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A NORMAL FORM IN FREE FIELDS 

PAUL M. COHN AND CHRISTOPHE REUTENAUER 

ABSTRACT. We give a normal form for the elements in the free field, following the 
lines of the minimization theory of noncommutative rational series. 

1. Introduction. Free fields, first introduced by Amitsur [A], were described by 
the first author as universal field of fractions of the ring of noncommutative polynomi
als; they are universal objects in the category whose morphisms are specializations. A 
characteristic property is that each full polynomial matrix may be inverted in the free 
field. A normal form for the elements of the free field was given in [C3]. 

We propose here another normal form, inspired from automata theory. Each element 
of the free field is obtained by inverting some full linear matrix, and then multiplying on 
the left and right by a row and a column over the scalars. We call this a representation. It 
is known that each rational (or regular, or recognizable) language has a unique minimal 
deterministic automaton; this result was extended by Schutzenberger to noncommutative 
rational formal series: he showed essentially that such a series has a minimal linear rep
resentation, unique up to the natural action of the scalar linear group (the form stated here 
is due to Fliess). This leads us to prove a similar result for elements of the free field: there 
is a natural action of the square of the linear group on representations of these elements 
(equivalently, by elementary row and column operations), and we show that minimal 
representations form a single orbit. It is this orbit that we may call "normal form". 

We begin by studying closely the representations of formal series in Dk{{X)), the ring 
of tensor ring series: the variables do not commute with the elements of the skew field 
D, but with the elements of the central subfield k. We extend to D^X)) the minimization 
theory of rational series in k((X)). 

The first application is the minimization theory of elements of the free field Dk{X} 
where D is infinite dimensional over its center k. The essential tool here is the special
ization lemma of the first author, which allows us to work with formal series in Dk((X)}, 
by "change of origin". The second application is the analogous theory for k{X}. Here, 
one works similarly, but some inertia properties of the embedding k{X} —> Dk{X} have 
to be established first; one cannot change the origin by translations over k, because some 
elements in k{X} are not commutatively defined, e.g. (xy — yx)~l. 

The main results are the uniqueness theorems: Theorem 2.8, Theorem 4.1 and Theo
rem 4.3. The latter result has a striking analogy with a result of Roberts [R] (see also [C1 ] 
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Section 5.8), who gives a normal form for matrices in k(X) and shows that, if minimal, 
they are equivalent in the sense given here; however, Theorem 4.3 does not seem to be 
a simple consequence of this result, although the methods of Roberts could perhaps be 
adapted. Worth mentioning in the present work are also Proposition 2.12 and Proposi
tion 4.8: they state that minimal representations appear as block components of general 
representations. 

In this paper, all fields are possibly skew. 

2. Rational series in Dk((X)). Let D be a field containing the commutative field k 
in its center, and let X be a finite set of noncommuting indeterminates. The tensor D-ring 
on X over k is denoted by D*(X); it is the direct sum 

Dk(x) = D e / ) ® V 0 D e D ® v p ^ y ^ D ® -

where V is the k-vector space V = kX, and where tensor products are taken over k. The 
product is induced by that of D. 

An element ofDk(X) will be called a.polynomial. On Dk(X), there is a degree-function 
and an order function obtained by associating degree (and order) one to each member 
of X; recall that the order (and the degree) of a monomial doX\d\ • • -xndn is n, and that 
the order of a polynomial P is the smallest order of the monomials appearing in it, for 
all possible representations of P. The completion of D^{X) with respect to this order 
function is denoted by Dk((X)) and called the power series D-ring on X over k\ a typical 
element of Dk((X)) has the form 

(i) f=Y,f«> 
n>0 

where each/n is an homogeneous element of Dk{X), of degree n. The elements ofDk({X)) 
will also be called series. Note that / above is invertible in Dk((X)) if and only if its 
constant term/o G D is nonzero. 

