Composito Mathematica 125: 193-219, 2001. 193
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

Hilbert Functions, Residual Intersections,
and Residually S, Ideals

MARC CHARDIN!, DAVID EISENBUD?* and BERND ULRICH?*

Unstitut de Mathématiques, CNRS & Université Paris 6, 4, place Jussieu,

F-75252 Paris Cedex 05, France. E-mail: chardin@math.jussieu.fr

2Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, CA 94720,
U.S.A. e-mail: de@msri.org

3Department of Mathematics, Michigan State University, East Lansing, MI 48824, U.S.A.
e-mail: ulrich@math.msu.edu

(Received: 21 December 1998; accepted in final form: 15 November 1999)

Abstract. Let R be a homogeneous ring over an infinite field, / C R a homogeneous ideal, and
a C I an ideal generated by s forms of degrees dj, . . ., d; so that codim(a : ) > s. We give broad
conditions for when the Hilbert function of R/aor of R/(a : ) is determined by 7 and the degrees
dy, ..., d;. These conditions are expressed in terms of residual intersections of 7, culminating in
the notion of residually S, ideals. We prove that the residually S, property is implied by the
vanishing of certain Ext modules and deduce that generic projections tend to produce ideals
with this property.
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Introduction

Let 7 be a homogeneous ideal in a polynomial ring R = k[x, ..., x,] over an infinite
field k. Choose degrees di, ..., d;, and consider the family of ideals a generated
by elements ay, ..., a, € I of degrees d, ..., d;. By semicontinuity there are open
sets in this family consisting of ideals a such that the Hilbert functions of R/a
and of the residual intersection R/(a: I) are constant. One might ask:

(A) What do these open sets look like?
(B) What are these generic Hilbert functions?

If I =(xy,...,x,) and s < n, then the answers are well known: The open sets of
question (A) each consist precisely of the ideals a of codimension s, and the generic
Hilbert series of question (B) are [(1 — t%)/(1 — ¢)" except in case s = n, where
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R/(a: 1) is R/a modulo its socle, and has Hilbert series

e

Even for this 7, both questions are open when s > n (see [24], [9], [1] and [13] for
partial results).

In this paper we will take up question (A), always in the case s < n, but for more
general ideals /. Our main results are that, in a wide range of cases, codimension
conditions define the open sets in question. In a later paper [8] we will compute
the generic Hilbert functions of question (B) under stronger hypotheses on I.
For the purpose of describing our results, we say that the ideal 7 satisfies condition

(Al) ifthe Hilbert function of R/ais constant on the open set of ideals a generated by s
forms of the given degrees such that codim(a: /) > s; and
(A2) if the Hilbert function of R/(a: I) is constant on this set.

Both conditions are satisfied automatically for s < g := codim 7 (the case s = g is the
theory of linkage). Thus we will focus on the cases s > g.

Our first results concern the case s =g+ 1 and the case of ideals of small
codimension (see Theorem 1.1 and Corollary 2.2):

THEOREM 0.1. Withnotation as above, both conditions (Al ) and ( A2) are satisfied
if

o s=g+ land, for (A2), I is a complete intersection locally in codimension g; or
e codim I =2 and R/I is Cohen—Macaulay, or
e codim / =3 and R/I is Gorenstein.

Before stating further results we motivate the codimension condition in (A1) and
(A2). Recall from Artin and Nagata [3] that an ideal J in any ring satisfies the con-
dition G if, for each prime ideal p containing J with codim p < s — 1, the minimal
number of generators u(J,) is at most codim p. If [ satisfies G, then
codim(a : ) > s when a is generated by s generic forms of sufficiently large degrees,
and thus the codimension condition is necessary for a to be in the desired open set.
On the other hand, many interesting ideals satisfy G,;. For example any smooth
(or even locally complete intersection) projective variety can be defined
(scheme-theoretically) by an ideal satisfying G, — that is, G, for every s. Most
of our results give cases where an ideal satisfying G,_; has property (Al) and cases
where an ideal satisfying Gy has property (A2).

The following gives the flavor of what we can prove. A special case of a combi-
nation of Theorem 2.1, Proposition 3.1, and Corollary 4.3 (a) says that [ satisfies
(A1) or (A2) if it satisfies G;_; or Gy, respectively, and if the depths of the rings
R/I are not too small for j < s — g — 1. In fact we only need to assume the vanishing
of a single local cohomology module of each of these rings:
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THEOREM 0.2. Let R be a polynomial ring over a field with irrelevant maximal ideal
m, let I C R be a homogeneous ideal of codimension g and dimension d, and assume
that Hf[_j(R/If) =0forl <j<s—g— 1 IfIsatisfies Gg_y or Gy, then (Al ) or (A2),
respectively, hold.

For example, the vanishing condition is satisfied for s=g+2 if R/I is
Cohen—Macaulay.

The distinction between ideals that satisfy the conditions and those that don’t is
sometimes rather subtle. For example the ideal of a Veronese surface P><>P° (2
by 2 minors of a generic symmetric 3 by 3 matrix) and that of a two-dimensional
rational normal scroll in P> (2 by 2 minors of a sufficiently general 2 by 4 matrix
of linear forms) behave differently: The ideal of the Veronese satisfies (A1) and (A2)
for all s (Theorem 2.1, Proposition 3.1, and [12, 2.3 and 3.3]), whereas the ideal of the
scroll satisfies these properties for s < 5 = g+ 2 (Corollary 4.6) but does not satisfy
(A1) for s = 6 (Remark 6.5).

To explain these results, we introduce our main definitions:

DEFINITION. Let R be a graded ring, and let 7 C R be a homogeneous ideal.

(a) We say that [ is s-parsimonious if the following holds for each 0 < i < s: for every
i-generated homogeneous ideal b C /, and every homogeneous element a € /
such that

codim(b:7)>i and codim((b,a):1)=i+1

we have
b:/=Db:a.

(b) We say that I is s-thrifty if the following holds for each 0 < i < s: for every
i-generated homogeneous ideal b C I, and every homogeneous element a € 1
such that

codim(b:7)>i and codim((b:1),a)=i+1

we have
(b:I)NI =" and ais a nonzerodivisor on R/(b : I).

The definition applies to every ring (for example to localizations of graded rings)
since we regard otherwise ungraded rings as being trivially graded (every element
has degree 0). The idea behind the names is that if b and « are sufficiently general,
so that the codimension conditions hold, then there are no ‘extra’ elements that
annihilate a (as compared with 7) modulo b.

Theorem 2.1 states that if 7 is G;_; and (s — 1)-parsimonious, then (A1) is satisfied,
and that if I is G and (s — 1)-thrifty then (A2) holds. The actual result also includes
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the case where we know the hypotheses only ‘locally in codimension < r” and yields
only some of the coefficients of the Hilbert polynomial — thus it can be used for
projective varieties, where the hypotheses are fulfilled locally on the variety.
Theorem 2.3 refines this statement, and computes the changes in Hilbert functions
as the degrees d; are changed.

Given these results it is interesting to have conditions under which an ideal is
s-parsimonious or s-thrifty. The rest of the paper is devoted to such conditions.
We show (Proposition 3.1) that parsimony and thrift can be deduced from the con-
dition that certain residual intersections satisfy the property S, of Serre. This con-

dition of being residually S, has other applications — for example to
d-sequences, and to bounding the codimension of annihilator ideals — see Corollary
3.6.

Of course we gain nothing by replacing the assumptions of parsimony or thrift by
the condition residually S, unless we can check the latter condition more easily! In
Theorem 4.1, the hardest result of the paper, we give a sufficient condition for
residually S», essentially in terms of the vanishing of local cohomology — for example
in the case of smooth projective varieties, this condition becomes the vanishing of
certain cohomology of some powers of the conormal bundle, as in Theorem 0.2
above.

In Section 5, we give an interesting class of residually S, ideals by proving that if
X c P} is an isomorphic projection of a reduced complete intersection, then the
defining ideal I of X satisfies conditions (A1) and (A2) for s < n. More generally,
for any projection, we give conditions in terms of the codimension of the conductor
— see Theorem 5.3.

