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Unravelling the Rayleigh–Taylor instability by
stabilization
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A recently proposed stabilization mechanism for the Rayleigh–Taylor instability, using
magnetic fluids and azimuthally rotating magnetic fields, is experimentally investigated
in a cylindrical geometry and compared with the theoretical model. This approach
allows the imperfection of the experimental setup to be exploited for measuring the
critical field strength of the instability without ever reaching the supercritical state.
Furthermore, we use a fast increase in the magnetic field strength to prevent an already
occurring instability and force the system back to its initial state. In this way we
measure the growth dynamics repeatedly and acquire the characteristic time scale τ0 of
the instability.
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1. Introduction

The Rayleigh–Taylor instability (RTI) occurs when a dense fluid is accelerated
into a less dense fluid (Rayleigh 1883; Taylor 1950). It can influence processes at
all scales, from inertial confinement fusion (Evans, Bennett & Pert 1982), up to
supernovae (Smarr et al. 1981). As the RTI is caused by gravitational acceleration
and is a backward bifurcating instability without supercritical equilibrium states, it is
experimentally challenging to prepare and measure. Experimental approaches comprise
the sudden destruction of a diaphragm of shellac (Lewis 1950, preparation), the
upside-down rotation (Völtz, Pesch & Rehberg 2001, preparation) or vertical vibration
(Wolf 1969, stabilization) of the whole setup. Rannacher & Engel (2007) proposed a
potentially less disturbing mechanism to stabilize high-wavenumber modes of the RTI,
which uses magnetic fluids and azimuthally rotating magnetic fields.

In this article, we prove the feasibility of that stabilization mechanism. We further
show that the instability can be described by a subcritical pitchfork bifurcation, and
exploit the imperfection of our experimental setup to acquire the critical field strength
of the RTI without ever reaching the supercritical state. The experimental results are
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FIGURE 1. A sketch of the experimental setup with an example of a three-dimensional
reconstruction of the common fluid interface. The cylindrical container is filled with both fluids
and placed inside two pairs of coils, which generate an azimuthally rotating magnetic field. The
size of the interface can be changed by replacing the thin aluminium washer in the experiment
container. A vertically mounted X-ray setup is used to record the interface shape, while varying
the strength of the magnetic field.

quantitatively compared with the stability boundary predicted by the theoretical model.
The method has the advantage that a Rayleigh–Taylor unstable system can be forced
back to a stable state by increasing the magnetic field, therefore recovering the initial
condition and allowing repeated measurements of the dynamics of the instability. We
use this procedure to measure the characteristic time scale τ0 of the first unstable
mode.

2. Experimental setup

Figure 1 shows a sketch of the experimental setup. A commercially available
magnetic fluid (Ferrotec Corp., type APG512a, density ρ0 = 1240 kg m−3, initial
susceptibility χ0 = 1.4, dynamic viscosity η0 = 75 mPa s, surface tension σ0 =
23.8 mN m−1) and a non-magnetic fluid (Solvay Solexis Inc., Galden-SVP, ρ1 =
1706 kg m−3, η1 = 1.4 mPa s, σ1 = 16 mN m−1) are used to prepare the experiment.
The interfacial tension has been measured utilizing a ring tensiometer (Lauda
Co., TD 1). Using the density correction by Zuidema & Waters (1941) we get
σ = 6.6 ± 0.3 mN m−1. This value was corroborated by measurements with a drop
volume tensiometer utilizing a drop rate of 1/60 s (Lauda Co., TVT 2). Both fluids
are poured into a cylindrical container (diameter 38 mm, depth for each fluid 5 mm),
which is equilibrated with a spirit level, excluding inclinations larger than 3× 10−4 rad.
The size of their common interface can be changed by mounting thin aluminium
washers with centric holes of different size. The rotating magnetic field is provided
by two orthogonally oriented pairs of coils, driven by amplifiers (HKAudio, type
VC2400). A function generator produces the 90◦ phase-shifted two-channel sinusoidal
input signal for this setup. The shape of the common interface between the two fluids
is measured with a vertically mounted X-ray-transmission setup (Richter & Bläsing
2001; Gollwitzer et al. 2007), which exploits the different attenuation coefficients of
the two liquids to reconstruct the shape of the common interface.
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FIGURE 2. (a) Three-dimensional representation of the stable interface (15 mm diameter, z
direction scaled by 10) for five different values, A–E, of the control parameter. (b) Control
parameter dependence of the pattern amplitude, displaying every fourth data point. The fit by the
stable (unstable) solution of (3.6) is marked by green (red) solid lines. (c) Imperfect subcritical
pitchfork bifurcation in red and green. For comparison the solid (dotted) black lines denote the
stable (unstable) branch of the perfect bifurcation.

