
3

Tensor algebras

In this chapter we study various constructions related to the tensor product of
vector spaces. In particular, we introduce symmetric and anti-symmetric tensor
algebras, whose Hilbert space versions are called bosonic and fermionic Fock
spaces. Fock spaces are fundamental tools used to describe quantum field theories
in terms of particles.

We also discuss the notions of determinants, volume forms and Pfaffians, which
are closely related to anti-symmetric tensors.

3.1 Direct sums and tensor products

There are several non-equivalent versions of the tensor product of two infinite-
dimensional vector spaces. We will introduce two of them, which are especially
useful: the algebraic tensor product and the tensor product in the sense of Hilbert
spaces. The former will be denoted with

a l⊗ and the latter with ⊗.
There is a similar problem with the direct sum of an infinite number of vector

spaces, where we will introduce the algebraic direct sum
a l⊕ and the direct sum in

the sense of Hilbert spaces ⊕.

3.1.1 Direct sums

Recall that if Y1 , . . . ,Yn is a finite family of vector spaces, then

⊕
1≤i≤n

Yi

stands for the direct sum of the spaces Yi , i = 1, . . . , n; see Def. 1.2. It is equal
to the Cartesian product

∏
1≤i≤n

Yi with the obvious operations.

The notion of the direct sum can be generalized in several ways to the case of
an infinite family of vector spaces. One of the most useful is described below.

Let {Yi}i∈I be a family of vector spaces.

Definition 3.1 The algebraic direct sum of vector spaces {Yi}i∈I , denoted
a l⊕

i∈I
Yi , (3.1)

is the subspace of the Cartesian product
∏
i∈I

Yi consisting of families with all but

a finite number of terms equal to zero.
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58 Tensor algebras

Note that for a finite family of spaces the symbols ⊕ and
a l⊕ can be used

interchangeably.
If {Yi}i∈I is a family of Hilbert spaces, then

a l⊕
i∈I
Yi has a natural scalar product

({yi}i∈I |{wi}i∈I ) =
∑
i∈I

(yi |wi),

where {yi}i∈I , {wi}i∈I are elements of
a l⊕

i∈I
Yi .

Definition 3.2 The direct sum in the sense of Hilbert spaces is defined as

⊕
i∈I
Yi :=

(
a l⊕

i∈I
Yi

)cpl

.

3.1.2 Direct sums of operators

Let {Yi}i∈I , {Wi}i∈I be families of vector spaces.

Definition 3.3 If ai ∈ L(Yi ,Wi), i ∈ I, then their direct sum is defined as the

unique operator ⊕
i∈I

ai in L

(
a l⊕

i∈I
Yi ,

a l⊕
i∈I
Wi

)
satisfying

(
⊕
i∈I

ai

)
{yi}i∈I := {aiyi}i∈I .

Let {Yi}i∈I , {Wi}i∈I be families of Hilbert spaces, and ai , i ∈ I, be closable
operators from Yi to Wi with domains Dom ai . Then the operator ⊕

i∈I
ai with

the domain
a l⊕

i∈I
Dom ai is closable since

⊕
i∈I

a∗
i ⊂ (⊕

i∈I
ai)∗.

Definition 3.4 The closure of ⊕
i∈I

ai ∈ L

(
a l⊕

i∈I
Yi ,

a l⊕
i∈I
Wi

)
is denoted by the same

symbol ⊕
i∈I

ai ∈ Cl

(
⊕
i∈I
Yi , ⊕

i∈I
Wi

)
.

Clearly, ⊕
i∈I

ai is bounded iff ai are bounded and sup
i∈I
‖ai‖ <∞, and then

‖ ⊕
i∈I

ai‖ = sup
i∈I
‖ai‖.

Similarly, ⊕
i∈I

ai is essentially self-adjoint on
a l⊕

i∈I
Dom ai iff ai are essentially self-

adjoint.
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3.1 Direct sums and tensor products 59

3.1.3 Algebraic tensor product

Let Y,W be vector spaces over K. Let Z = cc(Y ×W, K), that is, the space of
finite linear combinations of (y, w) ∈ Y ×W with coefficients in K (see Def 2.6).
Let Z0 be the subspace of Z spanned by elements of the form

(y, w1 + w2)− (y, w1)− (y, w2), (y1 + y2 , w)− (y1 , w)− (y2 , w),

(λy,w)− λ(y, w), (y, λw)− λ(y, w), λ ∈ K, y, y1 , y2 ∈ Y, w, w1 , w2 ∈ W.

Definition 3.5 The algebraic tensor product of Y and W is defined as

Y a l⊗W := Z/Z0 .

The formula y ⊗ w := (y, w) + Z0 defines the bilinear map

Y ×W � (y, w) �→ y ⊗ w ∈ Y a l⊗W,

called the tensor multiplication.

We have natural isomorphisms

Y � K
a l⊗Y � Y a l⊗K.

More generally, let Y1 , . . . ,Yn be a finite family of vector spaces. Let Z :=
cc (Y1 × · · · × Yn , K), that is, the vector space over K of finite linear combinations
of (y1 , . . . , yn ) ∈ Y1 × · · · × Yn . Let Z0 be the subspace of Z spanned by elements
of the form

(. . . , yj + y′
j , . . . )− (. . . , yj , . . . )− (. . . , y′

j , . . . ),

(. . . , λyj , . . . )− λ(. . . , yj , . . . ), λ ∈ K, yi , y
′
i ∈ Yi , i = 1, . . . , n.

Definition 3.6 The algebraic tensor product of Y1 , . . . ,Yn is defined as

Y1
a l⊗ · · · a l⊗Yn := Z/Z0 .

The formula y1 ⊗ · · · ⊗ yn := (y1 , . . . , yn ) + Z0 defines the n-linear map

Y1 × · · · × Yn � (y1 , . . . , yn ) �→ y1 ⊗ · · · ⊗ yn ∈ Y1
a l⊗ · · · a l⊗Yn ,

called the tensor multiplication.

We have a natural identification

Y1
a l⊗(Y2

a l⊗Y3) � (Y1
a l⊗Y2)

a l⊗Y3 � Y1
a l⊗Y2

a l⊗Y3 . (3.2)

The tensor multiplication ⊗ is associative.

Remark 3.7 Note that we can replace the set {1, . . . , n}, labeling the spaces Yi

in Def. 3.6, by any finite set I. Then we obtain the definition of
a l⊗

i∈I
Yi.

If Y, W are real vector spaces, then we have the identification

C(Y a l⊗W) � CY a l⊗CW. (3.3)
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60 Tensor algebras

Clearly, if Y and W are complex spaces, then Y a l⊗W can be identified with
Y a l⊗W.

If one of the spaces Y or W is finite-dimensional then we will often write
Y ⊗W instead of Y a l⊗W.

If Y and W are finite-dimensional, then (Y ⊗W)# will be identified with
W# ⊗ Y# using the following convention: if ξ ∈ Y# , θ ∈ W# then

〈θ ⊗ ξ|y ⊗ w〉 := 〈ξ|y〉〈θ|w〉. (3.4)

(Note the reversal of the order.)

3.1.4 Tensor product in the sense of Hilbert spaces

If Y, W are Hilbert spaces, then Y a l⊗W has a unique scalar product such that

(y1 ⊗ w1 |y2 ⊗ w2) := (y1 |y2)(w1 |w2), y1 , y2 ∈ Y, w1 , w2 ∈ W.

Definition 3.8 We set

Y ⊗W := (Y a l⊗W)cpl, (3.5)

and call it the tensor product of Y and W in the sense of Hilbert spaces.

If one of the spaces Y or W is finite-dimensional, then (3.5) coincides with
Y a l⊗W.

The remaining part of the basic theory of the tensor product in the sense of
Hilbert spaces is analogous to that of the algebraic tensor product described in
the previous subsection.

3.1.5 Bases of tensor products

Let Y,W be finite-dimensional vector spaces. If {ei}i∈I is a basis of Y and
{fj}j∈J is a basis of W, then

{ei ⊗ fj}(i,j )∈I×J

is a basis of Y ⊗W.
If {ei}i∈I is the dual basis in Y# and {fj}j∈J is the dual basis in W# then

{fj ⊗ ei}(j,i)∈J×I

is the dual basis in (Y ⊗W)# � W# ⊗ Y# .
Suppose now that Y and W are Hilbert spaces. If {ei}i∈I is an o.n. basis of

Y and {fj}j∈J is an o.n. basis of W, then {ei ⊗ fj}(i,j )∈I×J is an o.n. basis of
Y ⊗W.
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3.1 Direct sums and tensor products 61

3.1.6 Operators in tensor products

Let Y1 ,Y2 ,W1 ,W2 be vector spaces.

Definition 3.9 If a1 ∈ L(Y1 ,W1) and a2 ∈ L(Y2 ,W2), then a1 ⊗ a2 is defined
as the unique operator in L(Y1

a l⊗Y2 ,W1
a l⊗W2) such that

(a1 ⊗ a2)(y1 ⊗ y2) := a1y1 ⊗ a2y2 .

If Y1 ,Y2 ,W1 ,W2 are Hilbert spaces and a1 , resp. a2 , are closable opera-
tors from Y1 to W1 , resp. from Y2 to W2 , then a1 ⊗ a2 with the domain
Dom a1

a l⊗ Dom a2 is closable, since

a∗
1 ⊗ a∗

2 ⊂ (a1 ⊗ a2)∗.

Definition 3.10 The closure of a1 ⊗ a2 ∈ L(Y1 ⊗ Y2 ,W1 ⊗W2) will be denoted
by the same symbol a1 ⊗ a2 ∈ Cl(Y1 ⊗ Y2 ,W1 ⊗W2).

If both a1 and a2 are non-zero, then a1 ⊗ a2 is bounded iff both a1 and a2 are
bounded, and then ‖a1 ⊗ a2‖ = ‖a1‖‖a2‖.

If both a1 and a2 are essentially self-adjoint, then a1 ⊗ a2 is essentially self-
adjoint on Dom a1

a l⊗ Dom a2 .

3.1.7 Permutations

Let Y1 , . . . ,Yn be vector spaces.

