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Abstract

We develop some asymptotics for a kernel function introduced by Kohnen and use them to estimate the
number of normalised Hecke eigenforms in Sk(Γ0(1)) whose L-values are simultaneously nonvanishing at
a given pair of points each of which lies inside the critical strip.
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1. Introduction

Let

f (z) =
∑
n≥1

a f (n)e2πinz,

be a normalised cuspidal Hecke eigenform of weight k on Γ0(1) := SL2(Z). It is
well known that its associated L-function L( f , s), defined for Re(s) > (k + 1)/2 by the
absolutely convergent series

∑
n≥1

a f (n)
ns ,

can be analytically continued as an entire function for all s. Further, by virtue of the
Euler product and functional equation, its nontrivial zeros lie inside the critical strip
(k − 1)/2 < Re(s) < (k + 1)/2. The generalised Riemann Hypothesis predicts that they
all lie on the critical line Re(s) = k/2.

For even integers k ≥ 12, let Sk denote the space of cusp forms of weight k and
level 1 and let Bk denote the (orthogonal) basis of arithmetically normalised (that is,
a f (1) = 1) Hecke eigenforms in Sk. Given a real number t0 and a small positive real
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number δ, Kohnen in [6] proved the nonvanishing of the sum∑
f∈Bk

L∗( f , s)
〈 f , f 〉

for any point s on the line segments{
Im(s) = t0,

k − 1
2
< Re(s) <

k
2
− δ

}
∪

{
Im(s) = t0,

k
2
+ δ < Re(s) <

k + 1
2

}

for large enough k �t0,δ 1, where L∗( f , s) is the completed L-function (defined in
Section 2.2). As a corollary, it follows that given such a point s, there is at least one
form f in Bk such that L( f , s) � 0 for k large. Recently, in [2], the authors extended
the above results to the simultaneous nonvanishing of L-values (on average) at two
points inside the critical strip. More precisely, given positive real numbers T and δ,
they proved the nonvanishing of the sum∑

f∈Bk

L∗( f , s1)L∗( f , s2)
〈 f , f 〉

for large enough k �T ,δ 1 when (s1, s2) ∈ R′T ,δ, where R′T ,δ is the set
{(

s1 =
k
2
+ ε1 + iβ1, s2 =

k
2
+ ε2 + iβ2

)
∈ C2

∣∣∣∣∣ − T ≤ β1, β2 ≤ T , δ ≤ |ε1|, |ε2| <
1
2

}
.

Again, as a consequence, they observed that for a given (s1, s2) ∈ R′T ,δ, there exists a
Hecke eigenform f in Sk such that L( f , s1)L( f , s2) � 0, when k is sufficiently large.

In this context, it seems natural to ask the following question.

QUESTION 1.1. Given a weight k and complex points s, s1, s2 such that

k − 1
2
≤ Re(s), Re(s1), Re(s2) ≤ k + 1

2
,

is it possible to quantify the numbers

Nk(s) := #{ f ∈ Bk | L( f , s) � 0},
Nk(s1, s2) := #{ f ∈ Bk | L( f , s1) · L( f , s2) � 0},

(1.1)

in terms of k?

We provide some partial estimates for (1.1). Given an arbitrary positive real number
T and small positive reals δ and δ′, we consider the subset of C2,

RT ,δ,δ′ :=
{(

s1 =
k
2
+ ε1 + iβ1, s2 =

k
2
+ ε2 + iβ2

)
∈ C2

∣∣∣∣∣
− T ≤ β1, β2 ≤ T , 0 < |ε1| < |ε1| + δ′ ≤ |ε2| ≤

1
2

, |ε1| + |ε2| ≥
1
2
+ δ

}
. (1.2)

If (s1, s2) ∈ RT ,δ,δ′ , we prove the lower bound

Nk(s1, s2) �T ,δ′,δ′′ k|ε1 |+|ε2 |−δ
′′
, (1.3)
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when k is sufficiently large, k �T ,δ,δ′ 1. Here, δ′′ is an arbitrarily small fixed positive
number.

The lower bound for Nk(s) is obtained as a special case of (1.3). For this, first we
consider the strip

ST ,δ,δ′ :=
{
− T ≤ Im(s) ≤ T ,

k − 1
2
+ δ′ ≤ Re(s) ≤ k

2
− δ

}

∪
{
− T ≤ Im(s) ≤ T ,

k
2
+ δ ≤ Re(s) ≤ k + 1

2
− δ′

}
.

For any s ∈ ST ,δ,δ′ , we obtain the explicit lower bound in terms of the weight k,

Nk(s) �T ,δ′,δ′′ k(1/2)+|Re(s)−(k/2)|−δ′′ (1.4)

(see Corollary 3.5 below) for large enough k �T ,δ,δ′ 1.
At the central critical point s = k/2, Luo [7, formula (4)] showed that for integers k

divisible by 4, Nk(k/2) � k as k → ∞.
Our bound is of the order k1/2 and so is weaker than this estimate of Luo. However,

the method is considerably simpler and does not use the technique of mollified
averages as in [7]. Further, we only assume k to be even. As for Nk(s1, s2), currently, it
seems that no such estimates are available.

1.1. The approach. As in our earlier paper [9], we consider a kernel function fk,s(z)
studied by Kohnen [6] for suitable s (for its definition see Section 2.3) satisfying

fk,s(z) = (constant)
∑
f∈Bk

L∗( f , s)
〈 f , f 〉 f (z), (1.5)

and adapt a method of Rankin and Swinnerton-Dyer [13] to obtain an explicit
expression for fk,s(it), valid for all t ≥ 1, all even k ≥ 12 and any s satisfying
(k − 1)/2 ≤ Re(s) ≤ (k + 1)/2 (see Theorem 3.1 below). As a consequence, we are able
to provide the following applications.

1.2. Application 1. Using the above expression for a real parameter σ, we prove that
fk,σ(ik) > 0 when k � 1 and 4 | k. Along with the fact (see Lemma 6.1) that f (ik) > 0
for any normalised Hecke eigenform f of weight k for SL2(Z), this proves for a given
σ inside the critical strip that there is an f satisfying L( f ,σ) > 0. This leads us to a
small improvement to [9, Corollary 2.2.1].

