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Abstract We study a nonlinear second-order periodic problem driven by the scalar p-Laplacian with a
non-smooth potential. We consider the so-called doubly resonant situation allowing complete interaction
(resonance) with both ends of the spectral interval. Using variational methods based on the non-smooth
critical-point theory for locally Lipschitz functions and an abstract minimax principle concerning linking
sets we establish the solvability of the problem.
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1. Introduction

In this paper, we study the solvability of the following nonlinear periodic problem with
non-smooth potential:

−(|x′(t)|p−2x′(t))′ ∈ ∂j(t, x(t)) a.e. on T = [0, b],

x(0) = x(b), x′(0) = x′(b), 1 < p < ∞.

}
(1.1)

Here j : T × R → R is a function which is measurable in t ∈ T , locally Lipschitz in
x ∈ R, and ∂j(t, x) denotes the generalized (Clarke) subdifferential of j(t, ·) (see § 2).
We focus on the so-called doubly resonant problems. This, roughly speaking, means that
asymptotically as |x| → ∞ the ratios {u/|x|p−2x}u∈∂j(t,x), are located between two suc-
cessive eigenvalues of the negative scalar p-Laplacian with periodic boundary conditions.
We allow complete interaction (resonance) with both ends of the spectral interval and
we only impose non-uniform non-resonance conditions on the ratios pj(t, x)/xp. To make
all these a little more precise, consider the following nonlinear eigenvalue problem:

−(|x′(t)|p−2x′(t))′ = λ|x(t)|p−2x(t) a.e. on T = [0, b],

x(0) = x(b), x′(0) = x′(b), 1 < p < ∞.

}
(1.2)

A real parameter λ is said to be an eigenvalue of the negative scalar p-Laplacian
−(|x′|p−2x′)′ with periodic boundary conditions (i.e. x(0) = x(b), x′(0) = x′(b)), provided
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problem (1.2) has a non-trivial solution. It is known (see [15]) that the eigenvalues of
problem (1.2) are λn = (2nπp/b)p, n � 0, where πp = 2(p − 1)1/p

∫ 1
0 (1 − tp)−1/p dt. Note

that if p = 2 (linear case), then πp = π and so we recover the eigenvalues λn = (2nπ/b)2,
n � 0, of the negative Laplacian with periodic boundary conditions. Also it is interesting
to note that if we consider the vector one-dimensional p-Laplacian −(‖x′‖p−2x′)′, with x

being a vector-valued (i.e. R
N -valued, N > 1) Sobolev function with periodic boundary

conditions, then we have more eigenvalues in addition to the sequence {λn}n�0 mentioned
above. Now we say that problem (1.1) is in double resonance if

λn � lim inf
x→±∞

u

|x|p−2x
� lim sup

x→±∞

u

|x|p−2x
� λn+1

uniformly for almost all t ∈ T and all u ∈ ∂j(t, x). Due to the nonlinearity of the
differential operator, the lack of convenient orthogonal decomposition of the relevant
Sobolev space in terms of the corresponding eigenspaces, and finally the lack of variational
characterizations for the higher eigenvalues λn, n � 2, we limit ourselves to the beginning
of the spectrum, namely the interval [λ0 = 0, λ1 = (2πp/b)p].

Double-resonance problems have been studied in the context of semilinear (i.e. p = 2),
elliptic equations with Dirichlet boundary conditions and smooth potential (i.e. j(z, ·) ∈
C1). We refer to the works of Berestycki and de Figueiredo [2], Cac [3], Robinson [19],
Su [21] and the references cited therein.

For the scalar periodic problem, earlier works in this direction deal mostly with semi-
linear, smooth problems. We refer to the papers of Ahmad and Lazer [1], Mawhin [14]
Fonda and Lupo [11], Fabry and Fonda [10], Gossez and Omari [12] and Omari and Zano-
lin [18]. In [1] the ratio ∂j(t, x)/x asymptotically as |x| → +∞ stays strictly between the
zero and the first non-zero eigenvalue. So we do not have resonance. Their approach is
variational and uses the Saddle Point Theorem. Soon thereafter, Mawhin [14] extended
this work to problems in non-variational form and to allow complete resonance at the
zero eigenvalue for the ratio ∂j(t, x)/x and non-uniform non-resonance at the first non-
zero eigenvalue. His approach is degree theoretic using the Leray–Schauder theory and a
Villari-type condition. Fonda and Lupo [11] impose at the first eigenvalue an Ahmad–
Lazer–Paul-type resonance condition (namely, they assume that j(t, ·) satisfies a kind of
perturbed sign condition and