The preparation of the starting condition is a two-step process. First the container is
filled with the less dense magnetic fluid up to the aluminium washer. After that, the
rotating magnetic field is activated at maximum field strength and the non-magnetic
fluid is poured in the container, resulting in a magnetically stabilized layering of the
two fluids. The amplitude of the magnetic field is then quasi-statically reduced until
the system becomes unstable, while the shape of the common interface is recorded
with the X-ray setup.

3. Experimental results

In the following we first present radioscopic measurements of the shape of the
interface and match them with an analytical description. Second, we compare the
control parameter dependence of the pattern amplitude with the scaling predicted by
an imperfect amplitude equation. Third, the experimentally determined boundary of
stability of the interface is compared with the model by Rannacher & Engel (2007).
Finally we record the growth dynamics of the unstable interface and fit the dynamic
amplitude equation.

3.1. The shape of the interface
Figure 2(a) shows five representative reconstructions of the interface at different
subcritical magnetic field strengths. With decreasing field strength the circular interface
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develops a prominent crest (red) and a trough (blue). The analytical function for the
interface shape in an infinite domain allows us to explain the observed mode within
the experimental measurement errors in the described finite geometry. Forcing terms
related to the boundary conditions will therefore be absent from this equation. To
obtain it, we use the equation for the magnetic potential at the common interface under
the influence of an azimuthally rotating magnetic field (Rannacher & Engel 2007).
Inserting this into the ferrohydrodynamic Bernoulli equation (Rosensweig 1985, §5)
and linearizing the resulting differential equation for the interface yields[

− µ0χ
2H2

0

(2+ χ)k
(
cos2Ωt∂xx + sin2Ωt∂yy + sin 2Ωt∂xy

)
− σ(∂xx + ∂yy)+ (ρ0 − ρ1)g

]
× h(x, y)= 0, (3.1)

with the permeability of free space µ0, the magnetic field H0, its rotating frequency
Ω , the interface tension σ and the height h(x, y) of the magnetic liquid layer. The
wavenumber k of the interface mode is included in (3.1) to account for the magnetic
boundary conditions limz→±∞ ∂zφ = 0 on the magnetic potential φ(x, y, z), which in the
described case leads to φ(z±)(x, y, z) = φ(x, y)e∓kz (Rannacher & Engel 2007). Since
we are only interested in stable solutions of the interface, one can assume that the
time-dependent terms in (3.1) will only contribute with their mean values. This yields
the Helmholtz-type differential equation for the interface

−σeff∇2
⊥h(x, y)+ (ρ0 − ρ1)gh(x, y)= 0, (3.2)

with ∇2
⊥ = ∂xx + ∂yy, where the influence of the rotating magnetic field is included

in the wavenumber- and field-strength-dependent increased effective interface tension
σeff = (µ0χ

2H2
0)/(2(2+ χ)k)+ σ . Solving (3.2) in cylindrical geometry with respect to

the boundary condition provided by the circular aluminium washer of diameter d

h

(
d

2
, ϕ

)
= 0, (3.3)

and the constant volume of both fluids∫ 2π

0

∫ d/2

0
h(r, ϕ) dr dϕ = const., (3.4)

yields

h(r, ϕ)= A1J1(keff r) cos(ϕ + θ1). (3.5)

Here J1 is a Bessel function of the first kind, keff =
√
|ρ0 − ρ1|gσ−1

eff and θ1 determines
the phase. The amplitude A1 has been determined by fitting (3.5) to the reconstructed
interface.

It is also worth mentioning that we observed a field-dependent rotational symmetric
distortion of the surface, which was taken into account by adjusting the Bessel mode
J0 in addition, in order to describe the observed shape within the accuracy of the X-ray
setup.