Definition 3.11 Let Sn denote the permutation group of n elements and σ ∈ Sn .
Θ(σ) is defined as the unique operator in L(Y1

a l⊗ · · · a l⊗Yn ,Yσ−1 (1)
a l⊗ · · · a l⊗Yσ−1 (n))

such that

Θ(σ)y1 ⊗ · · · ⊗ yn = yσ−1 (1) ⊗ · · · ⊗ yσ−1 (n) .

If Y1 , . . . ,Yn are Hilbert spaces, then Θ(σ) is unitary.

3.1.8 Identifications

Let Y,W be vector spaces, withW finite-dimensional. Then there exists a unique
linear map L(W,Y) → Y ⊗W# such that

|y〉〈ξ| �→ y ⊗ ξ.

If Y,W are Hilbert spaces, then there exists a unique unitary map B2(W,Y) →
Y ⊗W such that

|y)(w| �→ y ⊗ w.
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62 Tensor algebras

Note the identity that uses the above identification, valid for y ∈ Y, w ∈ W,
B ∈ B2(W,Y):

(y|Bw) = (y ⊗ w|B).

3.1.9 Infinite tensor product of grounded Hilbert spaces

It is well known that there are problems with the definition of the tensor product
of an infinite family of Hilbert spaces. The most useful definition of such a tensor
product depends on the choice of a normalized vector in each of these spaces.

Definition 3.12 A pair (H,Ω) consisting of a Hilbert space and a vector Ω ∈ H
of norm 1 is called a grounded Hilbert space.

Let
{
(Hi ,Ωi)

}
i∈I

be a family of grounded Hilbert spaces. If J1 ⊂ J2 ⊂ I are
two finite sets, we introduce the isometric identification

⊗
i∈J1

Hi � Ψ �→ Ψ⊗ ⊗
i∈J2 \J1

Ωi ∈ ⊗
i∈J2

Hi .

Definition 3.13 The tensor product of grounded Hilbert spaces
{
(Hi ,Ωi)

}
i∈I

is defined as

⊗
i∈I

(Hi ,Ωi) :=

⎛⎝ ⋃
J∈2I

f in

⊗
i∈J
Hi

⎞⎠cpl

.

The image of Ψ ∈ ⊗
i∈J
Hi will be denoted by

Ψ⊗ ⊗
i∈I\J

Ωi .

Such vectors are called finite vectors. Similarly, if B ∈ B( ⊗
i∈J
Hi), we will use the

obvious notation

B ⊗ ⊗
i∈I\J

1lHi
∈ B

(
⊗
i∈I
Hi

)
.

Clearly, if I is a finite set, then ⊗
i∈I

(Hi ,Ωi) = ⊗
i∈I
Hi for any family of normal-

ized vectors Ωi . Moreover, for I1 ∩ I2 = ∅ we have

⊗
i∈I1

(Hi ,Ωi)⊗ ⊗
i∈I2

(Hi ,Ωi) � ⊗
i∈I1 ∪I2

(Hi ,Ωi).

3.1.10 Infinite tensor product of vectors and operators

Theorem 3.14 Let Φi ∈ Hi, i ∈ I, have norm 1. Set

ΨJ := ⊗
i∈J

Φi ⊗ ⊗
i∈I\J

Ωi (3.6)

for J ∈ 2I
fin . Then the net {ΨJ }J∈2I

f in
is convergent iff the infinite product∏

i∈I

(Ωi |Φi) is convergent.
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Definition 3.15 The vector lim
J

ΨJ will be denoted by ⊗
i∈I

Φi.

Proof of Thm. 3.14. Assume first that the net {ΨJ }J∈2I
f in

is convergent in
⊗
i∈I

(Hi ,Ωi). If I0 =
{
i ∈ I : (Φi |Ωi) = 0

}
is infinite, then clearly lim

J
(ΨJ |Ψ) = 0

for all finite vectors Ψ. Since finite vectors are dense this is a contradiction, since
lim
J
‖ΨJ ‖ = 1. Therefore, I0 is finite.

It remains to prove that the net

{ ∏
i∈J\I0

(Φi |Ωi)

}
J∈2I

f in

has a non-zero limit.

Clearly,

lim
J

ΨJ = ⊗
i∈I0

Φi ⊗ ⊗
i∈I\I0

Φi . (3.7)

If I0 ⊂ J , then (
ΨJ

∣∣ ⊗
i∈I0

Φi ⊗ ⊗
i∈I\I0

Ωi

)
=
∏

i∈J\I0

(Φi |Ωi),

which proves that the net
{∏

i∈J\I0
(Φi |Ωi)

}
J∈2I

f in

is convergent in C. If the limit

is 0, then, since (Φi |Ωi) �= 0 for i ∈ I\I0 , we obtain that the vector ⊗
i∈I\I0

Φi

is orthogonal to all finite vectors in ⊗
i∈I\I0

(Hi ,Ωi), which using (3.7) yields a

contradiction, since lim
J
‖ΨJ ‖ = 1. Therefore, the infinite product

∏
i∈I

(Φi |Ωi) is

convergent.
Conversely, assume that the infinite product

∏
i∈I

(Φi |Ωi) is convergent. Then

∑
i∈I

|1− (Φi |Ωi)| < ∞.

Note that if J1 ⊂ J2 , then

‖ΨJ1 −ΨJ2 ‖2 = 2− 2Re
∏

i∈J2 \J2

(Φi |Ωi).

Therefore, the net {ΨJ }J∈2I
f in

is Cauchy, and hence converges in ⊗
i∈I

(Hi ,Ωi). �

Using Thm. 3.14, we immediately obtain the following theorem.

Theorem 3.16 Let Ai ∈ B(Hi) be contractions. Then there exists the strong
limit of

BJ := ⊗
i∈J

Ai ⊗ ⊗
i∈I\J

1lHi
(3.8)

iff the infinite product
∏
i∈I

(Ωi |AiΩi) is convergent.

Definition 3.17 The operator lim
J

BJ will be denoted by ⊗
i∈I

Ai.
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64 Tensor algebras

3.2 Tensor algebra

In this section we introduce the tensor algebra over a vector space. This concept
has two basic versions: we can consider the algebraic tensor algebra, or if the
vector space has the structure of a Hilbert space, the complete tensor algebra
(which is also a Hilbert space), called sometimes the full Fock space. Full Fock
spaces play the central role in the so-called free probability. For us, they are
mainly intermediate constructions to be used in the discussion of bosonic and
fermionic Fock spaces.

3.2.1 Full Fock space

Let Y be a vector space.

Definition 3.18 Let
a l⊗nY (or Y

a l⊗ n ) denote the n-th algebraic tensor power of

Y. We will write
a l⊗0 Y := K. The algebraic tensor algebra over Y is defined as

a l⊗Y :=
a l⊕

0≤n<∞
a l⊗nY.

The element 1 ∈ a l⊗0 Y is called the vacuum and denoted by Ω. If Y is a finite-
dimensional space, we will often write ⊗nY instead of

a l⊗n Y.
a l⊗Y is an associative algebra with the operation ⊗ and the identity Ω.
Assume now that Y is a Hilbert space,

Definition 3.19 We will write ⊗nY (or Y⊗n ) for the n-th tensor power of Y
in the sense of Hilbert spaces. Clearly, it is equal to

(
a l⊗nY

)cpl
. We set

⊗Y := ⊕
0≤n<∞

⊗nY =
(

a l⊗Y
)cpl

.

⊗Y is called the complete tensor algebra or the full Fock space.
We will also need notation for the finite particle full Fock space

⊗finY :=
a l⊕

0≤n<∞
⊗nY.

⊗Y and ⊗finY are associative algebras with the operation ⊗ and the identity
Ω.

3.2.2 Operators dΓ and Γ in full Fock spaces

The definitions of this subsection have obvious algebraic counterparts. For sim-
plicity, we restrict ourselves to the Hilbert space case and assume that Y,Y1 ,Y2

are Hilbert spaces.
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3.3 Symmetric and anti-symmetric tensors 65

Definition 3.20 Let p be a linear operator from Y1 to Y2 . Then we define
Γn (p) := p⊗n with domain

a l⊗nDom p, and the operator Γ(p) from ⊗Y1 to ⊗Y2

Γ(p) :=
∞⊕

n=0
Γn (p)

with domain
a l⊗Dom p.

By Subsects. 3.1.2 and 3.1.6 we see that if p is closable, resp. essentially self-
adjoint, then so is Γ(p). Γ(p) is bounded iff ‖p‖ ≤ 1. Γ(p) is unitary iff p is.

Definition 3.21 If h is a linear operator on Y, we set

dΓn (h) :=
n∑

j=1

1l⊗j−1
Y ⊗ h⊗ 1l⊗(n−j )

Y

with domain
a l⊗nDom h, and

dΓ(h) :=
∞⊕

n=0
dΓn (h)

with domain
a l⊗Dom h.

Again, if h is closable, resp. essentially self-adjoint, then so is dΓ(h).

Definition 3.22 The number operator and the parity operator are defined
respectively as

N := dΓ(1l), (3.9)

I := (−1)N = Γ(−1l). (3.10)

Proposition 3.23 (1) Let h, h1 , h2 ∈ B(Y), p1 ∈ B(Y,Y1), p2 ∈ B(Y1 ,Y2),
‖p1‖, ‖p2‖ ≤ 1. We then have

Γ(eh) = edΓ(h) ,

Γ(p2)Γ(p1) = Γ(p2p1),

[dΓ(h1),dΓ(h2)] = dΓ([h1 , h2 ]).

(2) Let Φ,Ψ ∈ ⊗finY, h ∈ B(Y), p ∈ B(Y,Y1). Then

Γ(p) Φ⊗Ψ = (Γ(p)Φ)⊗ (Γ(p)Ψ),

dΓ(h) Φ⊗Ψ = (dΓ(h)Φ)⊗Ψ + Φ⊗ (dΓ(h)Ψ).

3.3 Symmetric and anti-symmetric tensors

In this section we describe symmetric, resp. anti-symmetric tensor algebras. Their
Hilbert space versions are also called bosonic, resp. fermionic Fock spaces.
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66 Tensor algebras

Unfortunately, there seems to be no uniform terminology, and especially nota-
tion, in this context in the literature. We try to introduce a coherent nota-
tion, which in particular stresses parallel properties of the symmetric and anti-
symmetric cases.