In Section 6 we give a number of examples showing that our cohomological con-
dition for parsimony is not too far from being sharp in interesting cases.

A problem related to the one above is as follows: Given a homogeneous ideal of a
polynomial ring in n variables I C R, we again choose s elements of I of given degrees
d; and consider

Ji=(ar,....a): I =VUj((ar,...,a,): ).

It is easy to see that if the d; are large enough then for generic choices of the a; the
ideal J will have codimension > s, and that for any «; such that J has codimension
> s, the ideal J is unmixed of codimension exactly s (or the unit ideal). As before,
there is a ‘generic’ Hilbert function. Now suppose only that the codimension of
J is 5. Under what circumstances can we conclude that the Hilbert function (or
Hilbert polynomial or ... or the degree) is equal to the generic one? For example,
it was discovered in the 19th century by Chasles, Halphen, Schubert (and sub-
sequently proved by Kleiman, [18]) that if I is the ideal of the Veronese surface
in the projective space of plane conics, s = 5, and the «; are the sextic equations
that say that a conic is tangent to 5 given general conics, then J is the reduced ideal
of 3264 points (see [19] for the history of this problem and for references). Such
sextic equations actually span the symbolic square of / up to an irrelevant
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component. If we just assume that the a; are 5 sextics in the symbolic square general
enough so that J has codimension 5, is it still true that the degree of R/J is 3264?
Does this condition determine the Hilbert function of R/J? Answers to these ques-
tions might be interesting geometrically.

1. Ideals of Small Codimension

In this section we take up the ideals of small codimension mentioned in Theorem 0.1.
We do not need the G, conditions that will appear in many other results of this paper,
and we also prove the stronger result that the Hilbert functions of the rings R/a and
R/(a:I) are determined by that of R/I — one does not need to know deeper
invariants. The proof could easily be made into a computation of the new Hilbert
functions from the old one; we hope to return to such results in a subsequent paper.

THEOREM 1.1. Let R be a polynomial ring over a field, let I C R be a homogeneous
ideal and let a C I be a homogeneous s-generated ideal with codim(a: 1) >=s. If I
is perfect of codimension 2 or Gorenstein of codimension 3, then the Hilbert functions
of R/aand R/(a : I) are determined by the Hilbert function of R/I and the degrees of
the s homogeneous generators of a.

Proof. We may assume that the ground field k is infinite and that s > 2.

First consider the case where I is perfect of codimension 2. In this case 7 has a
homogeneous minimal resolution of the form

0> GBF -2 GO Fy—>1—0

where G is the largest free summand the two free modules have in common. Writing
the Hilbert series of R/I in the form p(7)/(1 — /)%™ we see that giving the Hilbert
series is equivalent to giving F; and Fp.

Let dy, ..., d, be the degrees of the s generators of a, and write H = &}_, R(—d,).
We need to show that the Hilbert functions of 7/a and of R/(a: I) are determined
by the modules Fy, Fi, H.

The R-module //a has a homogeneous presentation

G F, @Hi) GHFy—I/a— 0,

where Y = (¢@|*) has size n by n—14s, say. Now a:/=ann(//a) C \/I,()),
hence codim 7,(¥) > codim(a:/l)>s=(m—14s)—n+1>=2. Thus by [7, 3.1],
a: I = I,(). Furthermore, the Buchsbaum—Rim and Eagon-Northcott complexes
associated to Y yield homogeneous free resolutions of 7/a = coker Y and of
R/(a: 1) = R/L,(Y), respectively. These resolutions show that the Hilbert functions
of coker  and of R/I,(y) are determined by the graded modules Fy, Fy, H, G,
as long as codim 1,(yy) = s.
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To show the independence from G, consider the n by n—1+4s matrix

n= ( IOG 8) and the family of homogeneous matrices VY, =y + iy =
AMg+e *

*
without changing Fy, Fi, H, G. But since /14 + ¢ is invertible for general 4, coker

has a homogeneous presentation of the form

, 4 € k. For / general, codim 7,(,) > s, and we may replace by v,

Fy® H— Fy—> cokery, — 0,

eliminating the dependence on G.
Next, consider the case where 7 is Gorenstein of codimension 3. By [6, 2.1], [ has a
homogeneous minimal resolution of the form

0—> R(—e) —> G*(—e) @ F*(—e) 2, GO F—I1—0,

where ¢ is an alternating matrix, G = G*(—e) has even rank, and F, e are determined
by the Hilbert function of R/I. Now one proceeds as above, replacing [7, 3.1] by [20,
10.5 (a) and its proof], and the complexes of Buchsbaum-Rim and Eagon—Northcott
by the complexes of [20, 10.5 (b),(c)]. O

2. Parsimonious Ideals

By a ‘homogeneous ring’ (over k) we shall mean an N-graded Noetherian ring R
where R = Rg[R;] and Ry = k is a field. Write [[M]] for the Hilbert series of a finitely
generated graded module M over a homogeneous ring. We shall say that the Hilbert
series of two finitely generated graded modules M, N over a homogeneous ring R are
r-equivalent and write [[M]] = [[NV]), if they differ by the Hilbert series of R-modules

whose annihilators have codimension at least r + 1. Note that if dim R = r then
this means that the Hilbert series are equal; while for smaller values of r, it implies
that the terms of the Hilbert polynomials of M and N of degrees
dim R—1,...,dim R — 1 —r coincide. We write M = N if there is a sequence of
homogeneous R-linear maps between M and N that are isomorphisms locally in
codimension < r.

THEOREM 2.1. Let R be a homogeneous ring over an infinite field, let I C R be a
homogeneous ideal, and let a C I be a homogeneous s-generated ideal with
codim(a: 1) = s.

(@) If Isatisfies Gs_1 and is (s — 1)-parsimonious locally in codimension < r, then the

Hilbert series of R/a is determined, up to r-equivalence, by I and the degrees of
the s homogeneous generators of a.
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(b) If I satisfies Gy and is (s — 1)-thrifty locally in codimension < r, then the Hilbert
series of R/(a: 1) is determined, up to r-equivalence, by I and the degrees of
the s homogeneous generators of a.

Theorem 2.1 will be deduced from Theorem 2.3 below.

COROLLARY 2.2. Let R be a homogeneous Cohen—Macaulay ring, let I C R be a
homogeneous ideal of codimension g, and let a CI be a homogeneous
(g + 1)-generated ideal with codim(a:I) > g+ 1. The Hilbert function of R/a is
determined by I and the degrees of the g + 1 homogeneous generators of a. If moreover
1 is Ggy1 (i.e., a complete intersection locally in codimension g) then the same is true
for R/(a: ).

Proof. Any ideal of codimension g in a Cohen—Macaulay ring is g-parsimonious
and g-thrifty. Thus after an extension to make the ground field infinite we may apply
Theorem 2.1 (a) or (b), respectively. O

Here is a more explicit version of Theorem 2.1 that allows one to pass from one a to
another. This can actually be used to compute Hilbert functions, as will be illustrated
in the last section.

THEOREM 2.3. Let R be a homogeneous ring over an infinite field, let I C R be a
homogeneous ideal, and let a C I be an ideal generated by s < dim R forms of
degrees dy,...,d;, with codim(a:I)>s. Let ci,...,c; be forms of degrees
ey, ...,es contained in I and for each & ={iy, ..., i} C[s] write cc = (¢, - .., ;)
Assume that codim(cg : I) = || for every .