∫ b

0 j(t, c) dt → +∞ as |c| → +∞) and at the first non-zero
eigenvalue they impose a non-uniform non-resonance condition. Fabry and Fonda [10]
allow (possible) double resonance as |x| → ∞ for the ratio ∂j(t, x)/x and instead of
using non-uniform non-resonance conditions based on the potential j(t, x) (namely for
the ratio j(t, x)/x), as we do here, they employ a Landesman–Lazer-type condition.
Gossez and Omari [12] consider a non-variational problem and provide necessary and
sufficient conditions for non-resonance (surjectivity) to occur. Finally, Omari and Zano-
lin [18] employ conditions similar to the ones used here and degree-theoretic methods
to prove existence of solutions for doubly resonant problems. Recently, there has been
increasing interest in periodic problems driven by the scalar p-Laplacian. We mention
the works of Del Pino et al . [6], Fabry and Fayyad [9] and Mawhin [16]. All these works
assume a smooth potential function and only [9] deals with the doubly resonant situa-
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tion, using degree-theoretic methods, the Fuč́ık spectrum (asymmetric nonlinearity) and
a Landesman–Lazer-type condition (see also [10]).

Our approach is variational, based on the non-smooth critical-point theory for locally
Lipschitz functions (see [4] and [13]). Since this theory uses the generalized subdifferential
of locally Lipschitz functions, in the next section, for the convenience of the reader, we
recall the basic definitions and facts from the subdifferential calculus of locally Lipschitz
functions. We also mention some notions and results from the corresponding non-smooth
critical-point theory, which we shall need below. Our main references for these issues are
the books of Clarke [5] and Denkowski et al . [7].

2. Mathematical background

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X, X∗). A function ϕ : X → R is said to be locally Lipschitz if,
for every x ∈ X, there exists a neighbourhood U of x and a constant k > 0 (depending
on U), such that |ϕ(z) − ϕ(y)| � k‖z − y‖ for all z, y ∈ U . From convex analysis we
know that if ψ : X → R̄ = R ∪ {+∞} is a convex, lower semicontinuous, proper (i.e. not
identically +∞) function, then ψ is locally Lipschitz in the interior of its effective domain
dom ψ = {x ∈ X : ψ(x) < +∞}. In particular then, a continuous, convex function
ψ : X → R is locally Lipschitz. For a locally Lipschitz function ϕ : X → R, we define the
generalized directional derivative at x ∈ X in the direction h ∈ X, by

ϕ0(x; h) = lim sup
x′→x
λ↓0

ϕ(x′ + λh) − ϕ(x′)
λ

.

The function h → ϕ0(x; h) is sublinear continuous and so ϕ0(x; ·) is the support func-
tion of a non-empty, w∗-compact and convex set ∂ϕ(x), defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 � ϕ0(x; h) for all h ∈ X}.

The set ∂ϕ(x) is called the generalized (or Clarke) subdifferential of ϕ at x. If ϕ is
also convex, then the generalized subdifferential coincides with the subdifferential in the
sense of convex analysis given by

∂cϕ(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 � ϕ(y) − ϕ(x) for all y ∈ X}.

If ϕ ∈ C1(X), then ∂ϕ(x) = {ϕ′(x)}. Moreover, if ϕ, ψ : X → R are two locally Lipschitz
functions and µ ∈ R, then ∂(ϕ + ψ) ⊆ ∂ϕ + ∂ψ and ∂(µφ) = µ∂ϕ.

Given a locally Lipschitz function ϕ : X → R, a point x ∈ X is a critical point of ϕ if
0 ∈ ∂ϕ(x). Then c = ϕ(x) is a critical value of ϕ. It is easy to see that if x ∈ X is a local
extremum of ϕ (i.e. a local minimum or a local maximum), then x is a critical point of
ϕ (i.e. 0 ∈ ∂ϕ(x)).