1.3. Application 2. Let T , δ, δ′ be as above. For complex points s1 and s2 inside the
critical strip such that the pair (s1, s2) ∈ RT ,δ,δ′ , we study the Mellin transform of fk,s1

with respect to s2 by applying a Mellin transform on both sides of (1.5). Then we show
(Theorem 3.3) that there is a constant C = C(T , δ, δ′) > 0 such that

L∗( fk,s1 , s2) � k|ε1 |+|ε2 |, (1.6)
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for k ≥ C. Here, we are using (1.5) and writing

L∗( fk,s1 , s2) = (constant)
∑
f∈Bk

L∗( f , s1)
〈 f , f 〉 L∗( f , s2).

Clearly C is independent of the chosen points s1, s2, and the implicit constant depends
only on T , δ′. Using the lower bound obtained for L∗( fk,s1 , s2) in (1.6) for large k, we
prove (1.3). Finally, as a corollary, we obtain (1.4). The lower bound (1.4) is meant to
illustrate an immediate application of (1.3) and these bounds may be known already.

In [14], the author proves the lower bound Nk(k/2) �δ′′ k1−δ′′ when 4 | k, assuming
the Lindelöf hypothesis in the k-aspect for L( f , s). The method also involves Kohnen’s
kernel function and is related to ours. However, unlike [2, 14], we do not use the explicit
expressions for the Fourier coefficients of the respective kernel functions.

We also mention here that an identity for L∗( fk,s1 , s2) in terms of ratios of
Γ functions, ζ functions and hypergeometric functions is known [5, Theorem 1]
when s1 + s2 ∈ 2Z + 1 ∩ (1, k − 1), 1 < Re(sj) < k − 1 and Re(s1) > Re(s2) + 1. The
approach in [5] is to write the Mellin transform of fk,s1 with respect to s2 as a sum
of certain term-wise integrals, obtained by splitting the series fk,s1 in a suitable way.
We also use similar methods to estimate L∗( fk,s1 , s2), although we cover a wider range
of points s1, s2 within the critical strip. But our main goal is to address the question
posed regarding counts which differs from the aim of [5].

2. Notations and preliminaries

2.1. Notation. We mention the following asymptotic notation.

(1) f (s) = O(g(s)), s ∈ S, or equivalently, f (s) � g(s), s ∈ S, means there exists a
constant c such that | f (s)| ≤ c|g(s)| for all s ∈ S.

(2) f (s) ∼ g(s), s→ s0, means lims→s0 f (s)/tg(s) = 1.

2.2. Preliminaries. Let H denote the upper half plane. For z � 0 and s ∈ C, we
set zs = exp(s log z) with log z = log |z| + i arg z, where −π < arg z ≤ π. Let k ≥ 12 be
a positive even integer and z ∈ H.

Let Sk denote the space of cusp forms of weight k with respect to SL2(Z). For g ∈ Sk,
the associated L-series,

L(g, s) :=
∑
n≥1

ag(n)
ns ,

is holomorphic on the half plane Re(s) > (k + 1)/2. We define the completed Hecke
L-series associated to g as

L∗(g, s) := (2π)−sΓ(s)L(g, s),

which is also equal to the Mellin transform of g, given by

M(g)(s) :=
∫ ∞

0
g(it)ts−1 dt.
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Since M(g)(s) is known to be entire, L∗(g, s) (and also L(g, s)) can be uniquely
extended as an entire function. Moreover, L∗(g, s) satisfies the functional equation

L∗(g, k − s) = (−1)k/2L∗(g, s). (2.1)

For a normalised Hecke eigenform f in Sk, we define the symmetric square L-function
of f by the formula

L(Sym2( f ), s) :=
∏

p

1
(1 − α2

p p−s)(1 − αpβp p−s)(1 − β2
p p−s)

,

for Re(s) > k, where αp and βp are the roots of the polynomial X2 − a f (p)X + pk−1.
The function L(Sym2( f ), s) extends to an entire function [15] which is invariant under
the map s �→ 2k − 1 − s.

For x, y ∈ C and Re(x), Re(y) > 0, we have the beta function

B(x, y) :=
∫ 1

0
tx−1(1 − t)y−1 dt

and we recall that it satisfies

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

= 2
∫ π/2

0
(sin θ)2x−1(cos θ)2y−1 dθ. (2.2)

2.3. Kohnen’s cusp form. Let s ∈ C with 1 < Re(s) < k − 1. The kernel function
Rk,s(z), introduced by Kohnen [6], is defined by

Rk,s(z) := γk(s)
∑′

z−s
∣∣∣∣∣
k

(
a b
c d

)
. (2.3)

Here |k denotes the standard weight k (integer) action of GL+2 (Q) on the functions
g : H→ C, defined by

(g|kγ)(τ) := (ad − bc)k/2(cτ + d)−kg
(aτ + b
cτ + d

)
, τ ∈ H, γ =

(
a b
c d

)
∈ GL+2 (Q),

and the sum
∑′ is taken over all matrices ( a b

c d ) ∈ SL2(Z). Moreover,

γk(s) := 1
2 eπis/2Γ(s)Γ(k − s).

The function Rk,s(z) is a cusp form of weight k for the full modular group SL2(Z). If
〈 , 〉 denotes the usual Petersson inner product on Sk, then the essential property of Rk,s
is that for any g ∈ Sk, by [6, Lemma 1],

〈g, Rk,s̄〉 = ckL∗(g, s), where ck :=
(−1)k/2π(k − 2)!

2k−2 . (2.4)
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3. Statement of results

For 1 < σ := Re(s) < k − 1 and z ∈ H, we define

fk,s(z) := 2
Rk,s(z)

Γ(s)Γ(k − s)
= eiπs/2

∑′
z−s

∣∣∣∣∣
k

(
a b
c d

)
. (3.1)

It follows from (2.1) and (3.1) that

fk,s(z) = (−1)k/2 fk,k−s(z). (3.2)

Let k ≥ 12, 2 | k and k � 14 throughout, unless further conditions are specified.