(@) If I satisfies G,_| and is (s — 1)-parsimonious locally in codimension <r, then

[R/a]] = ¢ e =e Z( i "Z]‘[(l—f/ DR/ e

| k]szg

(b) IfIis (s — 1)-thrifty locally in codimension < r, and codim(I + (cz : I)) = €| + 1
for every & such that |&| < s— 1, then

[R/(a: D] = ¢t rdmar=e Z( D3 TTa = DR /(e < DI

i ‘C[Y J#

For the proof of Theorem 2.3 we will need the following observation about thrift:

LEMMA 2.4. Let R, I, band a be as in the definition of thrift andlet " denote images
in R:=R/(b:1). If I is s-thrifty, then:

(@ b:I=b:a o
(b) ((b,a):1)/(b:1)=(a): 1.
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Proof. For (a), since the element « is a non zerodivisor modulo b : 7, the inclusions
ab:a)CcbcCb: 1

yieldb:aCb:1, hence b:a="0:1.
Part (b) holds because

((o:D,a): I=(:)N1,a):1=(b,a):1. O
We shall make frequent use of a general position lemma:

LEMMA 2.5. Let R be a homogeneous ring over an infinite field, and let I C R be a
homogeneous ideal satisfying Gs_1. Let a C 1 be an ideal generated by forms

ap, ..., as of degrees dy, . .., ds, and assume that codim(a: ) = s.

(@) If dy = min{d;}, then the generators ay, ..., a; can be chosen so that
codim((ay,...,as_1): ) =s—1.

@) If I satisfies G, and d; = min{d;}, then the generators ai, ..., as can be chosen so

that

codim(((ay, - .., as-1) : 1), a5) = s.

(b) For every e = max{d;}, there exist forms cy, ..., cs of degree e in I such that

codim(ce : 1) = [€], for every & C [s],

codim( + (¢z : I)) = |€| + 1, for every & C [s] with |&] <5 —2.

(b)) If Isatisfies G, then forevery e = max{d;}, there exist forms cy, . . ., c;of degree ein
I such that

codim(ce : 1) = |&], for every ¢ C [s],
codim(Z + (¢ : 1)) = |€] + 1, for every & C [s] with |&] <s— 1.

Now assume that dy = --- =d; =d. Let g C I be another ideal generated by forms

g1, ...,8s of degree d, so that codim(g: 1) = s.

(¢c) The generators ay,...,a; and gi,...,8 can be chosen so that for
b =(ay,...,ai_1,8ix1,...,8s), 1<i<s, wehave

codim(b; : I) = s — 1, codim((b;, ;) : I) = s, codim((b;, g;) : [) = s.

(¢ If I satisfies Gy, then the generators ay, . .., a;and g1, . . ., g5 can be chosen so that
Jor b, =(ai,...,ai-1,8i+1,...,8), 1 <i<s, we have

codim(b; : I) = s — 1, codim((b; : 1), a;) = s, codim((; : 1), g;) = s.
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Proof. The proof is very similar to that given in [26, the proof of 1.4]. O

Proof of Theorem 2.1. By Lemma 2.5 (b) or (b’), there exist forms ¢y, ..., ¢, as in
Theorem 2.3 (a) or (b), respectively. Now this theorem implies that the Hilbert series
of R/aor R/(a : I), respectively, are determined, up to r-equivalence, by ¢y, . . ., ¢;, by
I, and by the degrees of the s homogeneous generators of a. O

Proof of Theorem 2.3. We may assume that s > 1. Notice that [ satisfies G, in part
(b). Choose d > max{d;, e; | i} and set t = #{i | d; # d or e¢; # d}. We are going to
prove both statements by induction on t.

If t=0, then d=d|=---=dy=e; =---=¢,, and the assertion is that
[R/a]l =[R/c]] or [R/(a: I)]] =[R/(c: I)]] respectively. We may choose
ap,...,agand ¢y, ..., ¢y as in Lemma 2.5 (c) or (¢), respectively. (It is possible that

we lose some of the hypotheses on the subset ideals ¢, but it does not matter since
the assertion is simpler in this special case.) It suffices to show that setting
b, =(ay,...,ai-1,Cit1,...,¢5) for 1 <i<s, we have [[(b;, a)]] _[[(b,,c,)]] for (a)
and [[(b;, ;) : I =[[(b;, ¢;) : I]] for (b). But indeed the definition of parsimony gives
(b, a;)/b; =(R/(b; : 1))(—d) =(b;, ¢;)/b;. On the other hand by Lemma 2.4 (b), thrift
implies ((b;, a;) : 1)/(b; : I) =((b;, ¢;) : 1)/(b; : I), since a; and ¢; are non zerodivisors
modulo b, : 7 and have the same degree.

Next assume that 7 > 0. We may suppose that d; = min{d;}, and that d; < d or
e; <d. Choose aj,...,a;, as in Lemma 2.5 (a) or (a’), respectively. Write
a =(ay,...,as_1). Let x be a linear form of R which is not in any of the finitely
many primes of codimension s — 1 containing o : /, of codimension |£| containing

1, |l <s—1, and, for (b), of codimension ||+ 1 containing [+ (cz: 1),
|é| s —2. Write y = x¥~% and z = x?¥%. Now ya, and zc, are forms of degree
d. Moreover, codim((a’, yas) : I) = s or codim((a’ : I), yas) = s, respectively, and
the sequence ¢y, ..., ¢s_1, zcg has the same codimension properties as ¢y, ..., ¢;.

We first treat part (a). By the definition of parsimony we have

o/a =(R/(¢ : D) (—dy) (0, ya))/a)(d — db),
so that
[R/all = “[[R/(@, ya)ll + (1 = 4 D[R/a]] (2.6)

Now, from the induction hypothesis, and setting D;=d;+---+d; and
E,=e; +---+e;, we obtain

R/, ya)ll = P =5 Y (=17 Y T =17 DIR (e, 2T
k=0

1<l k Jé
s€ V
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Formula (2.6) with ¢¢ in place of a shows that

“MR/ (e, 2691 =[R/cc]l = (1~ "R/ el
and substituting into the previous formula we get

TR/ yag)]

P EZ( D T ] = = DAR el = (1 = )[R /e sy]D)

2 k jeé

Z( 1)~ kZ]‘[(l IR/ el +

o J¢é

+Z< DY A =D = DR/ |-

[&1=k IS

sg& J#s
Also by induction hypothesis,

(1= t4=DIR/aT) = 1> EZ( DY e — e ] = DR /e

[¢|=k Jé¢

sg¢ J#s

Taking the sum, using (2.6), and noticing that (1 — & 9) 4 (194 — to=%)
=1— =% we obtain

[R/a]] = 5 Z( 1)* "Z]‘[(l “OIR/cl +

o J%q

+Z< D T = DR/ e |-

lel=k ¢
gjsf

This is the formula asserted in (a).
We now turn to the proof of (b). By Lemma 2.4 (b),

(a: D/ 1) =(((d, yas) : D/ (0" - D) — dy),
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which yields,
[R/(a: Dl = R/ yag) : DI+ (1 = (4= DIR/(@ = D] 2.7)

One can now proceed as above, formally replacing (2.6) by (2.7). O

3. Residually S, Ideals Are Parsimonious and Thrifty

We know no useful characterization of s-parsimonious and s-thrifty ideals, but
parsimony and thrift are implied by the Artin—Nagata property studied in [26]. Here
we give better sufficient conditions. In this section we define the notion ‘s-residually
S>” and exhibit some of its properties. The advantage of the condition ‘s-residually
S»’ is that it can be checked from homological properties of I and its powers. Such
a criterion is given in the next section.

DEFINITION. Let R be a Noetherian ring, let / C R be an ideal of codimension g,
let K C R be a proper ideal, and let s > g be an integer.

(a) K is called an s-residual intersection of I if there exists an s-generated ideal a C 7
such that K = a: 7 and codim K > s.

(b) K iscalled a geometric s-residual intersection of I if K is an s-residual intersection
of I and if in addition codim(/ + K) = s+ 1.

We shall often write ‘K = a : I is an s-residual intersection of I’ to indicate that the
conditions of the above definition are satisfied.

DEFINITION. Let R be a Noetherian ring, let / C R be an ideal of codimension g,
and let s be an integer.

(a) [ is said to be s-residually S, if for every i with g < i < s and every i-residual
intersection K of I, R/K is S,.

(b) [ is said to be weakly s-residually S, if for every i with g < i < s and every geo-
metric i-residual intersection K of I, R/K is S.

These properties are weaker versions of the properties AN, and AN of [26], where
the residual intersections are required to be Cohen—Macaulay instead of merely S>.
Notice that if s < g — 1 then 7 is automatically s-residually S;.