A series is called rational if it belongs to the smallest subring of Dk((X)) which con
tains Djt(X) and which contains the inverses of all its invertible elements. A basic result, 
which may be proved as in the classical case of k((X}} (= Dk((X)} when D — k), is the 
following. 

PROPOSITION 1. A series/ is rational if and only if there exist n > 0, series f \ , . . . ,/„, 
linearpolynomials withoutconstant termp^ 1 < i,j < n, elements X\,..., Xn, p\,..., pn 

in D such that 

f=\lfl + -'- + \nfn 

and that for i = 1 , . . . , n, one has 

(2) fi = £pi/j + Pi-
7 = 1 
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This result extends the characterization of rational series in k((X)) by Schiitzenberger 
[S2]; see also [E] Section VII.6, [SS] Section II. 1 and [BR] Theorem 1.6.1. A simple 
computation shows that, with the notations of the proposition, writing M = (ptj), one 
has / = A(l - M)~lp (observe that 1 - M is invertible in nDk((X))n). This justifies the 
following definition: a representation of a series/ G Dk((X)) is a triple ix = (A, 1 — M, p), 
where À G Dn, p G nD and M G nDk(X)n is a linear matrix without constant term (i.e. 
each entry of M is an homogeneous element of Dk{X) of degree 1), such that 

(3) f=X(l-M)-lp. 

Note that in this case, if we define ser ies/ , . . . ,/n by 

(4) fi=((l-M)-lp)r 

then the constant term of/ is p / , / = X\f\ + • • • + A,/„ and (2) holds, with M = (py). 
Conversely (2) implies (3) and (4). Thus we have: 

COROLLARY 2. A series/ is rational if and only if it admits a representation. 

The dimension of the representation above is n. A representation of/ of smallest 
possible dimension is called minimal, and its dimension is by definition the rank off. 

It will be useful for the sequel to adopt the following terminology and notation: for 
a representation ix as above, call the family/i,...,fn the left family of IT, and denote by 
L(TT) the left D-linear subspace of Dk((X)) which they span. We often identify the left 
family and the vector (/] , . . . ,fn)

T — (1 — M)~lp. Similarly, writings = (A(l — M)_1V, 
we call g\,...,gn the right family of TT and we denote by R(TC) the right D-linear space 
they span. 

The aim of this section is to characterize minimal representations and to show how 
they are related to each other. Before that, we introduce a space L(/), canonically attached 
to / , and closely related to minimal representations of/. 

Let (WA)AGA be a basis of D over k. By (1), each/ in Dk((X)) may be uniquely written 

(5) / = Z ) Z) a(\o,...,\n;xi,...,xn)ux0xiUxi'-xnuXn, 
n>0 A0,...,A„GA 

where a is in k, and where for fixed n, only finitely many a(A0 , . . . , Aw; JCI, . . . ,xn) are 
nonzero. Let A G A and x G X. We define a series, denoted by (u\x)~lf: it is the right 
cofactor of u\x in/ ; in symbols 

(uxx)~lf =Y, J2 a ( ^ ' ^i» • • • > K',x,X2, • • • ,xn)uX]x2 • • - ^ « v 
n>\ A,,...,A„GA 

Jt2,... , * , , € * 

The mapping/1—• (u\x)~xf is well-defined and ^-linear. For convenience, we call it a 
/é/f transduction. We define L(/*) to be the smallest left Z)-subspace of D*((X)) containing 
/ and which is closed under all the left transductions. It is easy to show that the space 
L(f) does not depend on the chosen basis. In the case of rational series, this will be a 
consequence of the sequel. 

We can now give another characterization of rationality. It extends the Hankel char
acterization of rational series in k{(X)) by Fliess [F], in a form given by Jacob [J]; see 
also [SS] Section II.3 and [BR] Proposition 1.5.1. 
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PROPOSITION 3. A series/ is rational if and only if the space L(f) is a finite dimen
sional D-vector space. 

We prove first three lemmas. 