3.1. Asymptotics of fk,s(z) on the imaginary axis. In [9, Theorem 2.1], it was
shown that for σ ∈ [(k − 1)/2, (k + 1)/2),

fk,σ(i) = 4 + O(2−k/2). (3.3)

Moreover, [9, Theorem 2.2] made explicit the constant implied in the O-term and (for
4 | k) deduced a lower bound for fk,σ(i) and from there the lower bound [9, Corollary
2.2.1]

max
f∈Bk

|L( f ,σ)| �δ k−(σ−k/2)−1−δ

for any δ > 0. Our first result extends (3.3) by replacing σ with a complex value of s,
and z = i by a general point z = it on the imaginary axis.

THEOREM 3.1. Let s = σ + iβ be a complex number such that (k − 1)/2 ≤ σ ≤
(k + 1)/2. Then, for a given t ≥ 1, the cusp form fk,s(it) satisfies

∣∣∣∣∣ fk,s(it) −
(
2

(2π)s

Γ(s)

∑
n≥1

ns−1e−2πnt + (−1)k/22
(2π)k−s

Γ(k − s)

∑
n≥1

nk−s−1e−2πnt
)∣∣∣∣∣ ≤ 300eπ|β|/2

tk−2 .

As a consequence of this result, we show that in fact max f∈Bk L( f ,σ) is a positive
quantity and satisfies the following lower bound.

COROLLARY 3.2. Let 4 | k and (k − 1)/2 ≤ σ = (k/2) + ε ≤ (k + 1)/2. For k large
enough, there is a Hecke eigenform f in Sk such that L( f ,σ) > 0. In particular, for
any arbitrarily small δ′ > 0 and large enough k �δ′ 1, we have

max
f∈Bk

L( f ,σ) �δ′ k−(σ−k/2)−1−δ′ .

3.2. Simultaneous nonvanishing. In the next result, we replace σ by a complex
point. For this purpose, let us set

L∗( fk,s, w) =
(−1)k/2πΓ(k − 1)
2k−3Γ(s)Γ(k − s)

∑
f∈Bk

1
〈 f , f 〉L

∗( f , s)L∗( f , w).
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FIGURE 1. δ = 0.05, δ′ = 0.05.

THEOREM 3.3. Let T , δ, δ′ be arbitrary but fixed positive real numbers such that 0 < δ,
δ′ ≤ 1/2. Let (s1 = (k/2) + ε1 + iβ1, s2 = (k/2) + ε2 + iβ2) ∈ RT ,δ,δ′ . Then there exists
a constant C = C(T , δ, δ′) > 0 depending only on T , δ, δ′ such that

L∗( fk,s1 , s2) �T ,δ′ k|ε1 |+|ε2 | for k ≥ C(T , δ, δ′).

In Figure 1, we illustrate the real points in RT ,δ,δ′ with δ = δ′ = 0.05. Combining
Theorem 3.3 with a straightforward estimate (see Section 8), we deduce the following
result about simultaneous nonvanishing at two points.

COROLLARY 3.4. Let T , δ, δ′, δ′′ be arbitrary but fixed positive real numbers with
0 < δ, δ′ ≤ 1/2. Let (s1, s2) ∈ RT ,δ,δ′ . Then, for k ≥ C(T , δ, δ′),

Nk(s1, s2) �T ,δ′,δ′′ k|ε1 |+|ε2 |−δ
′′
.

We remark here that since Nk(s1, s2) = Nk(s2, s1), it suffices to assume that either
(s1, s2) or (s2, s1) ∈ RT ,δ,δ′ . It should also be noted that Corollary 3.4 does not imply [2,
Corollary 3.2] since the region RT ,δ,δ′ that we are considering is a proper subset of R′T ,δ
(except for points (s1, s2) in RT ,δ,δ′ with Re(s2) = (k + 1)/2).

Now, as a corollary to Corollary 3.4, we obtain an asymptotic lower bound for Nk(s1)
in terms of k.

COROLLARY 3.5. Let T be an arbitrary but fixed positive real number and let δ, δ′, δ′′

be arbitrary small but fixed positive reals with 0 < δ, δ′ ≤ 1/2. Let s1 = (k/2) + ε1 +
iβ1 satisfy |β1| ≤ T and δ ≤ |ε1| ≤ 1

2 − δ
′. Then, for k ≥ C(T , δ, δ′),

Nk(s1) �T ,δ′,δ′′ k(1/2)+|ε1 |−δ′′ .
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4. Lemmas

We recall some preliminary lemmas which will be useful in the proofs of the results.

LEMMA 4.1.

(a) For z1, z2, s ∈ C,

(z1z2)s =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
zs

1zs
2e−2πis if arg(z1) + arg(z2) ≥ π,

zs
1zs

2 if − π ≤ arg(z1) + arg(z2) < π,
zs

1zs
2e2πis if arg(z1) + arg(z2) < −π.

(b) If z, s = σ + iβ ∈ C, then |zs| = |z|σe−β arg(z).

PROOF. The proof is straightforward and follows from the definitions of log and arg.
Note that arg(z) denotes the principal argument of z as defined in Section 2.2. �

LEMMA 4.2 ([4], Gautschi’s inequality). For x > 0 and s ∈ (0, 1),

x1−s <
Γ(x + 1)
Γ(x + s)

< (x + 1)1−s.

LEMMA 4.3 [1].

(a) For a, b ∈ C,

Γ(z + a)
Γ(z + b)

∼ za−b

as z→ ∞, along any curve joining 0 and∞, provided z � −a − N ∪ −b − N.
(b) (Real Stirling’s formula). As x→ ∞, we have

Γ(x) ∼
(x
e

)x
√

2π
x

.

(c) [11]. We have

|Γ(x + iy)| ≥ (cosh πy)−1/2Γ(x), x ≥ 1
2 , y ∈ R. (4.1)

PROOF. Part (a) follows from the asymptotic expansion

zb−aΓ(z + a)
Γ(z + b)

∼1+
(a − b)(a + b − 1)

2
1
z
+

1
12

(
a − b

2

)
(3(a + b − 1)2 − a + b − 1)

1
z2 + · · ·

(see [1, 6.1.47 on page 257]) valid for z as above. Part (b) is well known. For part (c),
we refer to [11, 5.6.7 on page 138]. �

LEMMA 4.4.