We can now state the main result of this section:

PROPOSITION 3.1. Let R be a graded Cohen—Macaulay ring, and let I C R be a
homogeneous ideal. If I satisfies Gy and is weakly (s — 1)-residually S, then I is
s-parsimonious and s-thrifty.

Proof. The statement follows from Corollary 3.6 (a). O
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SOURCES OF EXAMPLES. The hypotheses of Proposition 3.1 are fulfilled if 7
satisfies G, and if moreover, after localizing, I has the sliding depth property or,
more restrictively, is strongly Cohen—Macaulay (which means that for every i,
the i-th Koszul homology H; of a generating set /hy,...,h, of I satisfies
depth H; > dim R — n + i or is Cohen—Macaulay, respectively) ([12, 3.3], [17, 3.1]).
The latter condition always holds if 7 is a Cohen—Macaulay almost complete
intersection or a Cohen—Macaulay deviation 2 ideal of a Gorenstein ring ([4, p.259]).
It is also satisfied for any ideal in the linkage class of a complete intersection ([16,
1.11]). Standard examples include perfect ideals of codimension 2 ([2], [10]) and
perfect Gorenstein ideals of codimension 3 ([27]).
We shall often use the following remark on general position:

LEMMA 3.2 (e.g. [3, 2.3] or [26, 1.6 (a)]). Let R be a Noetherian local ring, let
a C I C R be ideals, and assume that a is s-generated with codim(a : I) > s and that
I satisfies Gy. Then there exists a generating sequence ay, . . ., dg; of a such that with
a; = (ay,...,a;) and K; = q; : I, codim K; > i and codim({ + K;) = i + 1 whenever
0<i<s—1

The next result contains basic facts about parsimony:

PROPOSITION 3.3. Let R be a Noetherian graded ring, and let I C R be a homo-
geneous ideal.

(a) 1 iss-parsimonious ifand only if for every i, b, as in the definition of parsimony, b : 1
is unmixed of height i (or b: 1 =R).

(b) If I is s-parsimonious then for every a, b as in the definition of thrift, a is a non
zerodivisor on R/(b : I).

Proof. Tt suffices to prove that if [ is s-parsimonious and b: 7/ # R, then b: [ is
unmixed of height i. The converse is obvious and part (b) follows immediately from
(a).

Thus, let p C R be a prime of height > i + 1 that contains b : /. Choose an element
X € p not in any minimal prime of b : 7 of height i. Now codim((b, ax) : I) =i+ 1,
hence by the parsimony of 7,

b:I=b:(ax)=0:a):xD(d:1):x.

Hence x € p is a nonzerodivisor on R/(b : I), showing that p cannot be an associated
prime of b: I. O

The next result shows that the unmixedness condition of the previous proposition

is always satisfied by weakly (s — 1)-residually S, ideals. This generalizes [26, 1.7]
(which, in turn, extends parts of [17, 3.1]).
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PROPOSITION 3.4. Let R be a Cohen—Macaulay ring, let I C R be an ideal, and
assume that I is G, and weakly (s — 1)-residually S,. For every s-residual intersection
K =ua:1Iof I one has:

(a) K is unmixed of codimension s.
(b) The associated primes of a have codimension at most s.
(¢) If K is a geometric residual intersection, then K NI = a.

Proof. After localizing the proof is the same as that of [26, 1.7]. O

COROLLARY 3.5. Let Rbe a Cohen—Macaulay ring, let I C R be anideal satisfying
Gy, and let I' C I be an ideal that agrees with I locally up to codimension s. If I is
s-residually S, (respectively weakly s-residually S,) then so is I'.

Proof. Proposition 3.4 (a) implies that for codim 7 <i<s, every i-residual
intersection of I’ is also an i-residual intersection of 7, and one is geometric iff
the other is. O

COROLLARY 3.6. Let R be a Cohen—Macaulay ring, and let I C R be an ideal
satisfying G.

(@) If I is weakly (s — 1)-residually S, then I is s-parsimonious and s-thrifty.
(b) Suppose that R is local and I is weakly (s — 2)-residually Sy. If a C I is an

s-generated ideal with codim(a : I) = s, and ay, ..., as satisfy the conditions of
Lemma 3.2, then ay,...,a; is a d-sequence vrelative to I (that is,
(ay,...,a)ai)NI=(ay,...,a;) for 0 <i<s—1).

(c) Suppose that I is weakly (s — 1)-residually S,. If a E I is an ideal generated by s
elements, then codim(a: 1) < s.

Proof. (a) The ideal I is s-parsimonious by Propositions 3.3 (a) and 3.4 (a), and
then 7 is s-thrifty by Propositions 3.3 (b) and 3.4 (¢).
(b) Let 0 <i <s—1 and write a; = (ay, . .., a;). Notice that codim((q; : 1), a;y1) =
i+ 1. By part (a) of this corollary, [ is (s — 1)-parsimonious and (s — 1)-thrifty.
Therefore (a; : ai)) NI =(a;: )N T = a;.
(¢) We may suppose that codim(a : 7) = s, and then use Proposition 3.4 (a). [

4. A Sufficient Condition For Residually $;

We now turn to the main technical result of this paper: A sufficient condition for an
ideal I of codimension g to be s-residually S,. This condition is more general than
the one of [26, 2.9] (which is a sufficient condition for the stronger Artin—Nagata
property) as it only requires the vanishing of s — g 4+ 1 local cohomology modules.

The condition involves the vanishing of certain Exty(R/I", R). Occasionally this
vanishing holds not for /" but for an ideal equal to I” up to a certain codimension,
and this is sometimes enough. To formalize this possibility, we make a definition:
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DEFINITION. Let R be a Noetherian ring, and let / C R be an ideal of codimension
g. We will say that ideals 11, .. ., I, are good approximations of the first r powers of 1
if the following two conditions are satisfied:

(@) I; coincides with I7;_; locally up to codimension g+, — 1 whenever 1 <j <r.
(b) 1 coincides with I/ locally up to codimension g +j — 1 whenever 2 <j < r— 1.

For convenience we set I; = I/ = Rif j < 0. Note that /; need not contain /4 (but
in practice they often do).

For example, one may choose /; to be

(@ I;or

(b) (F)S#"! (here J<' denotes the intersection of all primary components of
codimension at most 7, for J C R any ideal); or

© (I) < min{ghjgtr—1}. oo

(d) (If)ggﬂ;1 in case I/ has no associated primes of codimension g+ for
I1<j<r—-1;o0r

(e) IV in case I’ has no embedded associated primes of codimension at most
min{g +j, g +r— 1} for 1 <j <r (here I¥) denotes the j-th symbolic power).

THEOREM 4.1. Let Rbe a Gorensteinring, andlet I C Rbe an ideal of codimension g
satisfying G, for some s = g. Suppose that I, . . ., I;_s11 are good approximations of
the first s—g+ 1 powers of I locally at every maximal ideal containing I. If
Ext‘?j(R/Ij, R)=0for1 <j<s—g+1, then I is s-residually S,.

COROLLARY 4.2. Let R be a local Gorenstein ring, and let I C R be an ideal of
codimension g satisfying Gy for some s = g. Let I, ..., I_q1 be ideals such that
I; coincides with I locally up to codimension min{g +j, s}. If Exti”(R/Ij, R) =0
for 1 <j<s—g+1, then I is s-residually S.

For applications to projective varieties it is convenient to reformulate Theorem 4.1
in terms of local cohomology:

COROLLARY 4.3. Let (R, m) be a local Gorenstein ring, and let I C R be an ideal of
codimension g satisfying G, for some s>=g. Set d=dim R/I. Suppose that
I, ..., Iy_gy1 are good approximations of the first s — g + 1 powers of 1. The ideal
I is s-residually S, if either
@ HY' R/ =0for 1<j<s—g+1 or
(b) we have containments I} D - -+ D I;_g1 and H (L /I;) = 0 for 1 <j <i<s—
g+ 1
The conditions of Corollary 4.3 are satisfied in particular if depth R/ > d —j + 1

forl <j <s—g+ 1, whichin turn holds if / is strongly Cohen—Macaulay (assuming
that [ satisfies Gy) ([11, the proof of 5.1]).
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COROLLARY 4.4. (cf. also [23.,4.1]). Let (R, m) be a local Gorensteinring, let [ C R
be an ideal of codimension g, and let I} = I <%. Iandl_l(R/Il) = 0whered = dim R/I,
then I is g-residually S,.