In the classical (smooth) critical-point theory, central role plays a compactness-type
condition, known as the Palais–Smale (PS) condition. In the present non-smooth setting
this condition takes the following form.
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A locally Lipschitz function ϕ : X → R satisfies the non-smooth PS condition if any
sequence {xn}n�1 ⊆ X such that {ϕ(xn)}n�1 ⊆ R is bounded and m(xn) = inf[‖x∗‖ :
x∗ ∈ ∂ϕ(xn)] → 0 as n → ∞ has a strongly convergent subsequence.

If ϕ ∈ C1(X), then as we already mentioned ∂ϕ(xn) = {ϕ′(xn)}, n � 1, and so we see
that the above definition coincides with the classical one (see [17, p. 130] and [8, p. 171]).

The geometric notion that follows is important in critical-point theory (see [20, p. 116]
and [8, p. 178]).

Definition 2.1. Let Y be a Hausdorff topological space and let E1, D be two non-
empty subsets of Y with D closed. We say that E1 and D link in Y if

(a) E1 ∩ D = ∅,

(b) there exists a closed set E ⊇ E1 such that for any η ∈ C(E, Y ) with η|E1 = idE1 ,
we have η(E) ∩ D �= ∅.

Using this geometric notion, Kourogenis and Papageorgiou [13] proved the following
abstract minimax principle.

Theorem 2.2. If X is a reflexive Banach space, E1 and D are two non-empty subsets
of X with D closed, E1 and D link in X, ϕ : X → R is a locally Lipschitz function which
satisfies the non-smooth PS condition, supE1

ϕ < infD ϕ, then ϕ has a critical point x,
with critical value c = ϕ(x) � infD ϕ given by

c = inf
η∈Γ

sup
v∈E

ϕ(η(v)),

where E ⊇ E1 is as in the definition of linking sets and Γ = {η ∈ C(E, X) : η|E1 = idE1}.
Moreover, if c = infD ϕ, then x ∈ D.

Remark 2.3. With suitable choices of the sets E1 and D, from this abstract result, we
derive non-smooth versions of the Mountain Pass Theorem, the Saddle Point Theorem
and the Generalized Mountain Pass Theorem (see [13]).

3. The existence theorem

Our hypotheses on the non-smooth potential j(t, x) are as follows.

H(j). j : T × R → R is a function such that j(·, 0) ∈ L1(T ) and

(i) for all x ∈ R, t → j(t, x) is measurable;

(ii) for almost all t ∈ T , x → j(t, x) is locally Lipschitz;

(iii) for every r > 0, there exists αr ∈ L1(T )+ such that for almost all t ∈ T , all |x| � r

and all u ∈ ∂j(t, x), we have |u| � αr(t);
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(iv) there exist ϑ1, ϑ2 ∈ L∞(T ) with 0 � ϑ1(t) a.e. on T , ϑ2(t) � λ1 = (2πp/b)p a.e. on
T , these two inequalities are strict on sets of positive measure and

0 � lim inf
x→±∞

u

|x|p−2x
� lim sup

x→±∞

u

|x|p−2x
� λ1

uniformly for almost all t ∈ T and all u ∈ ∂j(t, x),

and

ϑ1(t) � lim inf
x→±∞

pj(t, x)
|x|p � lim sup

x→±∞

pj(t, x)
|x|p � ϑ2(t)

uniformly for almost all t ∈ T.

Remark 3.1. In hypothesis H(j) (iv), the first set of inequalities imply the double-
resonance situation with complete resonance at both ends. It should be pointed out that
none of the semilinear, ‘smooth’ papers on elliptic Dirichlet problems, mentioned in § 1,
allowed for complete resonance at both ends. They always had partial resonance (non-
uniform non-resonance) in at least one of the two endpoints. In hypothesis H(j) (iv),
the second set of inequalities imply that the ratio pj(t, x)/|x|p satisfies certain non-
uniform non-resonance conditions at ±∞. In [12], the authors discuss how the limits of
u/(|x|p−2x) and pj(t, x)/|x|p are related in the context of smooth, time-invariant poten-
tial (in [12], p = 2). Note that condition H(j) (iv) implies that

∫ b

0 j(t, c) dt → +∞ as
|c| → +∞, c ∈ R. Hence hypotheses H(j) remain true if we add to ∂j(t, x) an L∞(T )
function h(·). So our existence result is in fact a surjectivity result (we thank the referee
for this last observation).