(a) For any fixed a > 0,
∑
m≥1

mae−mz = Oa

(1
z

)a+1
for each z > 0.
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(b)

max
z>0

za+1
∑
m≥1

mae−mz �
(a + 1

e

)a+1
(a→ ∞).

PROOF. We refer to [3, Lemma 9.3.13] for part (a) and [9, Lemma 6.1] for part (b). �

LEMMA 4.5. For σ ≥ 3 and Im(z) = y ≥ 1,
∑
n∈Z

1
|z + n|σ <

7
yσ−1 . (4.2)

PROOF. From [3, Lemma 3.5.9],
∑
n∈Z

1
|z + n|σ ≤

1
yσ
+

4
yσ−1

∫ ∞

0

1
(u2 + 1)σ/2

du.

We estimate this explicitly when y ≥ 1 and σ ≥ 3, using (2.2) and Lemma 4.2:∫ ∞

0

1
(u2 + 1)σ/2

du =
∫ π/2

0
(cos θ)σ−2 dθ =

Γ(1/2)
2
Γ((σ − 1)/2)
Γ(σ/2)

≤
√

π

2(σ − 2)
.

Note here that Γ(1/2) =
√
π. It follows that

∑
n∈Z

1
|z + n|σ ≤

1
yσ
+

4
yσ−1

√
π

2(σ − 2)
<

7
yσ−1 . �

Finally, we mention an estimate for ζ(s) which is valid on Re(s) > 1.

LEMMA 4.6. For s = σ + it, where σ > 1,

|ζ(s)| ≥
∣∣∣∣∣ζ(2σ)
ζ(σ)

∣∣∣∣∣.
PROOF. For Re(s) > 1,

∑
n≥1

1
ns =

∏
p∈P

1
1 − p−s

where P denotes the set of primes. From this and the fact that |ps − 1| ≤ pσ + 1,∣∣∣∣∣ ζ(2σ)
ζ(σ)ζ(s)

∣∣∣∣∣ =
∣∣∣∣∣
∏
p∈P

p2σ(pσ − 1)(ps − 1)
(p2σ − 1)pσps

∣∣∣∣∣ ≤ 1. �

5. Proof of Theorem 3.1

Except in the proof of Corollary 3.2, we only assume k ≥ 12 and 2 | k.

PROOF OF THEOREM 3.1. The series for Rk,s(z) in (2.3) runs over a set of integral
matrices with determinant 1. As we have absolute convergence for z with positive
imaginary part, we can rearrange this series in terms of the sum of the squares of the
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entries along each row (of the matrix) to get

eiπs/2
∑
M≥1
N≥1

∑
a2+b2=M

∑
c2+d2=N

det
(

a b
c d

)
=1

(cz + d)−k
(az + b
cz + d

)−s
. (5.1)

For M0, N0 ∈ N, we define

TM0,N0,s(z) := eiπs/2
∑

a2+b2=M0

∑
c2+d2=N0

det
(

a b
c d

)
=1

(cz + d)−k
(az + b
cz + d

)−s
,

TM0,≥N0,s(z) := eiπs/2
∑

a2+b2=M0

∑
N∈Z

N≥N0

∑
c2+d2=N

det
(

a b
c d

)
=1

(cz + d)−k
(az + b
cz + d

)−s
,

T≥M0,N0,s(z) := eiπs/2
∑
M∈Z

M≥M0

∑
a2+b2=M

∑
c2+d2=N0

det
(

a b
c d

)
=1

(cz + d)−k
(az + b
cz + d

)−s
,

T≥M0,≥N0,s(z) := eiπs/2
∑
M∈Z

M≥M0

∑
a2+b2=M

∑
N∈Z

N≥N0

∑
c2+d2=N

det
(

a b
c d

)
=1

(cz + d)−k
(az + b
cz + d

)−s
,

where T−,−,s(z) denotes the unique complex-valued holomorphic function associated to
the respective series on the right-hand side for 1 < σ < k − 1. Further, let s = σ + iβ
be a complex point inside the critical strip. Also, let t > 0. Then

fk,s(it) = T1,1,s(it) + T≥2,1,s(it) + T1,≥2,s(it) + T≥2,≥2,s(it). (5.2)

Now, T1,1,s(it) is formed by the matrices in {±( 1 0
0 1 ),±( 0 −1

1 0 )}. We therefore get

T1,1,s(it) = 2ei(π/2)s
{
(it)−s + (it)−k

(−1
it

)−s}
=

2
ts +

2(−1)k/2

tk−s .

The last equality is true since (it)−s = e−iπs/2t−s and (−1/it)−s = e−iπs/2ts using
Lemma 4.1. The term T1,≥2,s(it) is formed by the matrices of the form

{
±

(
1 0
c 1

)∣∣∣ c ∈ Z, c2 + 1 ≥ 2
}
∪

{
±

(
0 −1
1 c

)∣∣∣ c ∈ Z, c2 + 1 ≥ 2
}
.

Thus,

T1,≥2,s(it) = 2eiπs/2
∑
|c|≥1

{
(c + it)−k

( −1
c + it

)−s
+ (cit + 1)−k

( it
cit + 1

)−s}
.
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Let

Tmain
1,≥2,s(it) := 2eiπs/2

∑
|c|≥1

(c + it)−k
( −1
c + it

)−s
,

Terror
1,≥2,s(it) := 2eiπs/2

∑
|c|≥1

(cit + 1)−k
( it
cit + 1

)−s
.

The first term above may be simplified to give

Tmain
1,≥2,s(it) = 2e−iπs/2

∑
|c|≥1

(c + it)−(k−s)

= 2(−1)k/2
{
eiπ(k−s)/2

∑
c∈Z

(c + it)−(k−s) − eiπ(k−s)/2(it)−(k−s)
}

= 2(−1)k/2
{ (2π)k−s

Γ(k − s)

∑
n≥1

nk−s−1e−2πnt − 1
tk−s

}
.

