A Geometrical Proof of Professor Morley's Extension of Feuerbach's Theorem.

By Herbert W. Richmond, F.R.S.

(Received 9th September 1919. Read 14th November 1919.)

1. In the Proceedings of the National Academy of Sciences of the U.S.A., Vol. II. (1916), page 171, Professor F. Morley has established a theorem which both extends and simplifies the theorem of Feuerbach, viz., All curves of class three which (i) touch the six lines $O P, O Q, O R, Q R, R P, P Q$ joining four orthocentric points, O, P, Q, R, and (ii) pass through the circular points, also touch the common nine-points-circle of the triangles $P Q R, O Q R, O R P, O P Q$. Sixteen of these curves of class three break up into one of the four points and a circle touching the sides of the triangle formed by the other three. Thus the sixteen instances of Feuerbach's theorem derivable from the four triangles are included as special cases in Morley's theorem. A purely geometrical proof of the theorem may be worth consideration.
2. In what follows C_{n} and Γ_{n} will be used to denote "curve of order n, and class n " respectively.

Let there be given a group of four points O, P, Q, R having the diagonal triangle $A B C$; then any two $\Gamma_{\mathrm{s}}^{\prime} s$ which touch $O P, O Q$, $O R, Q R, R P, P Q$ have three other common tangents. Two of the

Fig. 1.
three may be taken arbitrarily, and the third is then easily deter-
mined from the property that all $\Gamma, ' s$ which touch eight given lines also touch a certain ninth line.

Suppose the three unknown common tangents of the two Γ_{3}^{\prime} 's form a triangle $X Y Z$. All Γ_{s}^{\prime} 's which touch $Z X$ and $Z Y$ and the six lines named above also touch $X Y$. One of these Γ_{3} 's breaks into the point P and a Γ_{2} touching $O Q, O R, Q R$: thus the sides of the triangles $O Q R, X Y Z$ touch a Γ_{2}, and therefore their vertices X, Y, Z, O, Q, R lie on a C_{2}. Similarly X, Y, Z, O, P, R lie on a C_{2}, which must be the same as the former. Hence

If the three unknown common tangents of two Γ_{3}^{\prime} 's which touch $O P, O Q, O R, Q R, R P, P Q$ form a triangle $X Y Z$, the seven points X, Y, Z, O, P, Q, R lie on a conic.

Conversely it is true that
If the vertices of a triangle $X Y Z$ lie on a conic with the points O, P, Q, R, then all Γ_{3}^{\prime} 's which touch $O P, O Q, O R, Q R, R P$, $P Q$ and two sides of $X Y Z$ also touch the third side.
3. X, Y, Z being three points on a conic through O, P, Q, R, suppose that L, M, N are the points of contact of $Y Z, Z X, X Y$ with a Γ_{3} which also touches the six lines named above. Take a point Z^{\prime} on the conic adjacent to Z and draw tangents to $\Gamma_{3}, Z^{\prime} X^{\prime}$, $Z^{\prime} Y^{\prime}$, adjacent to $Z X, Z Y$, cutting the conic in X^{\prime}, Y^{\prime}, adjacent to X, Y; then $X^{\prime} Y^{\prime}$ is a tangent to Γ_{3}. Since the six vertices of $X Y Z, X^{\prime} Y^{\prime} Z^{\prime}$ lie on C_{2}, the six sides touch a Γ_{2}.

Fig. 2.
Hence, in the limit, when Z^{\prime} approaches indefinitely near to Z, we see that a conic must touch $Y Z, Z X, X Y$ at L, M, N respectively, i.e. that $X L, Y M, Z N$ are concurrent. Thus, if the positions of $Z X, Z Y, L$ and M are known, those of $X Y$ and N are
easily found. But it must be noted that, when $Z X$ and $Z Y$ are given, the positions of L and M are not arbitrary ; there is a [1, 1] correspondence between them.
4. Again, when we consider the system of $\Gamma_{3}^{\prime} s$ which (i) touch the six lines $O P, O Q, O R, Q R, R P, P Q$, and (ii) pass through two given points L and M, there is a relation between the tangents $L Z, M Z$, which implies that Z must lie on a certain locus. In a special case, however, it is possible to find the locus of N (which locus is also the envelope of $X Y$ and part of the envelope of the $\Gamma_{3}{ }^{\prime} s$) for such a system of Γ_{3} 's without further investigating the locus of Z.
5. Suppose that L and M are conjugate with respect to all conics through O, P, Q, R. The polar of M with respect to the conic O, P, Q, R, Z, then passes through L and also divides $Z X$ harmonically, i.e. it is the line $L N$. Thus $L M N$ is a self-polar triangle of the $C_{2} . \quad N$ is the pole of $L M$; and, since for different conics through O, P, Q, R, there is a (1,1) correspondence between $L N$ and $M N$, the locus of N is a conic passing through L and M. Further, three conics through O, P, Q, R consist of a pair of straight lines. For these N lies at the intersection of the pair of lines, i.e. at A, B or C. Hence the locus of N is the conic $L M A B C$.

In this case when two adjacent Γ_{3} 's touching the six lines $O P, O Q, O R, Q R, R P, P Q$ and passing through L and M approach coincidence, their nine common tangents are ultimately
(1) the six lines $O P, O Q, O R, Q R, R P, P Q$;
(2) two lines ($L Y Z, M X Z$) through L and M, the points of contact being L and M;
(3) A line ($X N Y$) touching the conic $L M A B C$ at N, the point of contact with the Γ_{8} also being N.
The envelope of the Γ_{3} 's consists of the points L, M, and the conic LMABC.
6. So far all the reasoning and properties have been projective. In the special case when L and M are the circular points, O, P, Q, R are four orthocentric points, the inscribed and escribed centres of $A B C$. The conic through O, P, Q, R and Z is a rectangular
hyperbola, whose centre N lies on the nine-points-circle $A B C$. The line $X Y$ is a common tangent at N to the nine-points-circle and to the curve of class three which touches $O P, O Q, O R, Q R$, $R P, P Q$, and also has $Z L, Z M$ as tangents at L and M, the circular points. Q.E.D.
7. It will be found that the locus of Z is a curve of order 5, having double points at O, P, Q, R, passing through the centres of the sixteen inscribed and escribed circles of the triangles $P Q R$, $O Q R, O R P, O P Q$, and through the centre of the common nine-points-circle $A B C$. Each point N of the nine-points-circle is the point of contact of two distinct Γ_{3} 's of the system, one having $L Y Z, M X Z$ as tangents at L, M, the other having $L W X, M W Y$ as tangents, as shown in Figure 2.