LEMMA 4. Letf G D^ ((X)} such that L(f) is a finite-dimensional left D-vector space. 
Thenf has the following property: 

(6) / is the sum of its constant term and of finitely many series of the 
form dxg with d G D, x G X, g G Dk({X)). 

PROOF. By (5), we may write 

/ = / O + X>A*/X*' 

for some series fx^ satisfying the property of local finiteness: for each n, only finitely 
many series/^ involve monomials of X-degree n. We have (u\x)~xf =f\^- Let/i ,...,fr 

be a D-basis of L(f). ThenfXrX = EJ1 j dx^ift, for some d\^t in D. Thus 

r 

\jc i— 1 

Let/j.-n denote the sum of the homogeneous components of f of degree < n. Since 
the f are linearly independent, so are the/)-^, for some N. Then, for each choice of dx^, 
i = 1, . . . , r, not all zero, the series/j^ — £/=i dx^jf involves some term of degree < N. 
We conclude by local finiteness that dx^h i— 1, . . . , n, vanish for almost all À, x. m 

LEMMA 5. Let irbea representation off. Then L(f) C L(TT), and L(TT) is closed under 
left transductions. 

PROOF. Let f\,...,fn be the left family of IT. Then/ G L(7r), because/ = \\f\ + 
• • • + ^nfn- We show that L(TT) is closed under left transduction, which will prove the 
lemma. For this, it is enough to show that for any À G A, x G X, d G D, / G 1, . . . , n, 
one has (u\x)~l(df) G L(TT). Now by (2), df = EjLi dpyfi + dpi, and we can write 
dptj = E uxxdxjjj where the sum is over finitely many À and x. Thus 

dfi = Y1U\XY1 dXjJjfj + dPi> 
j 

which implies (uxx)~l(dfi) — J2j dxTx,ijfj- Thus, this series is in L(7r). • 

LEMMA 6. Let f \ , . . . ,fn be series, let L be the left D-vector space they span, and 
suppose that L is closed under left transductions. Furthermore, define elements dx^jj of 
Dby 

(7) (u\xrlfi = Y,d\*ijfj> 
j 
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define linear polynomials py by 

pij = YJuxxdx^ij 

and put M = (pij)\<ij<n. 
If Pi denotes the constant term off, and p = (p\,..., pn)

T, then 

(8) (/1,...,/(I)
7" = ( 1 - A f ) - V 

Moreover, iff , . . . , /„ are linearly independent over D, then M, subject to (8), is unique. 

PROOF. Each series/ satisfies the hypothesis of Lemma 4, hence we may write 

ft = Pi + Yl u\xS\s,i 

for some series g\jj, where the summation is finite. Then (u\x)~lf = gx^j, hence 

f = Pi + 12uxxJ2d^Jjfj 
\j j 

= Pi + Y,Pijfj-
j 

The latter equality may be written 

(fu...,fn)T = P+(Pij)(fu...,fn)T, 

which implies (8). Note that i f / i , . . . ,fn are linearly independent over D, then the d\^j 
are unique; hence so is M, because (8) implies (7). • 

PROOF OF PROPOSITION 3. If / is rational, then Lif) is finite-dimensional by 
Lemma 5. Conversely, if L(f) is finite-dimensional, then by Lemma 6, / admits the 
representation (A, 1 — M,p), where f , . . . ,/„ span Lif), and A/ G D are defined by 
/ = Ai / i+ ' - ' + A ^ . • 

Similarly to left transductions, we may define right transductions and the right D-
vector space R(f). The proofs above show that the following result holds. 

COROLLARY 7. The rank off is equal to the common dimension of Lif) and Rif). 

Observe that for usual rational series E a ^ , the rank as defined here is the rank of 
the Hankel matrix (ai+j)ij^; see [F], [SS] Section II.3 or [BR] Theorem II. 1.5 for this 
and its generalization to rational series in k((X)). 