3.3.1 Fock spaces

Let Y be a vector space. Recall that in Subsect. 3.1.7, for σ ∈ Sn we defined the
operators Θ(σ) ∈ L(

a l⊗n ). Clearly,

Sn � σ �→ Θ(σ) ∈ L(
a l⊗nY)

is a representation of the permutation group.

Definition 3.24 We define the following operators on
a l⊗nY:

Θn
s :=

1
n!

∑
σ∈Sn

Θ(σ),

Θn
a :=

1
n!

∑
σ∈Sn

sgn(σ)Θ(σ).

We will write s/a as a subscript which can mean either s or a.

It is easy to check that Θn
s/a is a projection.

Definition 3.25 Introduce the following projections acting on
a l⊗Y:

Θs/a := ⊕
0≤n<∞

Θn
s/a .

We set
a l
Γ

n

s/a(Y) := Θn
s/a

a l⊗nY,
a l
Γs/a(Y) :=

a l⊕
0≤n<∞

a l
Γ

n

s/a(Y) = Θs/a
a l⊗Y.

a l
Γs/a(Y) are called the algebraic symmetric, resp. anti-symmetric tensor algebras
or algebraic bosonic, resp. fermionic Fock spaces.

If Y is a finite-dimensional space, we can write Γn
s/a(Y) instead of

a l
Γ

n

s/a(Y).

Elements of
a l
Γ

n

s/a(Y) consist of symmetric, resp. anti-symmetric tensors, as
expressed in the following proposition:

Proposition 3.26 Let Ψ ∈ a l⊗nY. Then

(1) Ψ ∈ a l
Γ

n

s (Y) iff Θ(σ)Ψ = Ψ, σ ∈ Sn ;
(2) Ψ ∈ a l

Γ
n

a (Y) iff Θ(σ)Ψ = sgn(σ)Ψ, σ ∈ Sn .

Assume now that Y is a Hilbert space. Then Θn
s/a and Θs/a are orthogonal

projections.
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Definition 3.27 We define

Γn
s/a(Y) := Θn

s/a ⊗n Y =
(

a l
Γ

n

s/a(Y)
)cpl

,

Γs/a(Y) :=
∞⊕

n=0
Γn

s/a(Y) = Θs/a ⊗ Y =
(

a l
Γs/a(Y)

)cpl
.

Γs/a(Y) is called the bosonic, resp. fermionic Fock space.

Note that Γs/a(Y) itself is a Hilbert space (as a closed subspace of ⊗Y).

Definition 3.28 We will need notation for the finite particle bosonic, resp.
fermionic Fock space:

Γfin
s/a(Y) :=

a l⊕
0≤n<∞

Γn
s/a(Y).

3.3.2 Symmetric and anti-symmetric tensor products

Let Ψ,Φ ∈ a l
Γs/a(Y).

Definition 3.29 We define the symmetric, resp. anti-symmetric tensor product
of Φ and Ψ:

Ψ⊗s/a Φ := Θs/aΨ⊗ Φ.

a l
Γs/a(Y) is an associative algebra with the operation ⊗s/a and the identity Ω.

Note that the set of vectors of the form

y ⊗ · · · ⊗ y
n times

= y ⊗s · · · ⊗s y
n times

, (3.11)

for y ∈ Y, spans
a l
Γ

n

s (Y).

Definition 3.30 For brevity we will denote (3.11) by y⊗n .

The notation ⊗a that we introduced is not common in the literature. Instead,
one usually prefers a different closely related operation:

Definition 3.31 The wedge product of vectors Φ and Ψ is defined as

Ψ ∧ Φ :=
(p + q)!

p!q!
Ψ⊗a Φ, for Ψ ∈ a l

Γ
p

a (Y), Φ ∈ a l
Γ

q

a(Y). (3.12)

The advantage of the wedge product over ⊗a is visible if we compare the
following identities:

y1 ∧ · · · ∧ yn =
∑

σ∈Sn

sgn(σ) yσ (1) ⊗ · · · ⊗ yσ (n) ,

y1 ⊗a · · · ⊗a yn = 1
n !

∑
σ∈Sn

sgn(σ) yσ (1) ⊗ · · · ⊗ yσ (n) , y1 , · · · , yn ∈ Y.

Note that ∧ is also associative.
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Definition 3.32 One often writes ∧nY and ∧Y for
a l
Γ

n

a (Y) and
a l
Γa(Y).

Definition 3.33 If Y is a Hilbert space, we can define ⊗s/a and ∧ in Γs/a(Y)
in the same way, with the same properties.

3.3.3 dΓ and Γ operators

For brevity we restrict ourselves to the case of Hilbert spaces.
Let p be a closable operator from Y to W. Then Γn (p) maps Γn

s/a(Y) into
Γn

s/a(W). Hence Γ(p) maps Γs/a(Y) into Γs/a(W).

Definition 3.34 We will use the same symbols Γn (p) and Γ(p) to denote the
corresponding restricted operators. Γ(p) is sometimes called the second quanti-
zation of p.

Let h be a closable operator on Y. Then dΓn (h) maps Γn
s/a(Y) into itself.

Hence, dΓ(h) maps Γs/a(Y) into itself.

Definition 3.35 We will use the same symbols dΓn (h) and dΓ(h) to denote the
corresponding restricted operators. Perhaps the correct name of dΓ(h) should be
the infinitesimal second quantization of h.

Note that in the context of bosonic, resp. fermionic Fock spaces the operators
Γ(·) and dΓ(·) still have the properties described in Prop. 3.23 (1). Prop. 3.23
(2) needs to be replaced by the following statement:

Proposition 3.36 Let p ∈ B(Y,Y1), h ∈ B(Y), Ψ,Φ ∈ Γfin
s/a(Y). Then

Γ(p) Ψ⊗s/a Φ = (Γ(p)Ψ)⊗s/a (Γ(p)Φ),

dΓ(h) Ψ⊗s/a Φ = (dΓ(h)Ψ)⊗s/a Φ + Ψ⊗s/a (dΓ(h)Φ).

3.3.4 Identifications

Let Y be a finite-dimensional vector space. Then Γ2
s/a(Y) can be identified with

Ls/a(Y# ,Y), which were defined in Defs. 1.18 and 1.29.
Let Y be a Hilbert space. Recall that B2(Y,W) denotes the space of Hilbert–

Schmidt operators from Y to W. We introduce the following symbols for the
spaces of symmetric and anti-symmetric Hilbert–Schmidt operators:

B2
s (Y,Y) :=

{
a ∈ B2(Y,Y) : a# = a

}
,

B2
a (Y,Y) :=

{
a ∈ B2(Y,Y) : a# = −a

}
,

where as usual one identifies Y# with Y using the Hilbert structure of Y. Then
the unitary map of Subsect. 3.1.8 allows us to unitarily identify Γ2

s/a(Y) with
B2

s/a(Y ,Y).
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3.3.5 Bases in bosonic Fock spaces

Let Y be a finite-dimensional vector space and {ei : i = 1, . . . , d} a basis of Y.

Definition 3.37 For �k = (k1 , . . . , kd) ∈ Nd , we set

|�k| := k1 + · · · kd, �k! := k1 ! . . . kd !,

e�k := e⊗k1
1 ⊗s · · · ⊗s e⊗kd

d , e�0 := Ω.

Then

{e�k : �k ∈ Nd , |�k| = n} (3.13)

is a basis of Γn
s (Y).

The dual of Γn
s (Y) can be identified with Γn

s (Y# ). Let {ei : i = 1, . . . , d} be
the dual basis of Y# .

Definition 3.38 We set e
�k := (e1)⊗kd ⊗s · · · ⊗s (ed)⊗k1 , for k ∈ Nd .

Then {
|�k|!
�k!

e
�k : �k ∈ Nd , |�k| = n

}
is the basis of Γn

s (Y# ) dual to (3.13).
Let Y be now a Hilbert space with an o.n. basis {ei}i∈I .

Definition 3.39 Recall that cc(I, N) denotes the set of functions I → N with all
but a finite number of values equal to zero. If �k ∈ cc(I, N), then the definitions
of |�k|, �k! and e�k have obvious versions in the present context.

Then ⎧⎨⎩
√
|�k|!√
�k!

e�k : �k ∈ cc(I, N), |�k| = n

⎫⎬⎭
is an o.n. basis of Γn

s (Y).

3.3.6 Bases in fermionic Fock spaces

Let Y be a finite-dimensional vector space and {ei : i = 1, . . . , d} a basis of Y.

Definition 3.40 For J = {i1 , · · · , in} ⊂ {1, . . . , d} with 1 ≤ i1 < · · · < in ≤ d,
set

eJ := ei1 ⊗a · · · ⊗a ein
.

Then

{eJ : J ⊂ {1, . . . , d}, #J = n} (3.14)

is a basis of Γn
a (Y).
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The dual of Γn
a (Y) can be identified as above with Γn

a (Y# ).
Let {ei : i = 1, . . . , d} be the dual basis in Y# .

Definition 3.41 For J = {i1 , · · · , in} ⊂ {1, . . . , d} with 1 ≤ i1 < · · · < in ≤ d

put eJ := ein ⊗a · · · ⊗a ei1 .

Then {
#J !eJ : J ⊂ {1, . . . , d}, #J = n

}
is the basis of Γn

a (Y# ) dual to (3.14).
Let Y be now a Hilbert space with an o.n. basis {ei : i ∈ I}. Let us choose a

total order in the set I.

Definition 3.42 For a finite subset J of I, we define eJ in an obvious way.

Then {√
#J !eJ : J ⊂ I, ,#J = n

}
is an o.n. basis of Γn

a (Y).

3.3.7 Exponential law for Fock spaces

For brevity we restrict ourselves again to the case of Hilbert spaces. Let Y1 and
Y2 be Hilbert spaces and let ji : Yi → Y1 ⊕ Y2 be the canonical embeddings.

We introduce an identification

U : Γfin
s/a(Y1)

a l⊗Γfin
s/a(Y2) → Γfin

s/a(Y1 ⊕ Y2)

as follows. Let Ψ1 ∈ Γn1
s/a(Y1), Ψ2 ∈ Γn2

s/a(Y2). Then

UΨ1 ⊗Ψ2 :=
√

(n1 +n2 )!
n1 !n2 ! (Γ(j1)Ψ1)⊗s/a (Γ(j2)Ψ2). (3.15)

Theorem 3.43 (1) U extends to a unitary operator from Γs/a(Y1)⊗ Γs/a(Y2)
to Γs/a(Y1 ⊕ Y2).