COROLLARY 4.5. Let (R, m) be aregular local ring which is essentially of finite type
over a perfect field k, and let I C R be an ideal of codimension g. Write
I = IS8 4= R/I, and d = dim A. Assume that A is reduced and a complete
intersection locally in codimension 1 (in A). If HI"Y(4) = HI2(4)=0 and
HI3(Q(A)) = 0, then I is (g + 1)-residually S,.

Proof. The standard exact sequence

0— /1P — Q(R) ®r A = @A —> O (4) — 0
shows that we may apply Corollary 4.3 (b) taking I, 11(2) as Iy, I. O
Here are the consequences for Hilbert functions:

COROLLARY 4.6. Let R be a homogeneous Gorenstein ring, let I C R be a homo-
geneous ideal of codimension g satisfying Ggy1, and let a C 1 be a homogeneous
(g + 2)-generated ideal with codim(a:I) > g+2. Let I = I =%, let m be the irrel-
evant maximal ideal of R, and writed = dim R/I. If HI=Y(R/I,) = 0, then the Hilbert
Sfunction of R/a is determined by I and the degrees of the g+ 2 homogeneous gen-
erators of a. If moreover I satisfies Ggyo, the same is true for the Hilbert function
of R/(a:1).

Proof. The assertion follows from Corollary 4.4, Proposition 3.1, and Theorem
2.1. ]

COROLLARY 4.7. Let R be a polynomial ring over a perfect field k, let I C R be a
homogeneous ideal of codimension g, and let a C I be a homogeneous
(g + 3)-generated ideal with codim(a: 1) =g+ 3. Let I, =1 1 et m be the irrel-
evant maximal ideal of R, and write A = R/I} and d = dim A. Assume that A is
reduced and a complete intersection locally in codimension 1. If
Hffl(A) = Hr‘fl_z(A) =0 and Hff:3(Qk(A)) =0, then the Hilbert function of R/a is
determined by I and the degrees of the g + 3 homogeneous generators of a. If moreover
I satisfies Gy13, the same is true for the Hilbert function of R/(a: I).

Proof. One uses Corollary 4.5, Proposition 3.1, and Theorem 2.1. O

We next turn to some lemmas necessary for the proof of Theorem 4.1. The first is
an easy consequence of the change—of-rings spectral sequence (or one can simply

argue using injective resolutions):

LEMMA 4.8. Let R — S be a homomorphism of rings, and let M be an R-module with
Exth(S, M) =0 forj < g. Then for every integer n and every S-module N, there is a
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natural homomorphism
Ext(N, Ext}(S, M) — Exti (N, M),
which is an isomorphism if n =0 or if Ext’I'Q(S, M) =0 for j#g.
The following provides a crucial step in the proof of Theorem 4.1:

LEMMA 4.9. (cf. also [26, 2.1]). Let R be a Noetherian local ring satisfying S,
assume that R has a canonical module o = wg, and write — = Hom(—, ).
Let 1 CR be an ideal, let a be an R-regular element contained in I, let
K = (a): I # R, and write R = R/K. We have

Exth(R, ) = (Iw)" Jaw.
Proof. There are natural isomorphisms
(a) : I 2 Hom(Z, (a))
=~ Hom(Z, R)a
=~ Hom(/, Hom(w, w))a
~ Hom(I ®r w, w)a
=~ Hom(l/w, w)a,

which yield KY = a~'(Jw)"".
Now applying —" to the exact sequence

0>K—>R—>R—0

we get an exact sequence
0— w—a (o) — Exth(R, w) = 0.

Thus Extk(R, ») = a~'(Iw)"" /w, and the desired result follows upon multiplication
by a. ]

Proof of Theorem 4.1. Let K = a: I be any s-residual intersection of /. We may

assume that R is local. Let K; be ideals as in Lemma 3.2 and write R; = R/K;.

The theorem is a consequence of the following assertions, which we shall prove

by induction on i:

(a) R; satisfies S; for 0 <i<s;

(b) Exty'(Ili_g2R;, ) =0for 0<i<s—1;

(©) g = [i_g+1R)"" for 0 <i < s— 1, where —" = Hom(—, wg,); note that this
notation implicitly uses the value of i.

We first show that if s > 0 (as will be the case in the proof of parts (b) and (c)) then
I;Ry = I; for all j > 1. Equivalently, /; N (0 : I) =0 for all j > 1. Indeed, since R is
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unmixed it suffices to prove this after localizing at a prime p of R such that dim
R, = 0. Since s > 0, the ideal I satisfies Gy, so I, is 0 or the unit ideal. By the definition
of good approximations, we have (f;), C Iy, and the formula follows.

To prove (a), (b), (c), first let i = 0. In this case our assertion is only nontrivial if
g=0. So let g=0 and write —* = Hom(—, R). As for (a), notice that
0:1=0:1 =(R/I)". Since Ext}g(R/Il, R) = 0, applying —* to a free R-resolution
-oo—> F - F| - Fy = R of R/I}, yields an exact sequence

0->0:/—-R—F - F},

which shows that Ry = R/(0: I) satisfies S>.

As for (b) and (c), notice that s > 0, so bRy = I, which gives (b). Furthermore
IRy = I, thus (I; Ry)"" = (I} Ry)™ = I}*. As I, is unmixed locally in codimension
one, I; and O0:(0:71;) coincide locally in codimension one. Hence
LF=0:0:0)" But(0:(0:;))*=0:(0:1;)=0:(0:1), and the latter mod-
ule is wg,.

We now perform the induction step from i >0 to i+ 1.

e For (a) we may suppose i <s— 1. By the induction hypothesis, I is
i-residually S,. Propositions 3.4 (a) and 3.1 and Lemma 2.4 (b) imply that
R; satisfies S, and is equidimensional of codimension i in R, a;y; is regular
on R;, KR =ai1R;i IR, =2 Hom(IR;, R;), and depth;(wg) > 0. Since
Il;_g41 and ;44> coincide locally in codimension i+ 1, part (c) for i shows
that (Jwg,)” = (Ii_¢12R;)”. Putting this together, one obtains natural
isomorphisms,

Ki+1Rl’ = HOl’l’l(IRi, Rl)
~ Hom(/R; @, Wg;, OR,) (as R; is S»)

~ Hom(Iwg,, wg,) (as depth;(wg,) > 0)
~ Hom(J;—g4+2R;, wg,) (by the remark above)
=} Ext’k(],-,gHR,-, R) (by Lemma 4.8).

By part (b) for i, Extﬂ{l(l,-,ngzR,-,R) = 0. On the other hand since R; has
codimension i, Extfe(]i,gHR,-, R) = 0 whenever ¢ < i — 1. Thus, dualizing a free
R-resolution of I;_,»R; into R, one sees that the R;-module Ext}(l,-,ngzR,-, R)
satisfies S3. Therefore K; | R; is S3, and hence R,y = R;/K; | R; satisfies S,.
This concludes the proof of (a) for i + 1.

e For (b) and (c) we may suppose i + 1 < s — 1. Recall that by Corollary 3.6 (b)
and Proposition 3.1, ay,...,a;,; form a d-sequence and «; is regular on
Ry whenever 1 <k <i+ 1. Thus for 1 <k<i+1andj<s—g+1 there

are complexes

Cij: 0= LRy —> LRy +aliRioi —> LR — 0
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having nontrivial homology at most in the middle. Call this homology H and
notice that

H = (K N (I; + axdi1)) /(K1 N ([ + ag ;1)) + agl;-1).
We first claim that

ExtR(H,R) =0 whenever £ < min{g+j—1,i+ 1} (4.10)
or equivalently

H,=0 whenever dimR, < min{g+,;—1,i+ 1}.