In what follows,
W 1,p

per(T ) = {x ∈ W 1,p(T ) : x(0) = x(b)}.

Note that W 1,p(T ) is embedded compactly in C(T ) and so the pointwise evaluations of
x at t = 0 and t = b make sense. Also, by 〈·, ·〉 we denote the duality brackets for the
pair (W 1,p

per(T ), W 1,p
per(T )∗). Let ϕ : W 1,p

per(T ) → R be the energy function defined by

ϕ(x) =
1
p
‖x′‖p

p −
∫ b

0
j(t, x(t)) dt, x ∈ W 1,p

per(T ).

We know that ϕ is locally Lipschitz (see [7, p. 616]).

Proposition 3.2. If hypotheses H(j) hold, then ϕ satisfies the non-smooth PS con-
dition.

Proof. Consider a sequence {xn}n�1 ⊆ W 1,p
per(T ) such that

|ϕ(xn)| � M1 for some M1 > 0, all n � 1, and m(xn) → 0 as n → ∞.

Exploiting the fact that ∂ϕ(xn) ⊆ W 1,p
per(T )∗ is weakly compact and that the norm in

a Banach space is weakly lower semicontinuous, from the Weierstrass theorem, we know
that we can find x∗

n ∈ ∂ϕ(xn) such that m(xn) = ‖x∗
n‖, n � 1. We have

x∗
n = A(xn) − un, n � 1.
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Here un ∈ L1(T ), un(t) ∈ ∂j(t, xn(t)) a.e. on T (see [7, p. 617]) and A : W 1,p
per(T ) →

W 1,p
per(T )∗ is the nonlinear operator defined by

〈A(x), y〉 =
∫ b

0
|x′(t)|p−2x′(t)y′(t) dt for all x, y ∈ W 1,p

per(T ).

It is easy to check that A is demicontinuous, monotone, hence maximal monotone.
We claim that {xn}n�1 ⊆ W 1,p

per(T ) is bounded. Suppose for the moment that this is
not true. Then by passing to a suitable subsequence if necessary, we may assume that
‖xn‖ → ∞ as n → ∞. Set yn = xn/‖xn‖, n � 1. Then, at least for a subsequence, we
have

yn
w−→ y in W 1,p

per(T ) and yn → y in Cper(T ) as n → ∞

(recall that W 1,p
per(T ) is embedded compactly in Cper(T )). From the choice of the sequence

{xn}n�1 ⊆ W 1,p
per(T ), we have∣∣∣∣〈A(xn), yn − y〉 −

∫ b

0
un(t)(yn − y)(t) dt

∣∣∣∣ � εn‖yn − y‖ with εn ↓ 0,

⇒
∣∣∣∣〈A(yn), yn − y〉 −

∫ b

0

un(t)
‖xn‖p−1 (yn − y)(t) dt

∣∣∣∣ � εn

‖xn‖p−1 ‖yn − y‖. (3.1)

By virtue of hypothesis H(j) (iii) and (iv), for almost all t ∈ T , all x ∈ R and all
u ∈ ∂j(t, x), we have

|u| � α(t) + c|x|p−1 with α ∈ L1(T )+, c > 0.

So we can write that

|un(t)|
‖xn‖p−1 � α(t)

‖xn‖p−1 + c|yn(t)|p−1 a.e. on T,

⇒
{

un

‖xn‖p−1

}
n�1

⊆ L1(T ) is uniformly integrable. (3.2)

Hence it follows that∫ b

0

un(t)
‖xn‖p−1 (yn − y)(t) dt → 0 as n → ∞.

So if we pass to the limit as n → ∞ in (3.1), we obtain

lim
n→∞

〈A(yn), yn − y〉 = 0. (3.3)

But A being maximal monotone, it is generalized pseudomonotone (see [8, p. 58]) and
so from (3.3) it follows that

〈A(yn), yn〉 → 〈A(y), y〉,
⇒ ‖y′

n‖p → ‖y′‖p.
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Since y′
n

w−→ y′ in Lp(T ) and Lp(T ) has the Kadec–Klee property (being uniformly
convex), we deduce that y′

n → y′ in Lp(T ) and so yn → y in W 1,p
per(T ).