We say that two representations n = (A, 1 — M, p) and n' = (A', 1 — M\ pf) of the 
same dimension n are similar if for some square matrix P G GL„(D), one has A' = XP, 
M' = P~lMP, p' = P~lp. In this case, they represent the same series: Xf(\ — M')~xp' — 
XP(l-P~]MP)~]P~lp= XPP-{(\-MYxPP~xp = A ( l - M ) - y Observe also that the 
two left families of IT and TÏ' are related by ( 1 — M')~{p' = P~l ( 1 — Myl p. In particular 
if one of them is left linearly independent, so is the other. Similarly for right families. 

The next result extends [S1 ], in a form given by Fliess [F], for rational series in k((X}}. 
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THEOREM 8. Two minimal representations of a given series f are similar. 

We use the following lemma. 

LEMMA 9. Let IT, TT' be two representations off which have the same left family, and 
suppose that this family is left D-linearly independent. Then TT — TT''. 

PROOF. Let(1 -M)'x p = (fu... ,fn)
T = (1 -M ' )~V-Then / = Ai/i +• • -+A^ = 

<M/i + • • • + X'Jn, which shows that A = A'. We have (fi,... Jn)
T = M(fu... ,fn)

T + p, 
and similarly with M', p' instead of M, p; hence p = p' is the vector of constant terms of 
the/ . Moreover, the left D-space spanned by the / is closed under left transductions by 
Lemma 5. Lemma 6 then shows that M is unique, hence M = M', m 

PROOF OF THEOREM 8. Let TT = (A, 1 - M,p) and 7r' = (A', 1 - M',p') be two 

minimal representations of/. Let / i , . . . ,/n and / ' , . . . ,/„' be their left families. Then 
by Lemma 5, Corollary 7 and minimality, both of these families form a basis of the 
space L(f). Hence we may find P G GLn(D) such that />(//,... ,/n ')7 = ( / , . . . ,fn)

T i.e. 
P{\ -Mfylp' = (1 - M T V LetTn = (Aj,l - M i , p O = (AP, 1 - P~XMP,P~Xp). 
Then this representation is similar to 7r, and its left family is (1 — Mi)"1 pi = 
P_ 1(l - M)-{PP-{p = P-{(1 - M)~xp = (1 - M V V ' . By Lemma 9, we conclude 
that TT\ = 7Tf. m 

The next result characterizes minimal representations. It extends [BRI Proposi
tion II.2.1. 

PROPOSITION 10. Let IT be a representation. Then IT is minimal if and only if its left 
family is left D-linearly independent and its right family is right D-linearly independent. 

LEMMA 11. Let IT — (A, 1 — M', p) be a representation off with left family f\, • • • ,/w. 
(i) If f\ , . . . , /„ are left D-linearly independent and if the left D-space spanned by 

f\,...,fp is closed under left transduction and contains / , then IT has the p + (n — p) 
blockform 

A = (x,0), M=[* ° ) 

(ii) Iff\ = - " = fP = 0 andfp+\,... ,fn are left D-linearly independent, then IT has 
the p + (n — p) blockform 

«=(x ")• ' - C O -
PROOF, (i) By Lemma 5, the left D-space spanned b y / , ...,fn is closed under left 

transductions. Hence, we can apply Lemma 6: equation (7) holds, and since the left D-
space spanned by/i ,...,fp admits this set as basis, we must have dx^jj = 0 for 1 < i < p, 
p + 1 < j < n. Hence p^ = 0 for these / , / Moreover/ = E7 A -̂ implies A7 = 0 for 
p+1 <j<n. Thus A and M have the indicated block form. 

(ii) By Lemma 6 again, we must have d\xij = 0 for 1 < i < p, p + \ <j<n, since 
f\ = - • • = fp — 0 and/p+i,... ,/n are linearly independent. Hence py — 0 for these /, / 
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Moreover, for 1 < i < /?, 0 = /• = p; + £;=1 Pijfj = p. + EJL, p«j# + T!-=p+x Pijfj = Pi-
Hence M and p have the required block form. 