To see this let p € Spec(R) with dim R, < min{g +j — 1,7+ 1}. Notice that
(]ijl)p = (Ij)p = (]/)p' If 7 ¢ p, then ]jfl ¢ P, I] ¢ P, and (Kk)p =

(ai,..., ak)p. Hence H, =0 in this case. Next assume that / C p. Then
j=1 since g<dmR,<g+j—-1, and [, =(a,...,a1), since
dimR, <i+1<s—1. Now (KiN(;+ali-1)), =(KiNI), Since j=>1
and ai, ..., ax,...,a; form a d-sequence generating 7,,, we conclude that

(KN 1), = (a1, ....,a) N T),
=((ar,...,a)l™), (cf. [15, Theorem 2.1])
C (Kk1 NE) + a7,
= ((Ket N L) + a7,

The vanishing of H, will follow once we have shown that (F~!), C (1;_y),, for
which we may assume j > 2. By assumption /~! and I;_; coincide locally in
codimension g+ j — 2. Since Ext%+j71(R/Ij_1,R) =0, the ideal [;_; has no
associated primes of codimension g +j — 1. Therefore (If‘l)p C (£j-1),. This
concludes the proof of (4.10).

e We now turn to the proof of (b) for i +1 < s — 1. We show, by induction on k,
0<k<i+]1, that Ext‘}’;”j_l(Iij,R) =0 whenever k —g+2<j<i—g+3.
Statement (b) follows if we set k =i+ 1.

First suppose k = 0.

- If <0, then g > 2, hence Ry = R and [;Ryp = RRy = R.

—1If j = 1, then I;Ry = I; by the remark at the beginning of the proof. Now the
assertion follows because Ext%fj_l(]j, Ry=0for —g+2<j<s—g+1.
Next suppose 1 <k <i+ 1. Assumingk —g+2 <j <i— g+ 3, as in the des-
ired formula, we have

~ Ext$72(H, R) = 0 by (4.10),

- Ext‘f;“f _2(Ij,1Rk,1, R) = Ext%” _l(Iij,l, R) = 0 by induction hypothesis,

- Ext‘}g;”_l (IjRi—1 + arl;—1 Rk—1, R) embeds into Ext‘}g;”_l (IiRk—1, R), since ay € 1
and locally in codimension g+ — 1, I; and II;_; coincide.

Now using the complex Ci; we derive Ext‘?’j _1([,Rk, R) =0, proving (b).
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e Finally, we prove (c) for i+ 1 < s — 1. By part (a) and Proposition 3.4 (a), we
know that R; and R;,; satisfy S, and are equidimensional of codimension ¢
and i+1 in R. Also, by Proposition 3.1 and Lemma 2.4 (b),
Kip1Ri = a1 R; 0 IR; and a;y is regular on R;,. Write —* = Hom(—, wg,)
and —Y = Hom(—, wg,,,).

Consider the complex

Ait1
Citlicgr2: O0—ILi g 1R — i g oRi +ai i g1 Ri —> Ii_g 2R — 0,

introduced above, which has nontrivial homology H at most in the middle. By (4.10),
Ext%(H, R)=0 for ¢ < i+ 1, and by part (b), Exti{'(Ii_¢12R;, R) = 0. Notice that,
since ;41 € I and I;_g, coincides with I1;_,.; locally in codimension i 4 1, the map

Exty(li—g2Ri + @ip1li—g+1 Riy R) —> Exty(Ii_g2Ri, R)

is a monomorphism for £ <i+1 and is an isomorphism for ¢ <i. Further,
Exti(li—g+2Ri+1, R) = 0. Thus the above complex induces an exact sequence

0 — Exth(ligi2Ri, ) — Exti(ligi 1R, R) — Extyi'(li_gi2Rip1, R) — 0,
[l 2 Il 2 Il 2
(Li—g+2R)"* (Li—gt1 R)* (li—g+2Rip1)”

where the various identifications are special cases of Lemma 4.8. Dualizing again, we
obtain an exact sequence

dit+1

0—> (g1 R)™ =5 (Iig12Ri)™ —> (I_g42Riy1)"Y — ExtiT((I_g11R)*, R).
This shows that
(Ti—g+2R)™ Jaiz1 (Ti—g11 R))™

is isomorphic to an R;j-submodule of (Ii_g+2Ri+1)Vv, and that both modules
coincide locally in codimension one in R;;;. Thus, since R is So,
(li—g+2Ri+1)" =2 ((Li—g2R)™ Jais1(Ii—g+1 R;)™)"Y, and we must show that the latter
module is isomorphic to wg,,,.

Now I;_g4> and II;_4,; coincide locally in codimension i + 1 and R; satisfies S5,
hence by our induction hypothesis, (fi_g12R)*/ait1(li—g41R)™ = (Iwg,)™/
air1ogr,. But Lemma 4.9 shows the latter module is isomorphic to
Ext}ei(R,-H,a)R[.). Thus it remains to prove that Ext}zi(R,;H,a)R,.)W =~ Wg,,,. Now
Lemma 4.8 yields a natural map Ext}ei(Rl-H, Wg,) = Wg,,,, which is an isomorphism
locally in codimension one in R;;; because R; satisfies S,. Thus, since R;, is S,
we get Ext}zi(R,-H, wr)"" = (0g,,)"" = og,,. ]
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5. A Class of Residually S, Ideals

In this section we illustrate how general projections can produce an abundance of
ideals that are s-residually S>, but in general fail to satisfy the stronger conditions
AN, or AN .

THEOREM 5.1. Let k be an algebraically closed field, and let Y C P}t be a reduced
complete intersection of dimension d. Consider a general projection X C P} of Y, and
let I C k[Xy, ..., X,] be the (saturated) ideal defining X. Let d, be the dimension of
the  closed  subset {yeY |edimOy,>e}, and write s=2n—-3—
max{n —1,2d,d, + e — 1} (using the convention that dim J = —o0). Then I is
s-;esidually Sy. In particular, if Y is nonsingular (or, more generally, if
edim By < 2dim B, + 1 for every nonmaximal homogeneous prime q of the homo-
geneous coordinate ring B of Y ), then I is min{n — 2, 2n — 2d — 3}-residually S,.
Proof. Let A, B be the homogeneous coordinate rings of X, Y respectively. The
geometric condition implies that the conductor of 4 C B has codimension at least
min{d + 1,n —d,n+ d — d, — e + 1}. The theorem thus follows from the more gen-
eral result in Theorem 5.3. L]

Remark 5.2. If in the setting of Theorem 5.1, ¥ C P}*' is nondegenerate and
nonsingular with > 1,d > 1 and n —d > 2, then [ does not satisfy AN,

Proof. Let A, B be the homogeneous coordinate rings of X, Y. Since the conductor
of the extension 4 C B has codimension > min{d+ 1,n—d}>2 and A4 # B, it
follows that A = k[ Xy, ..., X,;]/I cannot be Cohen—Macaulay. As [ is an unmixed
radical ideal of codimension n — d, there has to exist a geometric link of 7 that
is not Cohen—Macaulay. O

To state our more general result we replace the complete intersection above by an
ideal J whose conormal module has symmetric powers with sufficiently high depths.
This condition is automatically satisfied if J is an unmixed locally strongly
Cohen—Macaulay ideal satisfying certain conditions on the local numbers of gen-
erators ([11, the proof of 5.1]).

THEOREM 5.3. Let k be a perfect field, let R C S be regular domains that are
k-algebras essentially of finite type, and set t = trdeggpS. Let J be an ideal of
codimension g in S satisfying Goi,y1. Set I = J N R, consider A=R/I C B=S/J,
and let € = A : 4 B denote the conductor. Assume that B is reduced and a complete
intersection locally in codimension 1 (in B) and that codim,€ =>s+t—g+ 3. If
projdimSSymf(J/ﬂ) <g+jfor0<j<s+t—g then I is s-residually S.

Proof. We induct on s, the assertion being trivial for s < — 1.