Recall that {un/‖xn‖p−1}n�1 ⊆ L1(T ) is uniformly integrable. So, by the Dunford–
Pettis theorem, we assume that

un

‖xn‖p−1
w−→ h in L1(T ).

Given ε > 0 and n � 1, we introduce the set

C+
ε,n =

{
t ∈ T : xn(t) > 0, −ε � un(t)

|xn(t)|p−2xn(t)
� λ1 + ε

}
.

Note that xn(t) → +∞ for all t ∈ {y > 0}. So if χε,n = χC+
ε,n

, because of hypothe-
sis H(j) (iv) we have that

χε,n(t) → 1 a.e. on {y > 0}.

We have

χε,n(t)
un(t)

‖xn‖p−1 = χε,n(t)
un(t)

xn(t)p−1 yn(t)p−1

⇒ − εχε,n(t)yn(t)p−1 � χε,n(t)
un(t)

‖xn‖p−1 � χε,n(t)(λ1 + ε)yn(t)p−1.

Taking weak limits in L1({y > 0}), we obtain

−εy(t)p−1 � h(t) � (λ1 + ε)y(t)p−1 a.e. on {y > 0}.

Since ε > 0 was arbitrary, let ε ↓ 0 to obtain

0 � h(t) � λ1y(t)p−1 a.e. on {y > 0}. (3.4)

Arguing in a similar fashion, we also show that

λ1|y(t)|p−2y(t) � h(t) � 0 a.e. on {y < 0}. (3.5)

Finally, from (3.2), it is clear that

h(t) = 0 a.e. on {y = 0}. (3.6)

From (3.4), (3.5) and (3.6), it follows that there exists ξ ∈ L∞(T ) such that 0 � ξ(t) �
λ1 a.e. on T and h(t) = ξ(t)|y(t)|p−2y(t) a.e. on T . From the choice of the sequence
{xn}n�1 ⊆ W 1,p

per(T ), we have

∣∣∣∣〈A(yn), v〉 −
∫ b

0

un(t)
‖xn‖p−1 v(t) dt

∣∣∣∣ � εn‖v‖ for all v ∈ W 1,p
per(T ), with εn ↓ 0.
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Passing to the limit as n → ∞ and using the fact that A(yn) w−→ A(y) in W 1,p
per(T )∗, we

obtain

〈A(y), v〉 =
∫ b

0
h(t)v(t) dt for all v ∈ W 1,p

per(T ). (3.7)

If by 〈·, ·〉0 we denote the duality brackets for the pair

(W 1,p
0 (T ), W−1,q(T ) = W 1,p

0 (T )∗)
(

1
p

+
1
q

= 1
)

,

and since (|y′(t)|p−2y′)′ ∈ W−1,q(T ) (see [7, p. 362]) via Green’s identity (integration by
parts), we obtain

〈A(y), v〉 = 〈−(|y′|p−2y′)′, v〉0 for all v ∈ W 1,p
0 (T ). (3.8)

From (3.7) and (3.8), we have

〈−(|y′|p−2y′)′, v〉0 =
∫ b

0
h(t)v(t) dt = 〈h, v〉0 for all v ∈ W 1,p

0 (T ),

⇒ − (|y′(t)|p−2y′(t))′ = h(t) a.e. on T, y(0) = y(b) (since y ∈ W 1,p
per(T )). (3.9)

Also from (3.7), again via Green’s identity, we have

|y′(b)|p−2y′(b)v(b) − |y′(0)|p−2y′(0)v(0) −
∫ b

0
(|y′(t)|p−2y′(t))′v(t) dt

=
∫ b

0
h(t)v(t) dt for all v ∈ W 1,p

per(T ),

⇒ |y′(0)|p−2y′(0)v(0) = |y′(b)|p−2y′(b)v(b) for all v ∈ W 1,p
per(T ) (see (3.9)),

⇒ |y′(0)|p−2y′(0) = |y′(b)|p−2y′(b).