3.2. Scaling of the pattern amplitude
Figure 2(b) shows the outcome of the fitted pattern amplitude A1 as a function of the
control parameter ε = 1 − H2/H2

c where Hc is the critical field strength for the perfect
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FIGURE 3. Dependence of the amplitude A1 of the J1-mode on the magnetic field strength H for
different interface diameters d. The x axis is a mirror image to comply with the representation of
the bifurcation.

bifurcation. However, before the pattern amplitude A1 becomes unstable one observes
a monotonic increase. The scaling of A1 may be described by an amplitude equation.
From symmetry considerations one expects an amplitude equation of the form

τ0Ȧ1 = A1ε + βA3
1 + b, (3.6)

where b describes the imperfection at lowest order, as displayed in figure 2(c). By
fitting the steady solution A1(ε) of the amplitude equation (3.6) to the recorded
amplitude data it is possible to acquire the critical field strength Hc. The fitted
stable branch of the imperfect subcritical pitchfork bifurcation in figure 2(b) shows
remarkable agreement with the experimental data. One should note that it is not
required to leave the stable branch of the bifurcation for this measurement. The critical
field strength can therefore be determined without the actual occurrence of the RTI.

Figure 3 shows recorded amplitude datasets for different interface sizes. Each curve
depicts a stable branch of the subcritical pitchfork bifurcation at the specific diameter.
With decreasing diameter the field needed to stabilize the RTI decreases. At 8 mm
(not shown) the interface tension alone is sufficient to suppress any growing mode.
The magnitude of the imperfection b is varying between experiments. We suspect
that the imperfection is caused by a remaining small tilt of the experimental setup,
and/or inhomogeneities of the rotating magnetic field due to air bubbles in the
experimental container. This imperfection is not a nuisance, but actually required for
our measurement method of Hc. As soon as the slope of the measured amplitude starts
to diverge, the measurement process is interrupted, because a further decrease of the
magnetic field strength would lead to the onset of the RTI, causing the inconvenience
of a new filling procedure.
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FIGURE 4. The critical field strength Hc of the RTI as a function of the wavenumber k of
the unstable mode. The red data points show the measured values. The dashed line depicts
the theoretical prediction for the stability boundary using the measured material parameters
ρ0, ρ1, σ and the measured initial susceptibility χ0 = 1.4 of APG512a. The solid line shows the
same but using a lowered effective susceptibility χred.

3.3. The boundary of stability

With the acquisition of the critical field strength Hc as a function of the interface
diameter d, we measured the stability boundary Hc(k) predicted by Rannacher &
Engel (2007), as marked in figure 4 by red data points. The dashed line gives
the stability boundary predicted by the model of Rannacher & Engel (2007) taking
into account the measured densities and interfacial tension. In a first approach we
select the measured initial susceptibility χ0 = 1.4 for a comparison with the model.
The theoretical model by Rannacher & Engel (2007) was derived assuming a linear
magnetization law M(H) = χH, with χ = const. However, as shown in figure 5(a),
the magnetization of the ferrofluid APG512a is a nonlinear function of the internal
magnetic field. The green data points display the values measured with a vibrating
sample magnetometer (Lakeshore Inc., type 7404) versus the internal magnetic field
(for details see Friedrich et al. 2012). The solid line stems from a fit of the data by the
modified mean field model of second order (Ivanov & Kuznetsova 2001). Figure 5(b)
displays the derivative of the magnetization curve, which has its maximum value
χ0 = 1.4 at the origin and decays for higher values of the magnetic field. Since χ0 is
the highest value in the investigated field range [0 kA m−1, 7 kA m−1] the predicted
stability boundary underestimates the measured values. The solid line in figure 4 is
obtained by fitting a constant reduced magnetic susceptibility χred = 0.99 to the data.
According to figure 5(b), this value is well situated in the centre of the investigated
interval.

It should be noted that a fit by an effective susceptibility is only a first
approximation to cope with the nonlinear magnetization curve. An improved
description would also have to deal with the fact that we use a finite,
cylindrical container, which unavoidably generates an inhomogeneous magnetization.
A combination of both intricacies would require a full numerical treatment.
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FIGURE 5. (a) Magnetization versus the internal magnetic field for the ferrofluid APG512a,
where for clarity only every fifth data point is shown. The solid line displays a fit of the data
by the modified mean field model of second order (Ivanov & Kuznetsova 2001). The tangential
susceptibility χta = ∂M/∂H is displayed in (b).