Notice that [ is the intersection of the contractions of all minimal primes of J.
Now, replacing R, S, 4, B by affine domains and computing dimensions, one easily
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sees that codim 7/ > g — t. Thus nothing is to be shown if s < g — ¢, and we may from
now on assume that s > g —t.

But then by our assumption, codim4€ > 0 and hence € contains a non zerodivisor
of A, which implies that B is a finite A-module. Since s > g — ¢, B is a perfect
S-module of grade g by our assumption, and therefore every minimal prime of
J has the same codimension g. Localizing R we may suppose that (R, m) is a local
ring. Moreover, if p € V' (I) then there exists g € V(J) with g R = p, and for every
such q the dimension formula yields dim S, = dim R, + ¢ since the residue field exten-
sion of R, — S, is algebraic. Applying this equality to any minimal prime p of / one
sees that dim R, = dim S, — ¢t = (dim S, — dim B,) — t = g — t. Thus every minimal
prime of I has the same codimension g —z. On the other hand, if we choose q
to be the preimage of any maximal ideal n of B, then
dim B, = dim S, —dimJ, = (dim R+ ¢) —g =dim R — codim / =dim 4, or equi-
valently, the codimension of every maximal ideal of Bis dim 4. Finally, the preimage
of € in R has codimension at least (s + ¢ — g + 3) + codim 7 = s + 3, showing that
the R-module B/A vanishes locally in codimension < s+ 2.

Let M and N be finitely generated R-modules. We write M = N if there is an
R-linear map between M and N that is an isomorphism locall’y in codimension

< rin R. Notice that if M =~ N then H (M) = H! (N) aslongas i > dimR — r + 1.

m

After these preparatory remarks we are now going to prove that 7 satisfies G,1. To
this end let p € V(I) with dim R, <s. Choose g€ V(J) with gN R =p. Since
dim S, = dim R, + ¢ < s+ ¢, we have u(J,) < dim S,, or equivalently, the deviation
d(B;) of B, is at most dimB,. Now the equality 4, =B, yields w(l,)=
codim I,+ d(4,)=(g —t) + d(B,) < (g — ) +dim B, = (codim J, + dim By) —t =
dim S, — t = dim R,. Thus [ satisfies Gy ;.

Write d = dim 4. Having established the property G, we know from Corollary 4.3
(b) that I is s-residually S, once we show

HIZ(PY)P)y=0 for 1<j<i<s+t—g+1. (5.4)

Soletl1 <j<s+t—g+1andset M = Sym?

]_I(J/Jz). For every maximal ideal n
of B, our assumption on J implies depthy My, > dim B, —j+ 1 =d —j+ 1. Thus
the Rad(B)-depth of the B-module M is at least d —j+ 1, which yields
Hf{;é(B)(M) =0 as long as i > j. This shows that

HIT(Sym? ((J/J3) =0 for 1<j<i<s+t—g+]1. (5.5)

Since A4 EZB and d—1=dimR—-g+¢—1>dmR—-(s+2)+1, we have
S+
H?1(A4) = HI-Y(B), and hence (5.4) follows from (5.5) if s=g— 1t Thus we

may from now on assume that s >g—17+ 1.
But then by our assumption, projdimgJ/J> < g+ 1. Since J is a complete
intersection locally in codimension g+ 1 in S, we conclude that the B-module
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J/J? is torsionfree. The Zariski Sequence associated to the homomorphisms
k — S — B yields an exact sequence of B-modules

T\(S/k, By=0—> T\(B/k, B)—> Ti(B/S,B) = J/J?

— To(S/k, B) = Qi(S) ®s B—> To(B/k, B) = Qi(B) — 0,

where T((S/k, B) is projective and hence free ([21, 2.3.5 and 3.1.5]). Since B is
reduced, the B-module T)(B/k, B) is torsion ([21, 2.3.4 and 3.1.5]), and hence
T\(B/k, B) = 0 by the torsionfreeness of J/J>. In particular J/J? is a first syzygy
module in a free resolution of Ty(B/k, B).

Likewise, the morphisms &k — R — A give rise to two short exact sequences of
B-modules

0—> Ty(A/k, B)—> T1(4/R,B)=1/I’®4B— U —0
0— U— To(R/k, B)—> Ty(A/k, B)—> 0,

where Ty(R/k, B) is free. Notice that U is a first syzygy module in a free resolution of
To(A/k, B).
Finally, from the homomorphisms k& — 4 — B we obtain the Zariski Sequence
Ti1(B/A, B)— T(A/k, B)— T{(B/k, B)— Ti(B/ A, B).

If peSpec(R) with dimR, <s+2, then Ti(B/A,B),=Ti(B,/Ap, By) =
Ti(A,/Ay, By) =0 for every i ([21, 2.3.3 and 3.1.1]). Thus Ty(B/A, B) = 0 which
implies Ti(A4/k, B) T(B/k B).

We first make use of the identification Ty(A4/k, B) =} T o(B/k, B). From it we
obtain two short exact sequences

0— K— To(A/k,B)— V — 0
0— V— Ty(B/k, B)— L— 0,

where K NZO =~ [.. Comparing first syzygy modules in free B-resolutions, we con-
s+ s+2

clude that U and syz,(K) @ syz,(V) are stably isomorphic, and likewise for J/J?
and syz,(V) @ syz,(L). Thus U @ syz,(L) and J/J? @ syz,(K) are stably isomorphic,
which allows us to assume that U is a direct summand of J/J? @ syz(K). But
syzl(K) F for some free B-module F, and hence

sym]’i (S Sym? | (J/J* @ syz(K)) = Sym? | (J/J* & F)
> @|_, Sym} (J/J*) ® Sym” (F).
Now (5.5) implies

HIT(Sym? (U) =0 for 1<j<i<s+i—g+]1. (5.6)
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Next we make use of the fact that 7'(A4/k, B) gz T1(B/k, B) = 0. From it we con-
clude 1/I> ®4 B > U, and thus o
s+

A 2\~ B 2 ~ B
Symj_(I/17) 2 Sym;_,(I/I" ®4 B) & Sym;_,(U).
Hence by (5.6),
Hy7'(Symf (I/1) =0 for 1<j<i<s+i—g+]1. (5.7)

We saw that [ satisfies G,1, and by our induction hypothesis, I is (s — 1)-residually
S>. Now Corollary 3.6 (b) shows that locally in codimension s, I can be generated
by a d-sequence. But then in the natural exact sequence

0— N — Sym{' ,(I/I") — I'"' /I — 0,

we have N =0 ([14, Theorem 3.1]). Now (5.7) implies (5.4). O

6. Examples

First we wish to illustrate how the formulas of Theorem 2.3 can be used for explicit
computations of Hilbert functions.

EXAMPLE 6.1. Let k be a field, let R = k[ X1, ..., Xs], and let I C R be the defining
ideal of the Veronese surface in Pi, that is, the ideal generated by the 2 by 2 minors
of the generic symmetric matrix

X X X
X Xi X
X5 Xs X

We wish to compute [[R/(a: I)]], where a C [ is an arbitrary ideal generated by 5
forms of degree d = e + 2 so that ht(a: 7) = 5. For this we may assume that k is
infinite. Let ¢, ..., ¢ be quadrics contained in 7 that satisfy the conditions of
Lemma 2.5 (b’), and write ¢; = (¢, ..., ¢;) for 0 <i < 5. Recall that I is (weakly)
6-residually S, by [12, 2.3 and 3.3]. Thus Proposition 3.1 and Theorem 2.1 (b) imply
that, for every 0 <i <5 and every & C [5] with [&]| =i, [[R/(cz : D] = [[R/(¢; : D)]].
Furthermore, again by Proposition 3.1, ¢ :1=¢:c¢yy1, which yields
[R/(ci : DI =[[R/(¢; : cix)]l = [[cix1/c:]1e~2. Finally, by Proposition 3.4 (a) (or [12,
3.3]), ht(¢; : I) = i. Now for 0 <i <2, ¢;: I = ¢; is a complete intersection, whereas
by linkage theory, [[R/(c3 : I)]] = AL, Since I has a linear presentation matrix,

(1-n*
¢s : I is a complete intersection of 5 linear forms, hence [[R/(¢5 : I)]] = (]—1_[) Finally,

[R/(cs : DI = [les/calle™? = (IR/61 = e/l = [ /esT— [R/T) ¢ = [R/ e3>~
[(R/(c3 : DI-[R/(cs : DI — [R/1Nr? = 5.
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Now using this information in the formula of Theorem 2.3 (b) yields,

5

&/ =Y ()0 = RN ]

k=0
e (1 = )(1 + 1) 1013“(1 — )%(1 + 31)
(-0 (1— 1) (1—1>
21 -0+ -0+ (1-r)
1
1o (1-nt : (1-r (1-0°
14564+ 152 + - + 61502
= a—0 (for d = 3).