PROOF OF PROPOSITION 10. The condition is necessary by Lemma 5 and Corol
lary 7, and by symmetry. Conversely, denote b y / , . . . , /„ and g\,..., gn the left and right 
families. Suppose that/ , . . . , /„ are left D-linearly independent and that 7r is not minimal. 
Then by Corollary 7 the left D-space spanned by the/ is strictly bigger than L(f). By re
placing 7T by the similar representation (XP, 1 —P~lMP, P~1 p), we replace (/ï,... ,fn)

T by 
P~l(f\,... ,/„) r, and (gu ...,&,) by (gi,. . . ,g„)/>. Hence we may suppose that/i , . . . , / , 
is a basis of L(/), with p < n. Then Lemma ll(i) shows that 7r has the block form: 

À = ( x, 0), M = . Hence the g, are not independent. • 

X 0 °\ /° X M 0 ' r X X x / \ x 

v x x ^ 
The next result shows how general representations are related to minimal ones. 

PROPOSITION 12. Let IT = (A, 1 — M, p) am/ 7f = (A, 1 —M, p) be two representations 
of the series f y the second being minimal. Then the first one is similar to a representation 
having the block form 

(x,A,0), 

PROOF. Suppose that the left family ( 1 — M)~1 p of TT is not left D-independent. Then 
for some invertible matrix P over D, one has P~l(l — M)~lp = (0 , . . . , 0, / / , . . . ,fp)T, 
where//, ...,fp are Z)-linearly independent. Then n is similar to TT\ = (AP, 1 — P~XMP, 
P~lp). Observe that the left family of n\ is (0, . . . , 0,//, . . .fp)T', hence Lemma 11 (ii) 
implies that TÏ\ has the block form 

A,=(x,A'), MX = [1 £ ) . Pl = (0 

Hence (A', 1 — M\ pf) is a representation of/, with left family//,... ,fp. Observe that 
if the right family A(l — M)_1 of n were right D-linearly independent, then so would the 
right family of IT\ be, hence also that of 7r', because 

Aid - M , ) " 1 = (x,V) ( * ( 1 _°Mlyl ] = (x,A'(l - M ' ) " 1 ) . 

Thus, in this case, the representation ix' is minimal by Proposition 10. 
If IT' is not minimal, then its right family is not independent. Then we work symmet

rically, and obtain a new representation with independent right family, and also indepen
dent left family, because that of 7rr is. Hence we conclude with Proposition 10. • 

We have also obtained the following result. 

COROLLARY 13. Let IT be a representation off. Then L(f) Ç L(TT) (resp. R(f) Ç 
R(TT)), with equality ifir is minimal. 
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3. Free fields. 

3.1 Representations. A ring R is said to have a universal field of fractions K, if there is an 
embedding R —» K which is universal for specialization. In particular, such a universal 
field of fractions K exists whenever R is a semifir and K is then characterized by the 
property: every full matrix over R is invertible over K (see [CI] Corollary 7.5.11 or [C21 
Theorem 4.C). Here a semifir is a ring in which every finitely generated left (or right) 
ideal is free of unique rank; a matrix M over R is full if it is square say nx n and for any 
factorization M — AB where A G nRp, B G pRn, we have p > n. 

In particular Dk(X) is a semifir and so has a universal field of fractions, written Dk{X} 
and also called free field. Likewise Dk((X}) is a semifir and so has a universal field of 
fractions, which we denote by Dk{{X}}. Throughout this section we shall assume that k 
is the precise center of D. 

We call representation of an element/ of Dk{X} a triple n = (A, M, p) where A G Z/\ 
p G nD and M G nDk(X)n is an aĵ me matrix (i.e. each entry of M is a polynomial of 
degree < 1) which is full and such that/ = \M~~xp. 

Similarly to what has been done in the previous section, we associate to each repre
sentation 7T its left family / i , . . . ,/„ G Dk{X}, with/ = (M-1^),, and the left D- vector 
space L(7r) they span in Dk{X}\ symmetrically, the right family of IT and the right D- space 
R(7T). 