(2) UΩ1 ⊗ Ω2 = Ω.
(3) If hi ∈ B(Yi), then

dΓ(h1 ⊕ h2)U = U
(
dΓ(h1)⊗ 1l + 1l⊗ dΓ(h2)

)
. (3.16)

(4) If pi ∈ B(Yi), then

Γ(p1 ⊕ p2)U = UΓ(p1)⊗ Γ(p2). (3.17)
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Proof Let us prove (1). To simplify the notation let us restrict ourselves to the
symmetric case. Let Ψ1 ∈ Γn1

s (Y1), Ψ2 ∈ Γn2
s (Y2). Then

Γ(j1)Ψ1 ⊗s Γ(j2)Ψ2 = 1
(n1 +n2 )!

∑
σ∈Sn 1 + n 2

Θ(σ)Γ(j1)Ψ1 ⊗ Γ(j2)Ψ2

= n1 !n2 !
(n1 +n2 )!

∑
[σ ]∈Sn 1 + n 2 /Sn 1 ×Sn 2

Θ(σ)Γ(j1)Ψ1 ⊗ Γ(j2)Ψ2 .

Now the elements of the sum on the right are mutually orthogonal. Hence

‖Γ(j1)Ψ1 ⊗s Γ(j2)Ψ2‖2 =
(

n1 !n2 !
(n1 +n2 )!

)2 ∑
[σ ]∈Sn 1 + n 2 /Sn 1 ×Sn 2

‖Θ(σ)Ψ1 ⊗Ψ2‖2

= n1 !n2 !
(n1 +n2 )! ‖Ψ1 ⊗Ψ2‖2 . �

Using the concept of the tensor product of grounded Hilbert spaces, one can
easily generalize the exponential law to the case of an infinite number of Fock
spaces. In fact, let Yi , i ∈ I be a family of Hilbert spaces and denote by ji : Yi →
⊕
i∈I
Yi the canonical embeddings. Let Ωi denote the vacuum in Γs/a(Yi). Then

UΨi1 ⊗ · · · ⊗Ψin
⊗ ⊗

i∈I\{i1 ,...,in }
Ω

:=

√
(i1 + · · ·+ in )!√

i1 ! · · ·
√

in !
Γ(ji1 )Ψ1 ⊗s · · · ⊗s Γ(jin

)Ψin

extends to a unitary map

U : ⊗
i∈I

(
Γs/a(Yi),Ωi

)→ Γs/a

(
⊕
i∈I
Yi

)
.

3.3.8 Dimension of Fock spaces

Let dimY = d. Then it is easy to see that

dim Γn
s (Y) = (d+n−1)!

(d−1)!n ! ,

dim Γn
a (Y) = n !

d!(n−d)! .

We have the following generating functions for the above quantities:

(1− t)−d =
∞∑

n=0
tn (d+n−1)!

(d−1)!n ! ,

(1 + t)d =
d∑

n=0
tn n !

d!(n−d)! .

(3.18)

Recall that we have the identifications

Γn
s/a(Y1 ⊕ Y2) �

n⊕
m=0

Γm
s/a(Y1)⊗ Γn−m

s/a (Y2). (3.19)
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Assume that dimY1 = d1 , dimY2 = d2 . Then comparing the dimensions of
both sides of (3.19) we obtain the following identities:

(d1 +d2 +n−1)!
n !(d1 +d2 −1)! =

n∑
m=0

(d1 +m−1)!
m !(d1 −1)!

(d2 +n−m−1)!
(n−m )!(d2 −1)! ,

(d1 +d2 )!
n !(d1 +d2 −n)! =

n∑
m=0

d1 !
m !(d1 −m )!

d2 !
(n−m )!(d2 −n+m )! .

These identities can be easily shown using the generating functions (3.18) and
the identities

(1− t)−d1 (1− t)−d2 = (1− t)−(d1 +d2 ) ,

(1 + t)d1 (1 + t)d2 = (1 + t)(d1 +d2 ) .

3.3.9 Super-Fock spaces

Let (Y, ε) be a super-space (that is, a vector space equipped with an involution;
see Subsect. 1.1.15). Then we introduce the action of the permutation group in
L(

a l⊗n Y) as follows:

Definition 3.44 Let σ ∈ Sn . Then Θε(σ) will denote the unique linear operator
on

a l⊗n Y with the following property. Let y1 , . . . , yn ∈ Y be homogeneous. Then

Θε(σ)y1 ⊗ · · · ⊗ yn = sgnε(σ) yσ−1 (1) ⊗ · · · ⊗ yσ−1 (n) ,

where sgnε(σ) is the sign of the permutation σ restricted to the odd elements.

Definition 3.45 We define

Θn
ε :=

1
n!

∑
σ∈Sn

Θε(σ).

Clearly, Θn
ε is a projection on

a l⊗nY.

Definition 3.46 We set
a l
Γ

n

ε (Y) := Θn
ε

a l⊗nY,
a l
Γε(Y) :=

a l⊕
0≤n≤∞

a l
Γ

n

ε (Y).

If Y is a finite-dimensional space, we can write Γn
ε (Y) instead of

a l
Γ

n

ε (Y).

If Y is a Hilbert space, then Θn
ε are orthogonal projections.

Definition 3.47 We define the super-Fock spaces

Γn
ε (Y) := Θn

ε ⊗n Y,

Γε(Y) :=
∞⊕

n=0
Γn

ε (Y).
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We extend various definitions from the context of bosonic, resp. fermionic Fock
spaces to super-spaces in an obvious way. In particular, we define the operation
⊗ε , creation, resp. annihilation operators (generalizing the definitions of Sect.
3.4 below) and the operators Γ(·) and dΓ(·).

Γn
ε (Y) is naturally a super-space with the involution Γ(ε).

Super-Fock spaces enjoy the exponential property analogous to that described
in Thm. 3.43 for bosonic and fermionic Fock spaces. Thus if (Y, ε), (W, ε) are
two super-Hilbert spaces, then

Γε⊕ε(Y ⊕W) � Γε(Y)⊗ Γε(W). (3.20)

In particular, if Y = Y0 ⊕ Y1 is the decomposition into the even and odd sub-
space, we then have

Γε(Y) � Γs(Y0)⊗ Γa(Y1), (3.21)

which can be treated as an alternative definition of a super-Fock space.
We will often drop the index ε in (3.21)
Note that if c ∈ L(Y) is odd, then dΓ(c)2 = dΓ(c2). In the matrix notation:

dΓ
([

0 c01

c10 0

])2

= dΓ
([

c01c10 0
0 c10c01

])
.

This identity plays an important role in super-symmetric quantum physics.

3.4 Creation and annihilation operators

Creation and annihilation operators belong to the most useful constructions of
quantum physics. This section is devoted to their basic properties, in both the
bosonic and the fermionic case.

Throughout this section we will use the standard convention for the scalar
product in the Fock spaces. Some of the properties of creation and annihilation
operators actually look simpler on modified Fock spaces, which will be discussed
in Subsect. 3.5.7.

Throughout the section, Z, Z1 and Z2 are Hilbert spaces.

3.4.1 Creation and annihilation operators: abstract approach

We prepare for the definitions of the creation and annihilation operators with
two lemmas in an attract setting. We start with the bosonic case.

Lemma 3.48 Let H be a Hilbert space, D ⊂ H a dense subspace, and c, a two
linear operators on D such that

(1) c, a : D → D;
(2) c ⊂ a∗, a ⊂ c∗;
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(3) ac− ca = 1l, as an operator identity on D;
(4) ca is essentially self-adjoint on D.

Then c, a are closable with acl = c∗, ccl = a∗. If we write a for acl, one has

aa∗ − a∗a = 1l, as a quadratic form identity on Dom(a) ∩Dom(a∗).

Proof Since c ⊂ a∗ and a ⊂ c∗, c∗ and a∗ are densely defined, and hence c and
a are closable. Moreover, since c ⊂ a∗ we have ccl ⊂ acl∗. From now on we will
denote acl , ccl simply by a, c.

Set N := (ca)cl . Using (4), we see that N is a positive self-adjoint operator
and D is a core for N . Since

‖aΦ‖2 = (Φ|caΦ), ‖cΦ‖2 = (Φ|caΦ) + (Φ|Φ) for Φ ∈ D,

we see that Dom a = Dom c = Dom N
1
2 . This implies that

a(N + 1l)−
1
2 , c(N + 1l)−

1
2 , (N + 1l)−

1
2 c, (N + 1l)−

1
2 a ∈ B(H). (3.22)

Next, for Φ,Ψ ∈ D, we have

|(cΦ|Ψ)| = |(Φ|aΨ)| = |((N + 1l)
1
2 Φ|(N + 1l)−

1
2 aΨ)| ≤ C‖(N + 1l)

1
2 Φ‖‖Ψ‖.

Since D is dense in Dom N
1
2 and in Dom a, we obtain that DomN

1
2 ⊂ Dom a∗,

and a∗∣∣
DomN

1
2

= c.

To prove that a∗ = c, it remains to prove that Dom a∗ = Dom N
1
2 . Note that

Φ ∈ Dom N
1
2 iff

‖N(εN + 1)−1Φ‖ ≤ Cε−
1
2 , ε > 0. (3.23)

From the identity a(N + 1l) = Na valid on D, we deduce first that (εN +
1l)−1a(εN + 1l− ε) = a on D and then on DomN , and then that

(εN + 1l)−1a = a(εN + 1l− ε)−1 on H, (3.24)

since both operators are bounded by (3.22). For Φ ∈ Dom a∗ and Ψ ∈ D, we have

|(Φ|N(εN + 1l)−1Ψ)| = |(Φ|(εN + 1l)−1caΨ)|
= |(Φ|(εN + 1l)−1acΨ)− (Φ|(εN + 1l)−1Ψ)|
= (Φ|a(εN + 1l− ε)−1cΨ)− (Φ|(εN + 1l)−1Ψ)|
≤ C‖(εN + 1l− ε)−1cΨ‖+ C‖Ψ‖
≤ C‖(N + 1l)

1
2 (εN + 1l− ε)−1‖‖(N + 1l)−

1
2 cΨ‖+ C‖Ψ‖

≤ Cε−
1
2 ‖Ψ‖,

where we have used (3.24) and the fact that Φ ∈ Dom a∗. Using (3.23), we obtain
that Φ ∈ Dom N

1
2 , which completes the proof that a∗ = c, and hence that c∗ = a.