Because r → |r|p−2r is a homeomorphism on R, we infer that

y′(0) = y′(b).

So, finally, we have

−(|y′(t)|p−2y′(t))′ = ξ(t)|y(t)|p−2y(t) a.e. on T = [0, b],

y(0) = y(b), y′(0) = y′(b), 0 � ξ(t) � λ1, a.e. on T.

}
(3.10)

We consider the three distinct possible cases concerning the weight function ξ ∈
L∞(T )+.

Case 1 (ξ ≡ 0). In this case from (3.10) we have that y = c ∈ R. Note that ‖y‖ = 1
(since yn → y in W 1,p

per(T ) and ‖yn‖ = 1, n � 1) and so c �= 0 (i.e. y is the normalized
eigenfunction for the simple eigenvalue λ0 = 0). Assume that c > 0 (the analysis is similar
if c < 0). From the mean-value theorem for locally Lipschitz functions (see [7, p. 609])
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and parts (iii) and (iv) of hypothesis H(j), we see that for almost all t ∈ T and all x ∈ R,
we have

|j(t, x)| � α̂(t) + ĉ|x|p with α̂ ∈ L1(T )+, ĉ > 0,

⇒ |j(t, xn(t))|
‖xn‖p

� α̂(t)
‖xn‖p

+ ĉ|yn(t)|p a.e. on T,

⇒
{

j(·, xn(·))
‖xn‖p

}
n�1

⊆ L1(T ) is uniformly integrable .

Thus because of the Dunford–Pettis theorem, we may assume that

j(·, xn(·))
‖xn‖p

w−→ g in L1(T ).

Arguing as for the sequence {un/‖xn‖p−1}n�1 and using the second set of limit inequal-
ities in hypothesis H(j) (iv), we establish that

g(t) = η(t)|y(t)|p a.e. on T,

with η ∈ L∞(T ), ϑ1(t) � pη(t) � ϑ2(t) a.e. on T . From the choice of the sequence
{xn}n�1 ⊆ W 1,p

per(T ) we have that∣∣∣∣1p‖y′
n‖p

p −
∫ b

0

j(t, xn(t))
‖xn‖p

dt

∣∣∣∣ � M1

‖xn‖p
.

Passing to the limit as n → ∞ and recalling that ‖y′
n‖p → 0, we obtain

|c|p
∫ b

0
η(t) dt = 0.

But
∫ b

0 η(t) dt > 0 and so |c|p
∫ b

0 η(t) dt > 0, a contradiction.

Case 2 (both sets {0 < ξ} and {ξ < λ1} have positive measure). Consider
the weighted nonlinear eigenvalue problem

−(|y′(t)|p−2y′(t))′ = λξ(t)|y(t)|p−2y(t) a.e. on T,

y(0) = y(b), y′(0) = y′(b), λ ∈ R.

}
(3.11)

Since ξ � 0, λ0 = 0 is the first eigenvalue and because of the strict monotonicity of the
eigenvalues on the weight, for the first non-zero eigenvalue λ1(ξ) > 0 of (3.11), we have
λ1(ξ) > 1. Therefore, from (3.10) it follows that y ≡ 0, a contradiction to the fact that
‖y‖ = 1.

Case 3 (ξ = λ1). From (3.10) it follows that y is an eigenfunction corresponding to
the eigenvalue λ1 > 0. So

‖y′‖p
p = λ1‖y‖p

p and y(t) �= 0 a.e. on T (3.12)
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(see [15]; in fact, y(·) has isolated zeros). From the choice of the sequence {xn}n�1 ⊆
W 1,p

per(T ), we have
1
p
‖y′

n‖p
p −

∫ b

0

j(t, xn(t))
‖xn‖p

dt � M1

‖xn‖p
.

Passing to the limit as n → ∞, we obtain

‖y′‖p
p �

∫ b

0
η(t)|y(t)|p dt < λ1‖y‖p

p

(
since η(t) � 1

p
ϑ2(t) a.e. on T

)
,

which contradicts (3.12).

