimal trade-offs between three object-
ive functions: (1) the sum of squared differences in depth
from the manual calibration picks to the closest selection
curve pick, (2) the sum of squared differences in depth from
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selection curve picks to the closest manual pick and (3) the
difference in annual counts between the automated and
manual interpretations. Early attempts to directly minimize
just the difference in annual counts between the automated
and manual interpretations were found to bias the selection
curve shape too dramatically to the specific calibration
dataset, so the MOCOM solution that best balanced the two
sum-of-squares measures was selected. The difference in
annual counts was only included to ensure that if multiple
parameter sets had the same balance in sum of squares, the
one with the least difference in annual counts was
employed. In addition to identifying the level of agreement
on the position of specific picks, objective functions 1 and 2
captured the trade-off between errors of omission (manual
pick has no corresponding selection curve pick) and
commission (selection curve pick has no corresponding
manual pick). Omissions will create larger differences
between manual picks and their closest automated pick for
the first objective function, while commissions will have
smaller, but more numerous, differences in the second
objective function.

RESULTS AND DISCUSSION

Figure 3 illustrates a small portion of one run of the selection
curve program. This range of depths was selected to show a
case where the selection curve method picked one more and
one less annual count than the manual interpretation. The
average calibrated FWHM of the low-pass sinc filter was
0.23 xT,, and Figure 3 shows a typical filtering result.

In order to test the accuracy and stability of the method,
selection curves were calibrated separately to combinations
of the three methods for estimating T,, four lengths of
calibration data, six depths in the core, and running
downwards versus upwards on the core. Each calibration
was applied to the WDCO6A core from 250 to 1450 m, and
Table 1 describes the level of agreement with the manual
interpretation. The average percentage difference in total
annual counts (BIAS) from the manual interpretation
indicated potential bias. The standard deviation of the
percentage difference in total annual counts (STDEV)
indicated the stability of results across varying depths. The
percentage of manually selected peaks that were also
selected by the automated method (HITS) indicated how
well the selection curve dealt with sub-annual variability.
Finally, the RMS of the difference in counts between the
selection curve and manual interpretation was calculated at
two timescales, 50 and 500 years. RMS differences were
determined by passing a sliding window of 50 or 500 years
along the list of manual picks, identifying top and bottom
depths for each time interval, and counting the number of
selection curve picks in that depth interval.

The selection curve method with a polynomial fit for T,
showed little BIAS relative to STDEV in Table 1. Different
patterns were observed when running downwards versus
upwards. In the downward direction, STDEV decreased by
one-third when the calibration segment was doubled to
25m, and by another two-thirds when increasing from 50 to
100 m. The proportion of cases where identical peaks in DEP
were chosen also increased at these same calibration
lengths. RMSso and RMSsq did not show such a threshold
response and improved with each increase in calibration
length. As seen in Figure 4, the relative disagreement in age
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Table 1. Comparison of selection curve methods with the consensus interpretation

T, method Calibration length Direction % BIAS % STDEV % HITS RMS5o RMSs500

m

Polynomial 12.5 Down 0.0 4.3 93.7 2.6 19.7
Polynomial 12.5 Up -0.7 2.7 97.1 2.3 16.6
Polynomial 25 Down 0.5 2.9 94.6 2.1 14.6
Polynomial 25 Up -0.4 3.2 96.9 2.5 18.4
Polynomial 50 Down -0.1 3.0 94.5 2.1 13.5
Polynomial 50 Up -1.2 2.5 97.0 2.3 16.1
Polynomial 100 Down 0.7 1.1 95.2 1.8 9.6
Polynomial 100 Up 0.5 3.1 97.1 2.5 18.4
Mean 12.5 Down 1260.7 1384 72.1 655.6 6789.1
Mean 12.5 Up 127.4 226 97.4 120.4 1032.5
Mean 25 Down 812.3 1242 81.3 433.9 4487.8
Mean 25 Up 113.6 232 95.5 121.9 1062.1
Mean 50 Down 4.0 7.4 95.6 5.6 46.9
Mean 50 Up 8.8 15.5 97.6 8.0 59.8
Mean 100 Down 4.1 7.8 941 5.6 46.1
Mean 100 Up 7.5 10.3 97.2 11.2 72.9
FFT 12.5 Down -0.1 2.0 94.5 2.2 13.9
FFT 12.5 Up 3.0 1.7 97.5 2.3 14.1
FFT 25 Down -0.1 2.2 94.3 2.1 12.3
FFT 25 Up 0.9 3.0 97.3 2.1 11.1
FFT 50 Down -1.0 1.5 93.8 2.0 11.7
FFT 50 Up 0.4 1.9 97.2 2.0 11.1
FFT 100 Down 0.5 1.4 94.4 1.8 9.1
FFT 100 up 0.6 1.4 97.2 1.9 8.6

Notes: % BIAS: mean % disagreement; % STDEV: standard deviation % disagreement; % HITS: mean % matched peaks; RMSs,: mean RMS disagreement per

50 years manual; RMSso0: mean RMS disagreement per 500 years manual.

for four of the six downward 50 m calibrations increased
rapidly near the beginning of the series. Proceeding further
down the core in Figure 4, the relative error of results from
the worst-fitting calibrations reduced gradually toward a
stable level as the annual count increased. The calibration
segment, labeled A for the polynomial method in Figure 4,
came from the uppermost part of the core and proceeded
through the entire series with the best fit.