The quadratic form identity on Dom a ∩Dom a∗ follows then by density from the
operator identity on D. �

The following lemma describes properties of fermionic creation and annihila-
tion operators in the abstract setting:
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Lemma 3.49 Let H be a Hilbert space, D ⊂ H a dense subspace, and c, a two
linear operators on D such that

(1) c, a : D → D;
(2) c ⊂ a∗, a ⊂ c∗;
(3) a2 = c2 = 0, ac + ca = 1l as operator identities on D.

Then c, a extend as bounded operators on H, c = a∗ and ‖a‖ = ‖c‖ = 1.

Proof We obtain from (2) and (3) that

‖cΦ‖2 + ‖aΦ‖2 = ‖Φ‖2 , Φ ∈ D,

and hence c and a extend as bounded operators on H with a = c∗, c = a∗. Next
we use

a∗aa∗a = a∗a− (a∗)2a2 = a∗a,

and hence ‖a‖4 = ‖a∗aa∗a‖ = ‖a∗a‖ = ‖a‖2 . By [a, a∗]+ = 1l, ‖a‖ cannot be 0.
Therefore, ‖a‖ = ‖a∗‖ = 1l. �

3.4.2 Creation and annihilation operators on Fock spaces

We consider the bosonic or fermionic Fock space Γs/a(Z).

Definition 3.50 Let w ∈ Z. The creation operator of w, resp. the annihilation
operator of w, are defined as operators on Γfin

s/a(Z) by

c(w)Ψ :=
√

n + 1w ⊗s/a Ψ,

a(w)Ψ :=
√

n(w|⊗1l⊗(n−1)
Z Ψ, Ψ ∈ Γn

s/a(Z).

Theorem 3.51 (Bosonic case) In the bosonic case, the operators c(w) and a(w)
are densely defined and closable. We denote their closures by the same symbols.
They satisfy a(w)∗ = c(w). Therefore, we will write a∗(w) instead of c(w).

(1) The following quadratic form identities are valid:

[a∗(w1), a∗(w2)] = [a(w1), a(w2)] = 0,

[a(w1), a∗(w2)] = (w1 |w2)1l.

(2) For Ψ ∈ Γs(Z), w ∈ Z,

‖a(w)Ψ‖ ≤ ‖w‖‖N 1
2 Ψ‖, ‖a∗(w)Ψ‖ ≤ ‖w‖‖(N + 1l)

1
2 Ψ‖.

Proof We apply Lemma 3.48 to c(w), a(w) with D = Γfin
s (Z) (without loss of

generality we can assume that ‖w‖ = 1). Then c(w)a(w) = dΓ
(|w)(w|), which is

essentially self-adjoint on D.
We have

a∗(w)a(w) = dΓ
(|w)(w|), a(w)a∗(w) = dΓ (|w)(w|) + ‖w‖21l.
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Using that |w)(w| ≤ ‖w‖21l on Z, we get

dΓ
(|w)(w|) ≤ ‖w‖2N,

which implies (2). �

Theorem 3.52 (Fermionic case) In the fermionic case, the operators c(w) and
a(w) are densely defined and bounded. We denote their closures by the same
symbols. They satisfy a(w)∗ = c(w). Therefore, we will write a∗(w) instead of
c(w).

(1) The following operator identities are valid:

[a∗(w1), a∗(w2)]+ = [a(w1), a(w2)]+ = 0,

[a(w1), a∗(w2)]+ = (w1 |w2)1l.

(2) ‖a(w)‖ = ‖a∗(w)‖ = ‖w‖.
Proof We apply Lemma 3.49 to c(w), a(w) with D = Γfin

a (Z) (without loss of
generality we can assume that ‖w‖ = 1). �

Proposition 3.53 If p ∈ B(Z1 ,Z2) and h ∈ Cl(Z), one has

(1) a(w2)Γ(p) = Γ(p)a(p∗w2), Γ(p)a∗(w1) = a∗(pw1)Γ(p),
(2) [dΓ(h), a(w)] = −a(h∗w), [dΓ(h), a∗(w)] = a∗(hw),

the last two identities being quadratic form identities on
a l
Γs/a(Dom h).

For further reference we note the following obvious facts:{
Ψ ∈ Γs/a(Z) : a(w)Ψ = 0, w ∈ Z} = CΩ, (3.25)

Spancl
{

n

Π
i=0

a∗(wi)Ω, w1 , . . . , wn ∈ Z, n = 0, 1, . . .

}
= Γs/a(Z). (3.26)

Remark 3.54 The notation for creation and annihilation operators introduced
in this section is typical for the mathematically oriented literature. In the physical
literature it is common to assume that the one-particle space has a distinguished
o.n. basis {ej}j∈J . One writes a∗

j and aj instead of a∗(ej ) and a(ej ), j ∈ J .
Clearly, every vector w ∈ Z can then be written as

∑
i∈J wj ej , and we have

the following dictionary between “mathematician’s” and “physicist’s” notations:

a∗(w) =
∑
j∈J

wja
∗
j ,

a(w) =
∑
j∈J

wjaj . (3.27)

Note that the latter notation is heavier and depends on the choice of a basis,
but has a useful advantage: it does not hide the anti-linearity of the annihilation
operator.
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Sometimes, instead of choosing an o.n. basis of Z it is more natural to assume
that Z = L2(Q,dq) for some measure space (Q,dq). Clearly, w ∈ Z can be rep-
resented as a function Q � q �→ w(q). One introduces “operator-valued distribu-
tions” Q � q �→ a∗

q , aq , which are then “smeared out” with test functions to obtain
creation and annihilation operators:

a∗(w) =
ˆ

w(q)a∗
q dq,

a(w) =
ˆ

w(q)aqdq. (3.28)

(3.28) can be viewed as a generalization of (3.27).

The following operator seems to have no name, but is useful, especially on
fermionic Fock spaces:

Definition 3.55 Set

Λ := (−1)N (N −1l)/2 . (3.29)

The following property is valid in both the bosonic and the fermionic case:

Λa∗(z)Λ = −Ia∗(z) = a∗(z)I,

Λa(z)Λ = Ia(z) = −a(z)I,
(3.30)

where I denotes the parity operator. In the fermionic case, (3.30) allows the
conversion of the anti-commutation relations into commutation relations:

[Λa∗(z1)Λ, a∗(z2)] = [Λa(z1)Λ, a(z2)] = 0,

[Λa∗(z1)Λ, a(z2)] = I(z2 |z1).

3.4.3 Exponential law for creation and annihilation operators

Let Ni , Ii , Λi be the operators on Γs/a(Zi) defined as in (3.9), (3.10) and (3.29).
Recall that the unitary operator U : Γs/a(Z1)⊗ Γs/a(Z2) → Γs/a(Z1 ⊕Z2) was
defined in Thm. 3.43.

The exponential law for creation and annihilation operators is slightly different
in the bosonic and fermionic cases:

Proposition 3.56 Let (w1 , w2) ∈ Z1 ⊕Z2 .

(1) In the bosonic case we have

a∗(w1 , w2)U = U(a∗(w1)⊗ 1l + 1l⊗ a∗(w2)),

a(w1 , w2)U = U(a(w1)⊗ 1l + 1l⊗ a(w2)).

(2) In the fermionic case, we have

a∗(w1 , w2)U = U(a∗(w1)⊗ 1l + I1 ⊗ a∗(w2)),

a(w1 , w2)U = U(a(w1)⊗ 1l + I1 ⊗ a(w2)).
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Proposition 3.57 (1) IU = UI1 ⊗ I2 ,
(2) ΛU = U(Λ1 ⊗ Λ2)(−1)N1 ⊗N2 .
(3) In the fermionic case,

Λa∗(w1 , w2)Λ U = U(a∗(w1)I1 ⊗ I2 + 1l⊗ a∗(w2)I2),

Λa(w1 , w2)Λ U = U(−a(w1)I1 ⊗ I2 − 1l⊗ a(w2)I2).

Proof We use

NU = U(N1 ⊗ 1l + 1l⊗N2),
1
2
N(N − 1l) =

1
2
N1(N1 − 1l) +

1
2
N2(N2 − 1l) + N1N2 ,

(−1)N1 ⊗N2 (a(w)⊗ 1l)(−1)N1 ⊗N2 = a(w)⊗ I2 . �

3.4.4 Multiple creation and annihilation operators

Let Φ ∈ Γm
s/a(Z).

Definition 3.58 We define the operator of creation of Φ with the domain
Γfin

s/a(Z) as

a∗(Φ)Ψ :=
√

(n + 1) · · · (n + m)Φ⊗s/a Ψ, Ψ ∈ Γn
s/a(Z).

a∗(Φ) is a densely defined closable operator. We denote its closure by the same
symbol.

Definition 3.59 We set

a(Φ) := (a∗(Φ))∗ .

a(Φ) is called the operator of annihilation of Φ.

For w1 , . . . , wm ∈ Z we have

a∗(w1 ⊗s/a · · · ⊗s/a wm ) = a∗(w1) · · · a∗(wm ),

a(w1 ⊗s/a · · · ⊗s/a wm ) = a(wm ) · · · a(w1).

Note that in the fermionic case we have

a(Λ w1 ⊗a · · · ⊗a wm ) = a(w1) · · · a(wm ),

where Λ was defined in (3.29).

3.5 Multi-linear symmetric and anti-symmetric forms

We continue to discuss symmetric and anti-symmetric tensors. In this section
we will look at them mostly as multi-linear functions. This leads to somewhat
different notational conventions.

Let Y be a real or complex vector space.
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3.5 Multi-linear symmetric and anti-symmetric forms 79

3.5.1 Polynomials

Let Ψ ∈ a l
Γ

n

s/a(Y). Then Ψ determines the function

Y# × · · · × Y# � (v1 , . . . , vn ) �→ Ψ(v1 , . . . , vn )

:= 〈v1 ⊗s/a · · · ⊗s/a vn |Ψ〉 ∈ K.
(3.31)

Definition 3.60 The space
a l
Γs/a(Y) will often be denoted by Pols/a(Y# ), if we

want to stress the interpretation of its elements given by (3.31). (Pol stands
for “poly-linear” or “a polynomial”.) It will be called the symmetric, resp. anti-
symmetric tensor algebra written in the polynomial notation.