From the analysis of the three distinct cases, it follows that {xn}n�1 ⊆ W 1,p
per(T ) is

bounded. Thus by passing to a suitable subsequence if necessary, we may assume that
xn

w−→ x in W 1,p
per(T ) and xn → x in Cper(T ). By virtue of hypothesis H(j) (iii), we have

that the sequence {un}n�1 ⊆ L1(T ) is bounded and so
∫ b

0 un(xn − x) dt → 0 as n → ∞.
Because ∣∣∣∣〈A(xn), xn − x〉 −

∫ b

0
un(t)(xn − x)(t) dt

∣∣∣∣ � εn‖xn − x‖,

we obtain that
lim

n→∞
〈A(xn), xn − x〉 = 0.

Exploiting the generalized pseudomonotonicity of A and the Kadec–Klee property of
Lp(T ) as before, we conclude that xn → x in W 1,p

per(T ). �

Consider the symmetric, pointed, closed and convex cone C ⊆ W 1,p
per(T ), defined by

C =
{

x ∈ W 1,p
per(T ) :

∫ b

0
|x(t)|p−2x(t) dt = 0

}
.

Proposition 3.3. If hypotheses H(j) hold, then ϕ|C is coercive (i.e. if ‖x‖ → ∞,
then ϕ(x) → +∞).

Proof. Suppose that the result of the proposition is not true. Then we can find
{xn}n�1 ⊆ C and M2 > 0 such that

ϕ(xn) � M2 for all n � 1 and ‖xn‖ → ∞.

Let yn = xn/‖xn‖, n � 1. We may assume that

yn
w−→ y in W 1,p

per(T ) and yn → y in Cper(T ), with y ∈ C.

We have
1
p
‖y′

n‖p
p −

∫ b

0

j(t, xn(t))
‖xn‖p

dt � M2

‖xn‖p
. (3.13)

As in the proof of Proposition 3.2, we can show that j(·, xn(·))/‖xn‖p w−→ g in L1(T )
with 0 � g(t) � (λ1/p)|y(t)|p a.e. on T . So if we pass to the limit as n → ∞ in (3.13),
we obtain

1
p
‖y′‖p

p � λ1

p
‖y‖p

p.

https://doi.org/10.1017/S0013091504000264 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000264


Solutions for doubly resonant periodic problems 209

Because y ∈ C, it follows that (see [15])

‖y′‖p
p = λ1‖y‖p

p. (3.14)

If y ≡ 0, then from (3.13) we see that ‖y′
n‖p → 0 and so yn → 0 in W 1,p

per(T ), a
contradiction to the fact that ‖yn‖ = 1 for all n � 1. So y �= 0 and it is an eigenfunction
corresponding to the eigenvalue λ1 > 0, hence y(t) �= 0 a.e. on T . Moreover, as in the
proof of Proposition 3.2, we can check that g(t) = η(t)|y(t)|p with ϑ1(t) � pη(t) � ϑ2(t)
a.e. on T . Therefore, we have

‖y′‖p
p =

∫ b

0
η(t)|y(t)|p dt < λ1‖y‖p

p,

a contradiction to (3.14). This proves the proposition. �

Proposition 3.4. If hypotheses H(j) hold, then ϕ|R is anticoercive (i.e. ϕ(c) → −∞
as |c| → ∞, c ∈ R).

Proof. This is a direct consequence of hypothesis H(j) (v). �

Now we have all the necessary tools to apply Theorem 2.2 and produce a solution for
the problem (1.1).

Theorem 3.5. If hypotheses H(j) hold, then problem (1.1) has a solution x ∈ C1
per(T )

with |x′|p−2x′ ∈ W 1,p
per(T ).

Proof. By virtue of Propositions 3.3 and 3.4, we can find c > 0 such that

ϕ(±c) < inf
C

ϕ = mC .

Let

E1 = {±c}, E = {x ∈ W 1,p
per(T ) : −c � x(t) � c for all t ∈ T} and D = C.

We claim that the sets E1 and D link in W 1,p
per(T ). To this end note that E1 ∩ D = ∅ and

let γ ∈ C(E, W 1,p
per(T )) such that γ|E1 = idE1 . So we have γ(±c) = ±c. Consider the map

ψ : W 1,p
per(T ) → R defined by

ψ(x) =
∫ b

0
|x(t)|p−2x(t) dt.