In particular one can see that the regularity of R/(a : I) is 5(d — 2) and the initial
degree of a:7 is d for d=>=3. Also the degree of R/(a:I) 1is
1 + 10¢ + 40¢* + 40¢* + 10e*+ €* = d° — 40d* + 90d — 51.

Using the corresponding formula for [[R/a]] one can also check that the minimal
degree of an element in a: / that is not in a is 3d — 4 for d > 3 (and 1 for d = 2).

Our main theorems say that under various hypotheses the Hilbert functions of R/a
or R/(a: I) are determined by 7/ and the degrees of the generators of a. In a few cases
(Theorem 1.1) we have seen that a knowledge of the Hilbert function of I alone
suffices. Here is an example that shows this is not true in general:

EXAMPLE 6.2. Let k be a field, let R = k[X], ..., X¢], and again let I C R be the
defining ideal of the Veronese surface in IP;, that is, the ideal generated by the 2
by 2 minors of the generic symmetric matrix. Let I’ be the defining ideal of the generic
rational normal scroll of degree 4 in [P}, that is, the ideal of 2 by 2 minors of the
matrix

X X X4 Xs
X X3 X5 X )

Notice that R/I and R/I' have the same Hilbert function. Let a C 7/ and o’ C I’ be
ideals generated by 4 quadrics so that codim(a: /) > 4 and codim(a’ : I') > 4.

By Corollary 2.2 the Hilbert function of R/(d' : I') is determined by /’. Thus we
may perform a direct computation on a particular choice of a’ to obtain

14+2t—¢

IR/ 10 == =

On the other hand, by Example 6.1 we have [[R/(a: D]l = (1 + 0)/((1 — )°).

Next we illustrate the fact that our results about Hilbert functions do not hold in
general without parsimony condition or some residual S, assumption.
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Remark 6.3. Let R be a homogeneous ring, and let a C 7 be homogeneous ideals of
R. Assume that p(a) < s < codim(a: /) and that 0 # [a]; # [I]; for some d. If
0 # a, € [a],; and a4 € [I]; \ [a],, then a = (a, a;) and o’ = (a, a,) are both generated
by s forms in I of the same degrees d;, and codim(a: I) = s, codim(a’ : I) = s.
Nevertheless, R/a and R/a’ do not have the same Hilbert function since a & «'.

EXAMPLE 6.4. Let k be an algebraically closed field, let I C k[Xj, ..., X3] be the
defining ideal of a monomial arithmetically Buchsbaum curve that is not
arithmetically Cohen—Macaulay (for instance the rational quartic) in Pz. There
exists a homogeneous ideal a C 7 with 0 # [a]; # [[], for some d so that u(a) =3
anda: I = (X, ..., X3), as can be easily seen from [5, Theorem 3]. Applying Remark
6.3 with s = 4 = codim 7 + 2, one sees that Corollary 4.6 can fail if the depth con-
dition on R/I is dropped.

Let R be a homogeneous ring over an infinite field k£ and let / C R be a homo-
geneous ideal. A homogeneous ideal a contained in [ is called a homogeneous
reduction of I if I'*! = al” for some r > 0. For any homogeneous reduction,
w(a) = €(I), where £(I) = dim gr;(R) ®g k denotes the analytic spread of 7, and if
the equality u(a) = £(/) holds we call a a homogeneous minimal reduction of I.
Not every homogeneous ideal / has a homogeneous minimal reduction (consider
I = (X XY, Y3 Ck[X, Y]), but such reductions always exist if 7 is generated
by forms of the same degree. Now in the situation of Remark 6.3, the inequality
u(a) < s < codim (a: I) implies that a is necessarily a reduction of 7/ and hence
£(I) < s (at least if R is equidimensional) ([25, Proposition 3], which is based on
[22, 4.1]). But in fact, also the converse holds, which yields many instances where
Remark 6.3 applies:

Remark 6.5. Let R be a homogeneous reduced Cohen—Macaulay ring over an
infinite field, let / C R be a homogeneous ideal with () # ¢(I), and let s be an
integer with s > £(I). If I is G, and weakly (s — 3)-residually S, (for instance, /
is a complete intersection) locally in codimension s — 1 and if / has a homogeneous
minimal reduction a (for instance, [ is generated by forms of the same degree), then
Remark 6.3 applies to a C 1.

Proof. Let p € Spec(R) withdim R, < s — 1.IfI ¢ p, then a ¢ psince v/T = /a. If
however I C p, then I, can be generated by a d-sequence (cf. Corollary 3.6 (b)) and
thus has no proper reduction (cf. [15, Theorem 2.2]). Hence in either case
I, = a,, which gives codim(a : /) > s.

Furthermore, a being a reduction of 7 and R being reduced, it follows that a # 0
has the same initial degree as I. Thus 0 #[a]; #[I]; for some d since
depth R > 0. O

So far our counterexamples were largely based on the fact that one of the s
elements generating a was redundant. We are now going to present an example where

https://doi.org/10.1023/A:1002442111114 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002442111114

218 MARC CHARDIN ET AL.

both ideals a and o’ are minimally generated by s elements. This example also shows
that Corollary 4.7 fails even for Cohen—-Macaulay ideals without further
assumptions on the square of the ideal.

EXAMPLE 6.6. Let k be a field, let R = k[X], ..., X¢], let L denote the ideal
L=, X{X, X3, X3, X3, X3, X7),

and let ¢ be a 2 by 4 matrix whose entries are forms of degree 3 in R and generate L.
Let Aj; be the 2 by 2 minor of ¢ involving columns i/ and j, set

u=(X1X;XaXsX6)*, v=(XX3XaX5X5)", b= (A12+ Asa, A13, A, A3, Aoa),
a= (b, uAzy), a = (b,vA34), and I = (o).

Assume that codim I > 3 (for instance, take

(X X x5 X
T\ x3 x xix)

in fact if k is infinite and the entries of ¢ are chosen to be general elements in L then
R/I is an isolated singularity of dimension 3). We claim [/ is a perfect ideal of
codimension 3 that is a complete intersection locally on the punctured spectrum,
codim(a: /) = 6 and codim(a’' : I) = 6, a and ' are both minimally generated by
5 sextics and one form of degree 16, but R/a and R/da’, and R/(a:[) and
R/(d : I), respectively, do not have the same Hilbert function.

Proof. Since /I;(¢p) = VL = (X1, ..., X¢), the ideal I is a complete intersection
locally on the punctured spectrum. Furthermore, from the presentation matrix
of the determinantal ideal 7 it follows that b: 7 =Db: (As) = I1(p) = L. Thus
codim(a: 1) = 6 and codim(a’ : I) = 6, and I/b =2 (R/L)(—6). Write “~ for images
in R=R/L and notice that a/b 2 (Rit)(—6), R/(a: 1) = R/(i1), /b= (R¥)(—6),
R/(a : I) = R/(¥). Now it # 0 # ¥, which already gives u(a) = 6 = u(«’). Further-
more i € socle(R) and ¥ & socle(R) (in order to find two such elements in the same
degree, we had to choose L so that socle(R) is not pure). But then Riz and Ry have
different Hilbert functions, hence the same holds for R/a and R/d’, and for
R/(a: 1) and R/(d : I), respectively. O
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