More generally, if Y = Y0 ⊕ Y1 is a super-space, the super-tensor algebra
a l
Γε(Y)

will be also sometimes denoted by Polε(Y# ). Clearly,

Polε(Y# ) � Pols(Y#
0 )

a l⊗Pola(Y#
1 ). (3.32)

Thus an element of Polε(Y# ) is a polynomial in commuting variables from Y0

and in anti-commuting variables from Y1 .
We will often drop the subscript ε in (3.32).

In the symmetric case we can make yet another identification. Let Ψ =
∞∑

n=0
Ψn

with Ψn ∈ Polns (Y# ).

Definition 3.61 We introduce the function called the polynomial function asso-
ciated with Ψ:

Y# � v �→ Ψ(v) :=
∞∑

n=0

〈v⊗n |Ψn 〉. (3.33)

Note that if we know the function (3.33), we have full knowledge of Ψ ∈
Pols(Y# ).

In the following proposition Ψ,Φ ∈ Pols(Y# ) are interpreted as polynomial
functions and v ∈ Y# :

Proposition 3.62 (1) Γ(p)Ψ(v) = Ψ(p# v).
(2) Ψ⊗s Φ(v) = Ψ(v)Φ(v).

Motivated by Prop. 3.62, we will often replace Ψ⊗s Φ with Ψ · Φ. We will
often do the same in the anti-symmetric case as well.

In (3.31), v1 , . . . , vn are elements of Y# . In (3.33) and in Prop. 3.62, v has the
same meaning. Sometimes, however, we will write Ψ(v) without having in mind
a concrete v ∈ Y# . We will treat the symbol v as the “generic variable in Y# ”;
see Subsect. 2.1.2.

In the anti-symmetric case we do not have an analog of (3.33). Nevertheless,
following the common usage of theoretical physics, one often calls elements of
Polna (Y# ) “polynomials in non-commuting variables from Y# ”. This suggests
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the notation Ψ(v) instead of Ψ(v1 , . . . , vn ). In this context v is just the name
of the generic variable in Y# . Similarly, motivated by Prop. 3.62 (1), we will
write Ψ(p# v) instead of Γ(p)Ψ(v). This point of view will be further developed
in Chap. 7.

3.5.2 Multiplication and differentiation operators

As mentioned above, we will use the letter v as the name of the generic variable
in Y# . This symbol will appear in the multiplication and derivative operators
that we define below.

Definition 3.63 For y ∈ Y, the operator of multiplication by y is defined by

y(v)Ψ := y ⊗s/a Ψ, Ψ ∈ Pols/a(Y# ).

We will often write y·v instead of y(v).
More generally, if Φ ∈ Pols/a(Y# ), Φ(v) will denote the operator of multipli-

cation by Φ:

Φ(v)Ψ := Φ⊗s/a Ψ.

Definition 3.64 For w ∈ Y# , the derivative in the direction of w is defined by

w(∇v )Ψ := n〈w|⊗1l⊗(n−1)Ψ, Ψ ∈ Polns/a(Y# ). (3.34)

We will often write w·∇v instead of w(∇v ).
More generally, if Φ ∈ Pols/a(Y), we define the derivative Φ(∇v ). For Φ ∈

Polms/a(Y), it acts on Ψ ∈ Polns/a(Y# ) as

Φ(∇v )Ψ = n(n− 1) · · · (n−m + 1)〈Φ|⊗1l⊗(n−m )Ψ. (3.35)

Then we extend this definition by linearity.

Note that in the symmetric case the differentiation operator defined above is
the usual differentiation of polynomials. In particular, w(∇v ) in (3.34) coincides
with the directional derivative Def. 2.50.

The operators of multiplication and differentiation are essentially equivalent
to the creation and annihilation operators. We will discuss this equivalence in
Subsect. 3.5.7.

In the following propositions y, y1 , y2 ∈ Y, w,w1 , w2 ∈ Y# and Φ,Ψ ∈
Pols/a(Y# ).

Proposition 3.65 (Symmetric case)

(1) [y1(v), y2(v)] = 0, [w1(∇v ), w2(∇v )] = 0,
(2) [w(∇v ), y(v)] = 〈w|y〉1l,
(3) w(∇v )Ψ⊗s Φ = (w(∇v )Ψ)⊗s Φ + Ψ⊗s (w(∇v )Φ),

(4) w(∇v ) =
n∑

i=1
1l⊗(i−1) ⊗ 〈w| ⊗ 1l⊗(n−j ) on Polns (Y# ).
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Proposition 3.66 (Anti-symmetric case)

(1) [y1(v), y2(v)]+ = 0, [w1(∇v ), w2(∇v )]+ = 0,
(2) [w(∇v ), y(v)]+ = 〈w|y〉1l,
(3) w(∇v )Ψ⊗a Φ = (w(∇v )Ψ)⊗a Φ + (IΨ)⊗a (w∇v )Φ),

(4) w(∇v ) =
n∑

i=1
(−1)i−11l(i−1)⊗ ⊗ 〈w| ⊗ 1l(n−j )⊗ on Polna (Y# ).

Proposition 3.67 Let p, h ∈ L(Y). In both the symmetric and the anti-
symmetric case we have

(1) Γ(p)y(v) = py(v)Γ(p), w(∇v )Γ(p) = Γ(p)p# w(∇v ),
(2) [dΓ(h), y(v)] = hy(v), [dΓ(h), w(∇v )] = −h# w(∇v ),
(3) Φ(∇v )Ψ(∇v ) = (Φ⊗s/a Ψ)(∇v ).

Ψ ∈ Polns/a(Y# ) can be treated as an n-linear function on (Y# )n . Let us denote
the generic variable of the j-th Y# by vj . We can write an identity

∇vΨ = (∇v1 + · · ·+∇vn
) Ψ, (3.36)

where on the left we use the functional notation, and on the right we treat Ψ as
a function depending on n separate variables. (3.36) should be compared with
(4) of Props. 3.65 and 3.66. Note that in the anti-symmetric case one has to
remember that ∇vi

anti-commutes with the operator of multiplication by vj ,
hence the alternating sign.

3.5.3 Right derivative

Definition 3.68 In the anti-symmetric case the derivative defined in Def. 3.64
should actually be called the left derivative. One can also introduce another oper-
ator with the name of the right derivative. For w ∈ Y# , the right derivative in
the direction of w acts on Ψ ∈ Polna (Y# ) as

w(
←−∇v )Ψ := n1l(n−1)⊗⊗〈w|Ψ.

More generally, if Φ ∈ Pola(Y), we can define the right derivative Φ(
←−∇v ). For

Φ ∈ Polma (Y) and Ψ ∈ Polna (Y# ), it is given by

Φ(
←−∇v )Ψ = n(n− 1) · · · (n−m + 1)1l(n−m )⊗⊗〈Φ|Ψ. (3.37)

Note that we need to invert the order (compare with Prop. 3.67 (3)):

Φ1(
←−∇v )Φ2(

←−∇v )Ψ = (Φ2 ⊗a Φ1)(
←−∇v )Ψ. (3.38)

Here is the relation between the left and right derivative:

Φ(∇v )Ψ = (−1)n(m−n)Φ(
←−∇v )Ψ, Φ ∈ Polma (Y),Ψ ∈ Polna (Y# ).
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3.5.4 Exponential law in the polynomial notation

The exponential law described in Subsect. 3.3.7 is not the only convention used
in the context of the tensor product of symmetric and anti-symmetric tensor
algebras. In fact, there exists another convention that avoids the complicated
multiplier involving the square roots of factorials. This convention is commonly
used in the “algebraic case” (when we are not interested in the Hilbert space
structure).

Let Y1 , Y2 be two vector spaces. Let ji : Yi → Y1 ⊕ Y2 , i = 1, 2, be the canon-
ical embeddings.

Definition 3.69

Umod : Pols/a(Y#
1 )

a l⊗Pols/a(Y#
2 ) → Pols/a ((Y1 ⊕ Y2)# )

is defined as the unique linear map such that if Ψ1 ∈ Poln1
s/a(Y#

1 ), Ψ2 ∈
Poln2

s/a(Y#
2 ), then (in the tensor notation)

UmodΨ1 ⊗Ψ2 := (Γ(j1)Ψ1)⊗s/a (Γ(j2)Ψ2) . (3.39)

We will use vi as the generic variables in Y#
i , i = 1, 2. In the “polynomial

notation”, Ψ := UmodΨ1 ⊗Ψ2 will be simply written as

Ψ(v) = Ψ1(v1)⊗s/a Ψ2(v2), v = (v1 , v2). (3.40)

Often, we will even omit ⊗s/a between the factors. Note that in the symmetric
case, if we use the “polynomial interpretation”, the exponential law is just the
usual multiplication of polynomials in two separate variables, which is consistent
with the notation (3.40).

Clearly, the identities (3.16) and (3.17) hold with U replaced with Umod.

Proposition 3.70 (1) (Symmetric case)

(y1 , y2)(v)Umod = Umod(y1(v1)⊗ 1l + 1l⊗ y2(v2)),

(w1 , w2)(∇v )Umod = Umod(w1(∇v1 )⊗ 1l + 1l⊗ w2(∇v2 )).

(2) (Anti-symmetric case)

(y1 , y2)(v)Umod = Umod(y1(v1)⊗ 1l + I1 ⊗ y2(v2)),

(w1 , w2)(∇v )Umod = Umod(w1(∇v1 )⊗ 1l + I1 ⊗ w2(∇v2 )).

3.5.5 Holomorphic continuation of polynomials

Let Y be a real vector space. The identification (3.3) leads to the following
isomorphism:

CΓs/a(Y) � Γs/a(CY). (3.41)
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In the polynomial notation this isomorphism is written as

CPols/a(Y# ) � Pols/a(CY# ).

Note that in the polynomial interpretation Ψ ∈ CPolns/a(Y# ) is a complex
multi-linear function on Y# , whereas the corresponding ΨC ∈ Pols/a(CY# ) is
a multi-linear function on CY# , which restricted to Y# equals Ψ.

Definition 3.71 The polynomial ΨC will be called the holomorphic extension of
Ψ.