The last equality follows from the Lipschitz summation formula,
∑
n∈Z

1
(τ + n)s = e−πis/2

(2π)s

Γ(s)

∑
n≥1

ns−1e2πinτ for Re(s) > 1, τ ∈ H.

The term Terror
1,≥2,s(it) is easily seen to be bounded above by Oβ(t−k). Indeed, Lemma 4.1

implies that
∣∣∣∣∣
( it
cit + 1

)−s∣∣∣∣∣ =
∣∣∣∣∣
(
c +

1
it

)s∣∣∣∣∣ =
(
c2 +

1
t2

)σ/2
e−β arg(c+1/it).

It follows that

|Terror
1,≥2,s(it)| ≤

2
tk e−πβ/2

∑
|c|≥1

∣∣∣∣∣c + 1
it

∣∣∣∣∣
−k∣∣∣∣∣

(
c +

1
it

)s∣∣∣∣∣
≤ 4

tk e−πβ/2
∑
c∈N

(
c2 +

1
t2

)−(k−σ)/2
exp(−β arg(c − i/t))

≤ eπ|β|/2
4
tk ζ(k − σ), (5.3)

since |(π/2) + arg(c − i/t)| < (π/2). For later use, we also simplify Terror
1,≥2,s(it) as follows:

Terror
1,≥2,s(it) =

2
(it)k eiπs/2

∑
|c|≥1

(c − i/t)−(k−s) =
2
tk eiπ(k−s)/2

∑
|c|≥1

(c + i/t)−(k−s)

=
2
tk

(2π)k−s

Γ(k − s)

∑
n≥1

nk−s−1e−2πn/t − 2
ts . (5.4)
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For fixed N ∈ N, TN,1(z) is formed precisely from the matrices in{(
a −1
1 0

)
,
(

a 1
−1 0

)
,
(
1 a
0 1

)
,
(
−1 a
0 −1

) ∣∣∣∣∣ a ∈ Z, a2 + 1 = N
}

.

Performing similar computations to those above, one can see that

T≥2,1,s(it) =
∑
N≥2

TN,1(it) = 2eiπs/2
∑
|a|≥1

{
(it)−k

(
a +

i
t

)−s
+ (a + it)−s

}
.

Let Terror
≥2,1,s(it) denote the first sum 2eiπs/2 ∑

|a|≥1(it)−k(a + i/t)−s. From its definition, we
obtain the following equality and bound:

|Terror
≥2,1,s(it)| =

∣∣∣∣∣ 2
(it)k

{ (2π)s

Γ(s)

∑
n≥1

ns−1e−2πn/t − ts
}∣∣∣∣∣ ≤ 4eπ|β|/2

ζ(σ)
tk . (5.5)

The second sum, denoted by Tmain
≥2,1,s(it), may also be simplified using the Lipschitz

summation formula as before to obtain

Tmain
≥2,1,s(it) = 2

(2π)s

Γ(s)

∑
n≥1

ns−1e−2πnt − 2
ts .

The main term (of fk,s(it)) is

Tmain,s(it) := T1,1,s(it) + Tmain
≥2,1,s(it) + Tmain

1,≥2,s(it).

The remaining terms in the summation (5.2) are brought into the error term (5.7). We
therefore have

Tmain,s(it) = 2
(2π)s

Γ(s)

∑
n≥1

ns−1e−2πnt + 2(−1)k/2 (2π)k−s

Γ(k − s)

∑
n≥1

nk−s−1e−2πnt. (5.6)

We remark here that the term on the right-hand side is the contribution of the terms
with ac = 0 in (5.1) as observed by Kohnen [6, page 186]. Also, we note here that the
term above vanishes if s = k/2 and k ≡ 2 mod 4.

Next we bound the error term. Note that

Terror,s(it) := Terror
≥2,1,s(it) + Terror

1,≥2,s(it) + T≥2,≥2,s(it). (5.7)

The final term in (5.2) and (5.7) is bounded above by

|T≥2,≥2,s(it)| ≤ e−πβ/2
∑
M≥2

∑
a2+b2=M

∑
N≥2

∑
c2+d2=N

det
(

a b
c d

)
=1

|cit + d|−k
∣∣∣∣∣
(ait + b
cit + d

)−s∣∣∣∣∣

≤
∑
M≥2

∑
a2+b2=M

∑
N≥2

∑
c2+d2=N
ad−bc=1

|cit + d|−k+σ|ait + b|−σeβ(arg((ait+b)/(cit+d))−(π/2))

≤ eπ|β|/2
∑

a2+b2≥2
(a,b)=1

1
|ait + b|σ

∑
c2+d2≥2
(c,d)=1

1
|cit + d|k−σ

. (5.8)
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Here |ait + b|σ = | − ait + b|σ for any a ∈ N and b ∈ Z. It follows that

∑
a2+b2≥2
(a,b)=1

1
|ait + b|σ = 2

∞∑
a=1

1
aσ

∑
b∈Z\{0}
(b,a)=1

1
|it + b/a|σ = 2

∞∑
a=1

1
aσ

∑
0<r<a
(r,a)=1

∑
q∈Z

1
|it + q + r/a|σ .

By Lemma 4.5, the inner sum on the right-hand side is O(1/tσ−1) if t ≥ 1. Note that
up to this point, we have only assumed that t > 0. This follows since φ(a) < a and∑∞

a=1 1/aσ−1 converges. More precisely,

∑
a2+b2≥2
(a,b)=1

1
|ait + b|σ < 14

ζ(σ − 1)
tσ−1 and

∑
c2+d2≥2
(c,d)=1

1
|cit + d|k−σ

< 14
ζ(k − σ − 1)

tk−σ−1 .

Hence, by (5.8),

|T≥2,≥2,s(it)| < eπ|β|/2
142 × ζ2(4.5)

tk−2 < eπ|β|/2
250
tk−2 .

(Note that the condition k ≥ 12 implies that σ and k − σ are greater than or equal to
5.5.) Now, (5.3) and (5.5), together with the above fact, imply that as long as k ≥ 12
and t ≥ 1,

|Terror,s(it)| ≤ eπβ|/2|
300
tk−2 .