Even though for wavenumbers larger than the capillary wavenumber kc =√|ρ0 − ρ1|g/σ = 831 m−1 the system should be stable without the application of
an external field, we observe (see figure 4) the occurrence of the instability at finite
field strengths for the experiments corresponding to 851 and 902 m−1. These two data
points do not match the overall behaviour indicated by the theoretical prediction
for an infinite geometry. In addition, their measurement errors, determined from
fitting the recorded amplitude data by the static solution of (3.6), are in both cases
comparatively large. For this reason, we consider them to be artifacts, caused by the
imperfection – mainly the increasing influence of the forcing generated by the small
circumference of the aluminium washer. Note, that a forcing term was not included
in (3.1).

3.4. Growth dynamics of the amplitude

In addition to the static measurement, the procedure presented here can be used to
record the dynamics of growth. This is utilized in an experiment with an interface
diameter d = 16 mm. First we acquired the critical field strength by statically
measuring the stable branch of the imperfect bifurcation. In this state we know the
complete bifurcation diagram for the instability. After switching to the maximum
applicable field strength (corresponding to ε0), the control parameter is increased
instantaneously to a supercritical value ε1, as shown in figure 6(a). Now, the system
is unstable and the J1-mode will start to grow. By jumping back to a subcritical
control parameter ε2, the system can be forced back to a stable state, as long as the
jump occurred early enough to reach a coordinate in the bifurcation diagram which is
below the backward bifurcating unstable branch (cf. figure 6b). Figure 6(c) shows the
temporal evolution of the amplitude A1 of the J1-mode at different waiting times in the
supercritical state.
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FIGURE 6. (a) Measurement protocol for the control parameter ε over time. (b) Bifurcation
diagram with depicted dynamics of the experiment. Instantaneous jumps in the control
parameter are shown as black arrows, amplitude growth is colour coded. (c) Dynamic
measurement of the amplitude A1 of the growing J1-mode. Vertical grey dotted lines mark
time points in the measurement protocol. The waiting time in the supercritical state is increased
from bottom to top.

Since the critical field strength Hc and the bifurcation coefficients β and b were
obtained by the static measurement, we can now use the acquired dynamic data to fit
the dynamic amplitude equation. A phase-space representation of the previous plot can
be seen in figure 7. The stable starting condition of the system is on the left-hand
side. Since the minimum acquisition time of the X-ray detector is 134 ms we exclude
points that are closer than one acquisition time to a jump in the control parameter.
This restriction excludes all points gathered during the jump at t2. Data recorded
during amplitude increase (decrease) is colour coded in red (blue). Fitting the dynamic
amplitude equation Ȧ1(A1) to the two data sets yields the characteristic time scale τ0 of
the first unstable mode of the RTI,

τ0 = (0.61± 0.13) s, (3.7)

which shall be interpreted in relation to the capillary time

tc =
(

σ

g3|ρ0 − ρ1|
)1/4

= 66.4 ms. (3.8)
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FIGURE 7. Phase space of the dynamic amplitude measurement (figure 6). Grey points mark the
complete measured dataset. One sample recording is shown in black. The connecting line serves
as a guide for the eye. Red and blue points mark selected data from rising or falling edges of the
control parameter after t0 and t1 respectively as indicated in figure 6(a). The solid lines show the
fitted dynamic amplitude equation.

4. Conclusions

In conclusion, we have experimentally proved the feasibility of a new stabilization
mechanism for the RTI using magnetic fluids and azimuthally rotating magnetic fields.
We were able further to show that the most unstable mode of the RTI is described
by a subcritical pitchfork bifurcation of a Bessel mode. This allowed us to exploit
the imperfection of the experimental setup to measure the critical field strength
of the instability, without its actual occurrence. The stability boundary Hc(k) was
measured and compared with the prediction by Rannacher & Engel (2007). The model
complies with our data within the parameter uncertainties when using a constant
effective susceptibility, corresponding to its reduction at higher field strengths. Future
work should refine this assumption by including the full nonlinear magnetization
curve M(H).

More importantly, a dynamic measurement method was proven to work that
facilitates the suppression of an already unstable mode, and enabled us to force the
growing mode back to its initial state. It was used to record the growth dynamics of
the J1-mode and acquire its characteristic time scale τ0. Having precise control of the
dynamics of the RTI renders this type of experiment a perfectly suited model system.
In particular it now seems feasible to build a control loop to dynamically regulate the
amplitude A1, which would allow one to move along the unstable branch of the RTI.
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