Evidently, ψ is continuous. Then ψ ◦ γ ∈ C(E) and we have

(ψ ◦ γ)(−c) = ψ(−c) < 0 < ψ(c) = (ψ ◦ γ)(c).

So, by the intermediate-value theorem, we can find x ∈ E such that

ψ(γ(x)) = 0,

⇒ γ(E) ∩ D �= ∅,

⇒ E1 and D link in W 1,p
per(T ).
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Therefore, we can apply Theorem 2.2 and obtain x ∈ W 1,p
per(T ) such that

0 ∈ ∂ϕ(x) and mC � ϕ(x).

From the inclusion as in the proof of Proposition 3.2, we obtain that x ∈ C1
per(T ) with

|x′|p−2x′ ∈ W 1,p
per(T ) is a solution of problem (1.1). �

Remark 3.6. As the referee pointed out, it would be interesting to know if we can
replace the second condition in hypothesis H(j) (iv) by the weaker conditions

lim
|c|→∞

∫ b

0

[
j(t, cu1(t)) − λ1

p
|cu1(t)|p

]
dt = −∞ and lim

|c|→∞

∫ b

0
j(t, c) dt = +∞,

where u1 is an eigenfunction associated with λ1 (Ahmad–Lazer–Paul-type conditions in
terms of the potential function j(t, x)).

Example 3.7. Consider the following non-smooth locally Lipschitz function:

j1(x) =

⎧⎪⎪⎨
⎪⎪⎩

λ1

2p
|x|p − |x| if x � 0,

α

p
λ1|x|p +

c

p
λ1|x|p sin(ln(1 + x)) if x � 0.

Here α, c ∈ (0, 1), α > c and α + c
√

1 + (1/p2) = 1. We have

lim
x→−∞

pj1(x)
|x|p = 1

2λ1,

lim inf
x→+∞

pj1(x)
|x|p = (α − c)λ1 > 0,

lim sup
x→+∞

pj1(x)
|x|p = (α + c)λ1 < λ1.

Also, because j1 ∈ C1(R\{0}), we have

lim
x→−∞

j′
1(x)

|x|p−2x
= 1

2λ1,

lim inf
x→+∞

j′
1(x)

xp−1 =
(

α + c − c

p

)
λ1 > 0,

lim sup
x→+∞

j′
1(x)

xp−1 =
(

α + c

√
1 +

1
p2

)
λ1 = λ1.

Thus we have resonance at λ1. Then, for any α ∈ L1(T ) and h ∈ L∞(T ), the function
j(t, x) = j1(x) + α(t) max {|x|, |x|1/2} + h(t) satisfies hypothesis H(j).
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8. Z. Denkowski, S. Migórski and N. S. Papageorgiou, An introduction to nonlinear
analysis: applications (Kluwer/Plenum, New York, 2003).

9. C. Fabry and D. Fayyad, Periodic solutions of second order differential equations with
a p-Laplacian and assymetric nonlinearities, Rend. Istit. Mat. Univ. Trieste 24 (1992),
207–227.

10. C. Fabry and A. Fonda, Periodic solutions of nonlinear differential equations with
double resonance, Annli Mat. Pura Appl. 157 (1990), 99–116.

11. A. Fonda and D. Lupo, Periodic solutions of second order ordinary differential equa-
tions, Boll. UMI 7 (1989), 291–299.

12. J.-P. Gossez and P. Omari, Periodic solutions of a second order ordinary differential
equation: a necessary and sufficient condition for nonresonance, J. Diff. Eqns 94 (1991),
67–82.

13. N. Kourogenis and N. S. Papageorgiou, Nonsmooth critical point theory and non-
linear elliptic equations at resonance, J. Aust. Math. Soc. A69 (2000), 245–271.

14. J. Mawhin, Remarks on the preceeding paper of Ahmad and Lazer on periodic solutions,
Boll. UMI 6 (1984), 229–238.

15. J. Mawhin, Periodic solutions of systems with p-Laplacian-like operators, in Nonlinear
Analysis and its Applications to Differential Equations, Lisbon, 1997, Progress in Nonlin-
ear Differential Equations and Applications, pp. 37–63 (Birkhäuser, 1998).
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