(Of course, instead of polynomials one can consider more general holomorphic
functions.)

3.5.6 Polynomials on complex spaces

Let Z be a complex vector space. Recall that ZR denotes its realification. We
can distinguish four basic families of polynomials related to Z:

Definition 3.72 (1) Elements of Pols/a(ZR) are called real-valued polynomials.
(2) Elements of CPols/a(ZR) are called complex-valued polynomials.
(3) Elements of Pols/a(Z) are called holomorphic polynomials.
(4) Elements of Pols/a(Z) are called anti-holomorphic polynomials.

As sets, ZR, Z and Z can be identified. With these identifications, CPols/a(ZR)
is the largest family – it contains the other three.

Let us use the notation and results from Subsect. 1.3.6. In particular, we
recall the space Re(Z ⊕ Z) =

{
(z, z) : z ∈ Z}, whose complexification can be

identified with Z ⊕ Z. We have the obvious map (which according to Def. 1.84
is called T−1

1 )

ZR � z �→ (z, z) ∈ Re(Z ⊕ Z). (3.42)

Its complexification is

CZR � z1 + iz2 �→ (z1 + iz2 , z1 + iz2) ∈ Z ⊕ Z. (3.43)

With these identifications, we have

Pols/a(ZR) � Pols/a
(
Re(Z ⊕ Z)

)
,

CPols/a(ZR) � Pols/a(CZR) � Pols/a(Z ⊕ Z) � Pols/a(Z)⊗ Pols/a(Z).

In the last line, we first used (3.41), then (3.43), and finally the exponential law.
In the symmetric case, the polynomial functions corresponding to all four

cases of Def. 3.72 can be viewed as functions on the same space ZR. By allowing
convergent series, we can also consider more general functions, in particular
holomorphic and anti-holomorphic functions on Z, with obvious definitions.
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3.5.7 Modified Fock spaces

Let Z be a Hilbert space. Recall that the scalar product in the Fock space Γs/a(Z)
is inherited from the scalar product in the tensor algebra ⊗Z. This choice has
some disadvantages. Instead, many authors adopt a different convention, which
we will describe in this subsection.

Recall that N denotes the number operator on Γs/a(Z).

Definition 3.73 Let us set Γmod
s/a (Z) := Dom

√
N ! equipped with the scalar prod-

uct (Ψ|Φ)mod := (Ψ|N !Φ). We introduce also the unitary operator

Γs/a(Z) � Ψ �→ TmodΨ :=
1√
N !

Ψ ∈ Γmod
s/a (Z). (3.44)

Sometimes we will write Ψmod for TmodΨ.

The operators dΓ(h) and Γ(p) keep the same form after conjugation by Tmod.
If {ei}i∈I is an o.n. basis of Z, then{

1√
�k!

e�k : �k ∈ (NI )fin

}

is an o.n. basis of Γmod
s (Z), and {

eJ : J ∈ 2I
fin
}

is an o.n. basis of Γmod
a (Z), where e�k and eJ are defined in Subsects. 3.3.5 and

3.3.6.
Often we will consider the “polynomial notation” for

a l
Γs/a(Z), where Z is a

Hilbert space. In this case, it is convenient to use elements of the topological
dual of Z, instead of the algebraic dual, as arguments of the polynomial. The
topological dual of Z is identified with Z. Thus the polynomial notation for
a l
Γs/a(Z) will be Pols/a(Z). Clearly, Pols/a(Z) is dense in Γmod

s/a (Z).
The generic variable of Z will be often denoted z. Thus an element of Pols/a(Z)

in the polynomial notation will be written as Ψ(z). If w ∈ Z, then the correspond-
ing multiplication and differentiation operators are w(z) and w(∇z ). They are
related to the creation and annihilation operators as

Tmoda(w)(Tmod)−1 = w(∇z ), Tmoda∗(w)(Tmod)−1 = w(z). (3.45)

If Z1 ,Z2 are Hilbert spaces, then the map Umod defined in Def. 3.69 extends
to a unitary map from Γmod

s/a (Z1)⊗ Γmod
s/a (Z2) to Γmod

s/a (Z1 ⊕Z2). It is related to
the map U : Γs/a(Z1)⊗ Γs/a(Z2) → Γs/a(Z1 ⊕Z2) defined in Subsect. 3.3.7 by

Umod = TmodU(Tmod
1 ⊗ Tmod

2 )−1 ,

where Tmod , Tmod
1 , Tmod

2 are the unitary identifications of the corresponding Fock
and modified Fock spaces; see (3.44).
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3.6 Volume forms, determinant and Pfaffian

In this section we recall some well-known concepts related to anti-symmetric ten-
sors, such as volume forms, the determinant of a matrix and the Pfaffian of an
anti-symmetric matrix. They are usually introduced in a coordinate-dependent
fashion. In our presentation, we try to stress the coordinate-independent
approach based on the anti-symmetric tensor algebra.

3.6.1 Volume forms

Let X be a (real or complex) d-dimensional space. A special role is played by
the space ∧dX # of anti-symmetric d-forms on X , which is one-dimensional.

Definition 3.74 A non-zero element of ∧dX # will be called a volume form on
X . If the name of the generic variable in X is x, then a volume form on X will
be often denoted by dx.

Suppose that we choose a basis (e1 , . . . , ed) in X . Let (e1 , . . . , ed) be the dual
basis in X # . Then we have a distinguished volume form on X defined by

Ξ = ed ∧ · · · ∧ e1 . (3.46)

(Note the reverse order and the use of ∧ and not of ⊗a .) We have

〈Ξ|e1 ⊗a · · · ⊗a ed〉 = 1.

Definition 3.75 If X is a Euclidean, resp. unitary space of dimension d, then
we say that a volume form Ξ is compatible with its Euclidean, resp. unitary
structure if there exists an o.n. basis of X (e1 , . . . , ed) such that

Ξ = ed ∧ · · · ∧ e1 .

If Xi , i = 1, 2, are vector spaces with volume forms Ξi , then on X1 ⊕X2 we
take the volume form Ξ2 ∧ Ξ1. (Note again the reverse order and the use of ∧
and not of ⊗a .)

Definition 3.76 If we use the notation dxi for Ξi, we will often write dx2dx1

for dx2 ∧ dx1 .

Definition 3.77 If Ξ is a distinguished volume form on X , then we have a
distinguished volume form Ξdual on X # determined by

〈Ξ|Ξdual〉 = d!.

If in coordinates Ξ is given by (3.46), then

Ξdual = e1 ∧ · · · ∧ ed.

Note that (Ξdual)dual = Ξ. We will often use ξ as the generic variable of X # , and
then the dual volume form on X # will be denoted by dξ.
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3.6.2 Hodge star operator

Let d = dimX . Let us fix a volume form Ξ ∈ Γd
a (X # ) = Polda (X ) on X .

Definition 3.78 The Hodge star operator is defined as the map

θ : Pola(X # ) → Pola(X )

by

〈Φ|θΨ〉 :=
1

(d− n)!
〈Ψ⊗a Φ|Ξ〉, Ψ ∈ Polna (X # ), Φ ∈ Pold−n

a (X # ).

Note that θ maps Polna (X # ) onto Pold−n
a (X ). We will see in Subsect. 7.1.7 that

the Hodge star operator can be viewed as an analog of the Fourier transforma-
tion.

Let us fix a basis (e1 , . . . , ed) of X such that Ξ = ed ∧ · · · ∧ e1 . Let σ ∈ Sd be
a permutation and 0 ≤ n ≤ d. Then

θ eσ (1) ⊗a · · · ⊗a eσ (n) = sgn(σ) eσ (d) ⊗a · · · ⊗a eσ (n+1) .

3.6.3 Liouville volume forms

Let (Y, ω) be a symplectic space of dimension 2d. Note that ω ∈ La(Y,Y# ) �
Γ2

a(Y# ).

Definition 3.79 Y possesses a distinguished volume form called the Liouville
form,

ΞLiouv :=
1
d!
∧d ω. (3.47)

Recall that Y# is equipped with the symplectic form ω−1 . Thus it possesses
its own Liouville form 1

d! ∧d ω−1 . It is easy to see that it equals the volume form
dual to ΞLiouv .

3.6.4 Liouville volume forms on X # ⊕X
Assume that X is a vector space of dimension d. Consider Y = X # ⊕X with its
canonical symplectic form (1.9). If we choose an arbitrary basis e1 , . . . , ed of X
and e1 , . . . , ed is the dual basis, then one can use the wedge product to write the
canonical symplectic form as

ω =
d∑

i=1

ei ∧ ei. (3.48)

Hence the Liouville form on X # ⊕X is

e1 ∧ e1 ∧ · · · ed ∧ ed = e1 ∧ · · · ∧ ed ∧ ed ∧ · · · ∧ e1 . (3.49)
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Proposition 3.80 Choose an arbitrary volume form Ξ on X . Then the Liouville
volume form on Y is equal to Ξdual ∧ Ξ.

Proof We choose a basis of X and the dual basis of X # as above. Now for any
volume form Ξ on X there exists λ �= 0 such that

Ξ = λed ∧ · · · ∧ e1 , Ξdual = λ−1e1 ∧ · · · ∧ ed. �

The symplectic form ω−1 on Y# = X ⊕ X # can be also written as (3.48).
Hence the Liouville form on Y# can be written as (3.49).

Recall that often the symbols dx is used for a fixed volume form on X , and its
dual form on X # is denoted by dξ. Then the symbol dxdξ denotes the Liouville
volume form on X # ⊕X and on X ⊕ X # .

3.6.5 Densities and Lebesgue measures

Let X be a real d-dimensional vector space.

Definition 3.81 An element of ∧dX # /{1,−1} will be called a density on X .
The density associated with a volume form Ξ will be denoted by |Ξ|. Thus |Ξ| =
{Ξ,−Ξ}. If |Ξ| is a density on X , we define the corresponding dual density on
X # by |Ξ|dual := |Ξdual|.

Clearly, the set of volume forms compatible with a Euclidean structure is a
density.

Recall from Def. 3.74 that if the generic variable of X is denoted x, then dx

denotes a fixed volume form on X . Thus, according to Def. 3.81, the correspond-
ing density should be denoted by |dx|.
Definition 3.82 By a Lebesgue measure on X we mean a non-zero translation
invariant Borel measure on X finite on compact sets.