Thus, for all t ≥ 1 and all even integers k ≥ 12,

fk,s(it) = 2
(2π)s

Γ(s)

∑
n≥1

ns−1e−2πnt + 2(−1)k/2 (2π)k−s

Γ(k − s)

∑
n≥1

nk−s−1e−2πnt + Cβ
( 1
tk−2

)
,

where Cβ ≤ 300eπ|β|/2. This completes the proof of Theorem 3.1. �

6. Proof of Corollary 3.2

We remark here that from (2.4) and (3.1) it follows that

fk,s1 =
∑
f∈Bk

〈 fk,s1 , f 〉 f
〈 f , f 〉 =

(−1)k/2πΓ(k − 1)
2k−3Γ(s1)Γ(k − s1)

∑
f∈Bk

L∗( f , s1)
f

〈 f , f 〉 . (6.1)

To prove Corollary (3.2), we need the following fact.

LEMMA 6.1. Let k ≥ 12, k � 14 be an even integer. Then f (ki) > 0 for any f ∈ Bk.

PROOF. Note that f (ki) = e−2πk +
∑

n≥2 a f (n)e−2πnk. Multiplying by e2πk on both sides,

e2πk f (ki) = 1 +
∑
n≥1

a f (n + 1)e−2πnk.
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It is enough to prove that the summation term on the right-hand side is bounded above
by 1

2 . Using Hardy’s estimate |a f (n)| ≤ 3nk/2, we have∣∣∣∣∣
∑
n≥1

a f (n + 1)e−2πnk
∣∣∣∣∣ ≤ 3

∑
n≥1

(n + 1)k/2e−2πnk ≤ 3
eπk

∑
n≥1

1
(n + 1)k/2 ≤

3
eπk
ζ(k/2) <

1
2

,

since e2πnk > (eπ(n + 1))k for all n ≥ 1, which proves the claim. �

PROOF OF COROLLARY 3.2. For the remainder of this section, we assume 4 | k. The
functional equation (3.2) allows us to choose σ ∈ [k/2, (k + 1)/2] without loss of
generality. From (6.1),

fk,σ(ik) =
πΓ(k − 1)(2π)−σ

2k−3Γ(k − σ)

∑
f∈Bk

L( f ,σ)
〈 f , f 〉 f (ik). (6.2)

To produce a Hecke eigenform whose L-value is positive at σ, we use Theorem 3.1:

fk,σ(ik) = 2
(2π)σ

Γ(σ)

∑
n≥1

nσ−1e−2πnk + 2
(2π)k−σ

Γ(k − σ)

∑
n≥1

nk−σ−1e−2πnk + Terror,σ(ik),

where Terror,σ(ik) � 1/kk−2 for large enough k. From Lemma 4.3(b), the main term is
bounded below by

Tmain,σ(ik) > 2
(2π)k−σ

Γ(k − σ)
e−2πk �

(√4πe
e2π

)k
k−(k−1)/2,

as k → ∞. Hence, fk,σ(ik) > 0 for k � 1, 4 | k. Combining this with (6.2) and
Lemma 6.1, we deduce that there is a Hecke eigenform f in Sk such that L( f ,σ) > 0.
Now, Corollary 3.2 easily follows using the same method as in [9, Corollary 2.2.1]. �

7. Proof of Theorem 3.3

Let T , δ, δ′ be fixed constants as in the statement of Theorem 3.3. Let (s1, s2) ∈
RT ,δ,δ′ , where sj = σj + iβj with σj = k/2 + εj for j = 1, 2. Recall (from (3.2)) that
fk,s1 satisfies the functional equation fk,s1 = (−1)k/2 fk,k−s1 . Combining this with the
functional equation of the L-function (2.1) gives

L∗( fk,s1 , s2) = (−1)k/2L∗( fk,k−s1 , s2) = L∗( fk,k−s1 , k − s2) = (−1)k/2L∗( fk,s1 , k − s2).
(7.1)

We can therefore assume s1 and s2 are on the right half of the critical strip, that is,
from (1.2), (k + 1)/2 ≥ σ2 ≥ σ1 + δ

′ > σ1 > k/2. From (5.2) and (5.6),

L∗( fk,s1 , s2) =
∫ ∞

0
fk,s1 (it)ts2−1 dt

=

∫ ∞

0

(2(−1)k/2(2π)k−s1

Γ(k − s1)

∑
n≥1

nk−s1−1e−2πnt

+
2(2π)s1

Γ(s1)

∑
n≥1

ns1−1e−2πnt + Terror,s1 (it)
)
ts2−1 dt
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= 2(−1)k/2 (2π)k−s1

Γ(k − s1)

∑
n≥1

nk−s1−1
∫ ∞

0
e−2πntts2−1 dt

+ 2
(2π)s1

Γ(s1)

∑
n≥1

ns1−1
∫ ∞

0
e−2πntts2−1 dt + L∗(Terror,s1 , s2)

= 2
(2π)s1−s2

Γ(s1)
Γ(s2)ζ(s2 − s1 + 1)

+ 2(−1)k/2 (2π)k−s1−s2

Γ(k − s1)
Γ(s2)ζ(s2 − (k − s1) + 1) + L∗(Terror,s1 , s2). (7.2)

Interchanging the summation and integration in the second last step is justified by the
Fubini–Tonelli theorem, noting that

∑
n≥1

∫ ∞
0 |n

s1−1e−2πntts2−1| dt < ∞ since Re(s2) >
Re(s1) and

∑
n≥1

∫ ∞
0 |n

k−s1−1e−2πntts2−1| dt < ∞ since Re(s2) > Re(k − s1). (The notation
L∗(Terror,s1 , s2) makes sense as the Mellin transform of Terror,s1 . It is well defined as all
the other integrals in the equality are finite.) Next, we note that

L∗(Tmain,s1 , s2) := 2
(2π)s1−s2

Γ(s1)
Γ(s2)ζ(s2 − s1 + 1)

+ 2(−1)k/2 (2π)k−s1−s2

Γ(k − s1)
Γ(s2)ζ(s2 − (k − s1) + 1).