When running upwards from the bottom of the core with
the polynomial estimate for T, there was little improvement
with increasing amounts of calibration data. Interestingly,
HITS was consistently higher when calibrating and running
the method upward from the bottom of the core, even
though the RMS measures were generally worse (i.e. same
peak within a season, but more likely to miss a year). The
repeating pattern of upward selections corresponding more
frequently with specific peaks in the manual interpretation
suggests an asymmetry in seasonal variability, with the
dominant peak occurring deeper in the core and hence
earlier in the season. Examination of DEP with other
physically based measurements (e.g. high-resolution trace
chemistry) may help elucidate this phenomenon. Though
not developed here, it might be possible to improve results
by automatically comparing patterns between downwards
and upwards runs of the program.

For the running-mean method of estimating T,, the
median calibrated number of prior picks, N, was 36 years.
This method was prone to a positive feedback where the
selection of closer peaks in DEP drove down T, which led
to the selection of more closely spaced peaks (Table 1).
While some runs showed good agreement with the manual
interpretation, even with just 12.5m of calibration data,
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cases of large overestimation persisted in the 50 and 100 m
tests. Again, calibrating and running in the upwards
direction improved the chances of picking features identical
to the manual interpretation. Despite gradual improvement
as the number of calibration data increased, the results were
too unstable to recommend estimating T, with a running
mean. Figure 4 shows how error with the running-mean
method could rapidly accumulate in rather small regions of
the dataset. However, disregarding the two worst cases in
Figure 4, the remaining program runs had lower disagree-
ment in age than the polynomial method and were
comparable with the FFT method.

The FFT method provided the best results for the selection
curve (Table 1), with automated analysis based on a single
calibration segment providing better guidance on T, than
the more laborious effort of manually interpreting multiple
calibration segments at different depths for fitting with a
polynomial. BIAS was small relative to STDEV, except when
running upwards with 12.5 m of calibration data where five
of the six calibration depths overestimated the count. In the
downward direction, STDEV only changed noticeably when
increasing to 50m of calibration data, while RMSsq and
RMSs00 improved steadily with increasing calibration data.
Figure 4 shows that the FFT-based selection curves had low
error rates until ~263 m depth. As with the polynomial
method, results for the uppermost 50m calibration (A in
Fig. 4), which included this problematic region, diverged
much less from the manual interpretation. As before,
running the selection curve upwards increased HITS.

While HITS was comparable between the polynomial
and FFT methods, both the downwards and upwards runs of
the FFT method had consistently lower RMS at both 50 and
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Fig. 4. Percentage difference between the consensus interpretation
and selection curves calibrated to 50 m training segments running
down the core. Different curves represent different starting depths
for calibration segments (A: 262 m; B: 622 m; C: 712 m; D: 862 m;
E: 1162 m; F: 1312 m).

500vyear timescales. The relative improvement of the FFT
over the polynomial method was substantially greater for
RMSs00 than for RMSsq. This suggests that the fine-scale
estimation of T, by automatically tracing the noisy FFT
power spectra was imprecise. However, the tracing method
did capture important deviations from a simple polynomial
trend at the 500 year timescale. Therefore, an easier method
of fitting a smoother curve through the FFT power spectra
might provide similar results to the more complex method
presented here.

To confirm the correspondence between the DEP sel-
ection curve method and another accepted measure of
annual cycles in the ice core, comparisons were also made
with a 200m long segment of a draft timescale developed
for WDCO6A above the brittle zone by McConnell and
others (unpublished information) based on continuous flow
analysis with mass spectrometry. The draft CFA-based
timescale counted 861 years between 250 and 450 m. The
FFT-based selection curves for DEP with the downward 50 m
calibrations had a mean of 851 years (1.2% difference from
CFA) and standard deviation of 21.6 years (2.5% difference),
showing no statistically significant bias. Figure 5 compares a
distribution curve for layer thickness frequencies of the CFA
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Fig. 5. Frequency distribution curves comparing annual-layer
thicknesses (not strain-corrected) from 250 to 450 m for the FFT-
based selection curve versus the draft CFA timescale.

versus the average frequency for the aforementioned FFT-
based selection curves. Since the data are not strain-
corrected, the distribution in Figure 5 only compares
consistency between the two methods and does not indicate
snow accumulations. The DEP results were similar to the
CFA-based timescale, with a slightly heavier tail towards
larger annual thicknesses. Some of the discrepancy between
CFA and DEP results in Figure 5 may be due to differences in
seasonal timing between the specific chemicals measured
by CFA versus the aggregate dielectric response.

One issue with the FFT method is that the 10m sliding
window represents an increasing number of years in the
dataset as it moves down the core into thinner annual layers.
The FFT method could be run a second time, allowing the
width of sliding window to vary based on the trend in T,
calculated from the first run. While some studies might
benefit from the more consistent time window of a second
run, we tested this and the results did not change noticeably
for this dataset. For this dataset the selection curves showed
no consistent change in shape as the depth of calibration
data segments increased. After this method is applied to ice
cores from multiple sites and multiple environmental
signals, we may find that the shape of a calibrated selection
curve contains information that is relevant to climate
investigations.

Disagreements between the manual interpretation and
the calibrations from different depths showed some simil-
arities among the three techniques for calculating T, (Fig. 4),
but there was no consistent trend associated with the depth
of the calibration data. Test runs that interpolated curve
parameters between the multiple calibration regions (not
shown) provided no noticeable improvement over a fixed
curve derived from a single depth range.

CONCLUSION

Using only 25m of manually interpreted calibration data,
the FFT method agreed with the manual interpretation with
an RMS of <2% over 1200 m of the core. For short ice cores
it is not worth the effort to use this approach. However, in
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cores that span tens of thousands of years the approach
presented here can provide a draft interpretation that
increases the consistency and reduces the effort of the final
manually adjusted interpretation. This consistency is particu-
larly valuable for DEP measurements in the brittle zone of an
ice core where multi-parameter CFA is not possible. This
algorithm can be applied to any time or depth series where
complex combinations of peaks make it difficult to select
those peaks that best represent seasonal or annual variation.
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