If |Ξ| is a density on X , then |Ξ| induces a Lebesgue measure μ on X by setting

μ (V (e1 , . . . , ed)) := |〈Ξ|e1 ⊗a · · · ⊗a ed〉|,

where V (e1 , . . . , ed) :=
{∑d

i=1 tiei : ti ∈ [0, 1]
}

is the parallelepiped with edges
e1 , . . . , ed . Conversely a Lebesgue measure on X yields a unique density on X .
Therefore, we will often identify the concepts of a Lebesgue measure and a den-
sity.

The integral w.r.t. a Lebesgue measure is called a Lebesgue integral. If F is a
function on X , its Lebesgue integral is denoted

´
F (x)dx (although, according to

Def. 3.81, the notation
´

F (x)|dx| would be more appropriate, since a Lebesgue
integral depends only on the density |dx|, and not on the volume form dx). For
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further reference let us list elementary properties of a Lebesgue integral:ˆ
Φ(∇x)f(x)dx = 0, Φ ∈ CPol≥1

s (X # );
ˆ

f(x + y)dx =
ˆ

f(x)dx, y ∈ X ;
ˆ

f(mx)dx = (det m)−1
ˆ

f(x)dx, m ∈ L(X ). (3.50)

3.6.6 Determinants

Definition 3.83 If a = [aij ] is a d× d matrix, one defines its determinant as

det(a) :=
∑

σ∈Sd

sgn(σ)
d∏

i=1

aiσ (i) .

It is possible to give a manifestly coordinate-independent definition of the
determinant. Let X be a d-dimensional vector space over K.

Definition 3.84 For a ∈ L(X ), its determinant is defined as the unique number
det a satisfying

Γ(a)
∣∣
∧d X =: det a1l.

Clearly, this definition is possible, because Γ(a) sends ∧dX into itself. If
(e1 , . . . , ed) is a basis of X and (e1 , . . . , ed) its dual basis, then det a coincides
with the determinant of the matrix [〈ei |aej 〉].
Proposition 3.85 (1) If X is real and a ∈ L(X ), then det a = det aC.

(2) If a, b ∈ L(X ), then det ab = det adet b.

(3) If ai ∈ L(Xi), i = 1, 2, then det(a1 ⊕ a2) = det a1 det a2 .

(4) If a ∈ L(X ), then det a = det a# .

3.6.7 Determinant of a bilinear form

Now let X be a finite-dimensional vector space equipped with a density |Ξ|.
Definition 3.86 If ζ ∈ L(X ,X # ), we define the determinant of ζ w.r.t. the
density |Ξ| as the unique number det ζ satisfying

Γ(ζ# )Ξ = det ζ Ξdual. (3.51)

(Note that the above definition does not depend on the sign of Ξ.)
If (e1 , . . . , ed) is a basis of X such that Ξ = ed ∧ · · · ∧ e1 , then det ζ is equal to

the determinant of the matrix [〈ei, ζej 〉].
If |Ξ| is compatible with a Euclidean scalar product ν, then the determinant

of ζ w.r.t. |Ξ| is equal to the determinant of the operator ν−1ζ ∈ L(X ).
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3.6.8 Orientations of vector spaces

Let X be a finite-dimensional real vector space.

Definition 3.87 Two bases of X are said to be equivalent if the determinant of
the matrix of the change of basis is positive. An orientation of X is the choice of
one of two equivalence classes of bases. Bases in this class are called compatible
with the orientation. A space equipped with an orientation is called oriented.

Sometimes it is useful to have the concept of an orientation also on a complex
vector space. Its definition is identical to that on the real vector space. The only
difference is that on a complex vector space the set of orientations is not made
of two elements but is homeomorphic to a circle.

3.6.9 Volume forms on complex spaces

Let Z be a complex space of dimension d equipped with a complex volume form
denoted by Ξ. On Z we have the volume form Ξ defined by 〈Ξ|Ψ〉 = 〈Ξ|Ψ〉,
Ψ ∈ Γd

a (Z). We will also need Ξ
rev

= (−1)
1
2 d(d−1)Ξ. We will usually denote Ξ

by dz and Ξ
rev

by dz. If e1 , . . . , ed is a basis of Z# and dz = ed ∧ · · · ∧ e1 then
dz = e1 ∧ · · · ∧ ed .

On Z ⊕ Z we have a distinguished volume form given by

i−dΞ
rev ∧ Ξ = i−ddz ∧ dz. (3.52)

We claim that the restriction of i−ddz ∧ dz to Re(Z ⊕ Z) is a real volume form.
This can be seen by noting that the canonical conjugation

Z ⊕ Z � (z1 , z2) �→ ε(z1 , z2) := (z2 , z1) ∈ Z ⊕ Z
fixes Re(Z ⊕ Z) and transforms i−ddz ∧ dz into its complex conjugate.

Recall that the realification of Z is denoted ZR. It is a real 2d-dimensional
space. ZR has a distinguished real volume form obtained by pulling back i−ddz ∧
dz from Re(Z ⊕ Z) to ZR by the transformation

ZR � z �→ (z, z) ∈ Re(Z ⊕ Z), (3.53)

(which we encountered before, e.g. in (3.42)). The Lebesgue measure obtained
from this volume form will be adopted as the standard measure on Z. Thus, a
typical notation for the Lebesgue integral of a function Z ∈ z �→ F (z) will beˆ

F (z)i−ddz ∧ dz. (3.54)

Let us give an argument for why i−ddz ∧ dz is a natural choice for the distin-
guished volume form on a complex vector space. Assume that Z is a unitary space
and that dz is compatible with its structure (see Subsect. 3.6.5). We have seen
in Subsect. 1.3.9 that Re(Z ⊕ Z) is equipped with a Euclidean scalar product
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and with a symplectic form. We claim that i−ddz ∧ dz is compatible with these
two structures. To see this, note that if (e1 , . . . , ed) is an o.n. basis in Z# � Z,
then

i−ddzdz = i−de1 ∧ · · · ∧ ed ∧ ed ∧ · · · ∧ e1

= e1 +e1√
2
∧ −ie1 +ie1√

2
∧ · · · ∧ ed +ed√

2
∧ −ied +ied√

2
,

and ( e1 +e1√
2

, −ie1 +ie1√
2

, · · · , ed +ed√
2

, −ied +ied√
2

) is both an o.n. and a symplectic basis

in Re(Z ⊕ Z).

Remark 3.88 The following remark may sound academic, but actually it is
related to a true computational nuisance – factors of

√
2 in various formulas,

which are often difficult to keep track of.
We saw that the volume form i−ddz ∧ dz is compatible with the natural

Euclidean structure on Re(Z ⊕ Z). Its pullback to ZR, however, is not com-
patible with the usual Euclidean structure on ZR, that is, with the real scalar
product Re z1 · z2 . To see this, note that the map (3.53) is not orthogonal. (3.53)
becomes orthogonal only after we multiply it by 1√

2
. A volume form compatible

with the Euclidean structure of ZR is (2i)−ddz ∧ dz.
One can say that when we consider integrals on Z, we actually view them

as integrals on Re(Z ⊕ Z), where the integrand has been pulled back from Z
onto Re(Z ⊕ Z) by (3.53). Therefore, when normalizing the Lebesgue measure
in (3.54), we prefer the convention adapted to Re(Z ⊕ Z) rather than to Z.

3.6.10 Pfaffians

Definition 3.89 Let d ∈ N. We denote by Pair2d the set of pairings of
{1, . . . , 2d}, i.e. the set of partitions of {1, . . . , 2d} into pairs.

A pairing can be uniquely written as(
(i1 , j1), (i2 , j2), . . . , (id , jd)

)
,

where ik < jk and i1 < i2 < · · · < id , and we can identify Pair2d with the subset
of permutations

Pair2d =
{
σ ∈ S2d : σ(2i− 1) < σ(2i), σ(2i− 1) < σ(2i + 1), 1 ≤ i ≤ d

}
.

It is easy to see that Pair2d has (2d)!
d!2d elements.

Definition 3.90 If ζ = [ζij ] is a 2d× 2d anti-symmetric matrix, one defines its
Pfaffian by

Pf(ζ) :=
∑

σ∈Pair2 d

sgn(σ)
d∏

i=1

ζσ (2i−1),σ (2i) .
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It is possible to give a manifestly coordinate-independent definition of the
Pfaffian. Now let Y be a (real or complex) vector space of dimension 2d, equipped
with the volume form Ξ.

Definition 3.91 For ζ ∈ La(Y# ,Y) � Γ2
a(Y), its Pfaffian w.r.t. Ξ is defined by

Pf(ζ) :=
1

2dd!
〈⊗d

aζ|Ξ〉. (3.55)

An alternative definition is

∧dζ =: d!Pf(ζ)Ξdual. (3.56)

If (e1 , . . . , e2d) is a basis of Y# such that Ξ = e2d ∧ · · · ∧ e1 , then Pf(ζ) coincides
with the Pfaffian of the matrix [〈ei |ζej 〉].
Proposition 3.92 (1) If ζ ∈ La(Y# ,Y), r ∈ L(Y), then

Pf(rζr# ) = Pf(ζ) det r.

(2) Let ζi ∈ La(Y#
i ,Yi), i = 1, 2. Then

Pf
([

ζ1 0
0 ζ2

])
= Pf(ζ1)Pf(ζ2),

where the Pfaffian on the l.h.s. is computed w.r.t. Ξ1 ∧ Ξ2 .
(3) For ζ ∈ La(Y# ,Y), one has

Pf(ζ)2 = det ζ,

where det a is computed w.r.t. the density |Ξdual|.
(4) Let X be a finite-dimensional vector space equipped with a volume form Ξ

and let us equip Y = X # ⊕X with the volume form Ξdual ∧ Ξ. Let a ∈ L(X ),

so that
[

0 a#

−a 0

]
∈ La(Y# ,Y). Then

Pf
([

0 a#

−a 0

])
= det a.

3.7 Notes

The tensor product of Hilbert spaces is studied e.g. in the monograph by Reed–
Simon (1980). The notions of Fock spaces and second quantization were originally
introduced by Fock (1932). Mathematical expressions can be found e.g. in Reed–
Simon (1980), Simon (1974), Bratteli–Robinson (1996) and Glimm–Jaffe (1987).
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