7.1. Estimating the main term. We have 0 < ε1 < ε1 + δ′ ≤ ε2 ≤ 1
2 , |βj| ≤ T and∑2

j=1 εj ≥ 1
2 + δ. (Note that this forces ε1 ≥ δ.) From (4.1),

∣∣∣∣∣ Γ(s2)
Γ(k − s1)

∣∣∣∣∣ ≥ 1√
cosh πβ2

Γ( k
2 + ε2)

Γ( k
2 − ε1)

≥ e−π|β2 |/2
( k
2
+ ε2 − 1

)ε1+ε2
≥ kε1+ε2

3
e−πT/2.

Similarly, one can see that

∣∣∣∣∣Γ(s2)
Γ(s1)

∣∣∣∣∣ ≤ eπT/2kε2−ε1 .

Next, we find a lower bound for ζ(s1 + s2 − k + 1). By Lemma (4.6),

|ζ(s1 + s2 − k + 1)| ≥ ζ(2(1 + ε2 + ε1))
ζ(1 + ε2 + ε1)

>
ζ(4)
ζ(1.5)

= c1.

Now, the function (x − 1)ζ(x) is bounded in the interval 1 ≤ x ≤ 2. So, set

c2 := max
1≤x≤2

(x − 1)ζ(x).

Then |ζ(s2 − s1 + 1)| ≤ ζ(ε2 − ε1 + 1) ≤ ζ(δ′ + 1) ≤ c2/δ
′, since ε2 − ε1 ≥ δ′.
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One therefore sees that

|L∗(Tmain,s1 , s2)|

≥ 2
{
(2π)−(ε1+ε2)

∣∣∣∣∣ Γ(s2)
Γ(k − s1)

ζ(s1 + s2 − k + 1)
∣∣∣∣∣ − (2π)ε1−ε2

∣∣∣∣∣Γ(s2)
Γ(s1)

ζ(ε2 − ε1 + 1)
∣∣∣∣∣
}

≥ c1

3π
kε1+ε2 e−πT/2 − 2c2

δ′
eπT/2kε2−ε1 . (7.3)

7.2. Estimating the error term. Next, we consider the term Terror,s1 (it). We claim
that the component T≥2,≥2,s1 (it) is modular under the action of S := ( 0 −1

1 0 ), that is, for
all t > 0,

T≥2,≥2,s1 (it) = (it)−kT≥2,≥2,s1 (i/t).

This follows since

T≥2,≥2,s1 (it) = eiπs1/2
∑

a2+b2≥2

∑
c2+d2≥2

det
(

a b
c d

)
=1

(cit + d)−k
(ait + b
cit + d

)−s1

= eiπs1/2
∑

a2+b2≥2

∑
c2+d2≥2

det
(

a b
c d

)
=1

(it)−k(−d(i/t) + c)−k
(−b(i/t) + a
−d(i/t) + c

)−s

= (it)−kT≥2,≥2,s1 (i/t). (7.4)

Thus,

L∗(T≥2,≥2,s1 , s2) =
∫ ∞

1
T≥2,≥2,s1 (it)(ts2 + (−1)k/2tk−s2 )

dt
t

which implies that

|L∗(T≥2,≥2,s1 , s2)| ≤ 250eπT/2
( ∫ ∞

1

1
tk−2 (tσ2 + tk−σ2 )

dt
t

)

≤ 250eπT/2
( 1
k − σ2 − 2

+
1

σ2 − 2

)
≤ 2000eπT/2

k
(7.5)

for all k ≥ 12. However, the other terms Terror
≥2,1,s(it) and Terror

1,≥2,s(it) in Terror,s(it) are not
invariant under S, so we estimate them individually. Note that

L∗(Terror,s1 , s2) = L∗(T≥2,≥2,s1 , s2) +
( ∫ 1

0
+

∫ ∞

1

)
(Terror
≥2,1,s1

(it) + Terror
1,≥2,s1

(it))ts2−1 dt.

Here, using the bounds in (5.3) and (5.5), we get
∣∣∣∣∣
∫ ∞

1
(Terror
≥2,1,s1

(it) + Terror
1,≥2,s1

(it))ts2−1 dt
∣∣∣∣∣ ≤ 10eπT/2

( ∫ ∞

1
tσ2−1−k dt

)
≤ 40eπT/2

k
, (7.6)

https://doi.org/10.1017/S0004972721000927 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972721000927


44 M. Manickam, V. K. Murty and E. M. Sandeep [17]

again for all k ≥ 12. However, these estimates are not useful when 0 < t < 1. Therefore,
we proceed as follows. From (4.1) and (5.4), we see that

|Terror
1,≥2,s1

(it)| ≤ 2
tk (cosh πβ1)1/2 (2π)k−σ1

Γ(k − σ1)

∑
n≥1

nk−σ1−1e−2πn/t +
2

tσ1
.

From Lemma 4.4, it follows that there exist absolute constants M0 and K0 such that
∑
n≥1

nk−σ1−1e−2πnu ≤ M0

(k − σ1

e

)k−σ1 1
(2πu)k−σ1

,

for k ≥ K0 uniformly for u ≥ 1. (Here we have replaced 1/t by u.) Thus,∣∣∣∣∣
∫ 1

0
Terror

1,≥2,s1
(it)ts2−1 dt

∣∣∣∣∣
≤ 2(cosh πβ1)1/2 (2π)k−σ1

Γ(k − σ1)

∫ ∞

1

∑
n≥1

nk−σ1−1e−2πnuuk−σ2
du
u
+

2
σ2 − σ1

� eπT/2
1

Γ(k − σ1)

(k − σ1

e

)k−σ1 1
σ2 − σ1

+
2

σ2 − σ1

� eπT/2
√

(k − σ1)
1
δ′
≤ eπT/2

δ′

√
k

where we have used σ2 − σ1 ≥ δ′ and the fact that

1
Γ(k − σ1)

(k − σ1

e

)k−σ1

�
√

k − σ1.

The last inequality follows from Stirling’s estimates in Lemma 4.3(b). Thus,∫ 1

0
Terror

1,≥2,s1
(it)ts2−1 dt = OT ,δ′(k1/2). (7.7)

Similarly, it follows that∫ 1

0
Terror
≥2,1,s1

(it)ts2−1dt � eπT/2
√
σ1

1
σ2 + σ1 − k

= OT (k1/2). (7.8)

The implicit constant in (7.8) has no dependency on δ′ since we assume
σ1 + σ2 − k > 1

2 . From (5.7), (7.4), (7.6), (7.7) and (7.8), it follows that L∗(Terror,s1 , s2) =
OT ,δ′(

√
k). Along with the above and (7.2) and (7.3), we have

|L∗( fk,s1 , s2)| ≥
∣∣∣∣∣ c1

3π
e−πT/2kε1+ε2 − 2c2

δ′
eπT/2kε2−ε1 − C(T , δ′)k1/2

∣∣∣∣∣.
Thus, it follows that

L∗( fk,s1 , s2) �T ,δ′ kε2+ε1 , (7.9)

for sufficiently large k �T ,δ,δ′ 1 since ε2 + ε1 ≥ 1
2 + δ.
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Given an arbitrary pair of points s1, s2 satisfying ε1 + ε2 ≥ 1
2 + δ on the strict

right-hand side of the critical line, that is, {k/2 < Re(sj) ≤ (k + 1)/2}, one can always
choose the point with smaller real part as the kernel parameter and the other one to
be the Mellin transform parameter (unless both points lie on the same vertical line,
in which case, clearly, our result does not hold). And, even in situations where either
(or both) s1, s2 assume values strictly to the left of the critical line, by virtue of (7.1),
one can perform the appropriate reflection sj �→ k − sj, thus effectively reducing it to
a question about a pair of points on the right half of the critical strip. This proves the
theorem.

From (6.1),

L∗( fk,s1 , s2) =
∫ ∞

1
fk,s1 (it)(ts2 + (−1)k/2tk−s2 )

dt
t

=
(−1)k/2πΓ(k − 1)

2k−3Γ(s1)Γ(k − s1)

∑
f∈Bk

L∗( f , s1)
〈 f , f 〉 L∗( f , s2). (7.10)

From (7.9) and (7.10) we immediately observe that, given a pair of points s1, s2 in the
critical strip such that εj satisfies the conditions in (1.2), there is at least one eigenform
f ∈ Bk whose L-function is simultaneously nonvanishing at both s1 and s2 for
k �T ,δ,δ′ 1. However, one may observe that

∑
f∈Bk

L∗( f , s1)
〈 f , f 〉 L∗( f , s2)

is the first Fourier coefficient of E∗s1,k−s1
(z, s2) (as a function of z ∈ H), and this sum

is already known to be nonzero for sufficiently large k (see [2, formula (3.1)]). This
already guarantees the existence of such a Hecke eigenform as above. However, we
improve, albeit partially, the result in [2] by explicitly determining a lower bound for
the number Nk(s1, s2) in Corollary 3.4.

8. Proof of Corollary 3.4

Let (s1, s2) ∈ RT ,δ,δ′ . Without loss of generality, as earlier, we assume s1 and s2 on
the right half of the critical strip. From (7.10),

kε2+ε1 �T ,δ′
1

k2k−3

Γ(k)
|Γ(s1)Γ(k − s1)|

∑
f∈Bk

∣∣∣∣∣L
∗( f , s1)L∗( f , s2)
〈 f , f 〉

∣∣∣∣∣, (8.1)

for large enough k (as mentioned in (7.9)). By the Phragmén–Lindelöf theorem [12],

L( f , s1) �δ′′ k1/2−ε1+δ′′ for an arbitrarily small δ′′ > 0. (8.2)

It is well known that for any normalised Hecke eigenform f ∈ Sk,

k−δ
′′′ �δ′′′ L(Sym2( f ), k) �δ′′′ kδ

′′′
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holds for arbitrarily small δ′′′ > 0 [8, page 4]. Thus

〈 f , f 〉 = 2Γ(k)
π(4π)k L(Sym2( f ), k) �δ′′′

Γ(k)
(4π)kkδ′′′

,

where the first relation is from [3, Corollary 11.12.7(b)]. Using this estimate and (8.2),
∑
f∈Bk

∣∣∣∣∣L
∗( f , s1)L∗( f , s2)
〈 f , f 〉

∣∣∣∣∣ �δ′′′ Nk(s1, s2)(2π)−(σ1+σ2)|Γ(s1)Γ(s2)|k1−(ε2+ε1)+2δ′′ (4π)
kkδ

′′′

Γ(k)
.

We estimate Γ(s2)/Γ(k − s1) by (4.1) to rewrite (8.1) as

kε2+ε1 �T ,δ′,δ′′,δ′′′ Nk(s1, s2)k−(ε2+ε1)+2δ′′+δ′′′
∣∣∣∣∣ Γ(s2)
Γ(k − s1)

∣∣∣∣∣ �T k2δ′′+δ′′′Nk(s1, s2).

Thus, by first putting δ′′′ = δ′′ and then replacing δ′′ by δ′′/3,

Nk(s1, s2) � kε2+ε1−δ
′′
,

where the implied constant depends only on T , δ′, δ′′. Since

Nk(s1, s2) = Nk(s1, k − s2) = Nk(k − s1, k − s2) = Nk(k − s1, s2),

we conclude that there is a constant C(T , δ, δ′) > 0 such that, for k ≥ C(T , δ, δ′), the
number of Hecke eigenforms in Sk whose L∗-value is simultaneously nonvanishing at
any two points s1, s2 such that (s1, s2) ∈ RT ,δ,δ′ is at least k|ε1 |+|ε2 |−δ

′′
.

9. Proof of Corollary 3.5

Points on the (right) edge of the critical strip lie inside the known nonvanishing
region of L-functions of Hecke eigenforms [10], given by

Re(s) ≥ k + 1
2
− c

log(k + |t| + 3)
,

where c > 0 is an absolute constant. By substituting s2 = (k + 1)/2 in Corollary 3.4,
we have Nk(s1) �T ,δ′,δ′′ k1/2+|ε1 |−δ′′ for k �T ,δ,δ′ 1, when δ ≤ ε1 ≤ 1

2 − δ
′.
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