We call n the dimension of 7r, and say that 7r is minimal if it has the least possible 
dimension among all the representations of the given element/. 

The following result holds. 

PROPOSITION 1. Each element f ofDk{X} has a representation. 

See [CI] Theorem 7. 1.2 or [C2] Theorem 4.2.1. 
We call translation each automorphism of Dk {X} sending each variable x onto x+ax, 

for some ax in D. Such an automorphism exists, for each choice of scalars ax(x G X); 
see [CI] Theorem 7.5.14 or [C2] Theorem 4.3.3. Observe that a translation fixes D. 

Let t be a translation. Then t extends to matrices, and representations, because t pre
serves the X-degree of polynomials, and invertible matrices. Note that t sends minimal 
representations of/ onto minimal representations of t(f). 

We say that two representations of dimension n (A, M, p) and (A', Af', p') are equivalent 
if for some invertible matrices P , g G GL„(Z)), one has A7 = AF, M7 = gMP, p' = Qp. 
Then they represent the same element: \'M'~X p' = \PP~X Mx ÇTX Qp = \M~{ p. Ob
serve that two representations are equivalent if and only if their images under some 
translation are. Note that, since we consider representations (A,M, p) with no special 
requirement on the constant matrix of M (unlike in Section 2 where it was the identity 
matrix), we have to consider a wider equivalence relation of representations than in Sec
tion 2 (where it was similarity, which preserves the constant matrix). Note also that a 
representation is equivalent to a representation in the sense of Section 2 if and only if its 
constant matrix is invertible over D. When a representation (A, M, p) is a representation 
in the sense of Section 2, i.e. when its constant matrix is the identity, then we say that the 
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representation is an S-representation. The corresponding element of Dk{X} will then be 
called S-defined. 

All we have said applies also to the case D = k. In this case, we write k(X) instead 
of Dk(X) (it is then the free associative ^-algebra on X), and k{X} instead of Dk{X}. 
Note that k{X} may be identified with the subfield of rational elements in the Mal'cev-
Neumann series algebra of the free group on X, by a result of Lewin, see [L]. 

3.2 Embeddings of free fields. We suppose here and in the next section that k is infinite, 
and that D has infinite dimension over k. This will allow us to use the specialization 
lemma. 

SPECIALIZATION LEMMA (SEE [C2] LEMMA 6.3.1). Let M(x) be a full matrix over 
Dk(X). Then for some choice of scalars ax, x G X, the matrix M(ax) is invertible over D. 

We shall use the specialization lemma under the following form: if M G nDk(X)n is 
full, then t(M) E nDk(X)n is invertible in nDk((X))n (i.e. the constant matrix of t(M) is 
invertible in nDn), for some translation t. 

THEOREM 2. The canonical embeddings k(X) —» Dk(X) —> Dk((X}) extend to the 
corresponding embeddings of free fields 

k{X}^Dk{X}-+Dk{{X}}. 

We first prove a lemma. Denote by * the free product over k of /c-algebras. Recall 
that a homomorphism of rings is called honest if it preserves full matrices. Note that 
Dk(X) =D*k(X). 

LEMMA 3. The natural homomorphism 

k(X)^Dk(X) 

is honest. 

PROOF. Write R = k(X)\ we must show that the natural homomorphism R—*R*D 
is honest. Now R is a fir with universal field of fractions F(R) say, and we have natural 
homomorphisms 

R-^R*D-^ F(R) * D. 

Any full matrix over R is invertible over F(R), hence invertible over F(R) * D and so is 
full over R * D. m 

PROOF OF THEOREM 2. It is enough to show that the two first embeddings are honest. 
Suppose that A(x) over k(X) is full, but not full over Dk(X). Then A = P(x)Q(x\ for 

some P, Q over Dk{X), of size n x r, r x n respectively, with r < n. By Lemma 3 and 
the specialization lemma, A(ax) is invertible over D for some choice of values ax in D; 
but A(ax) = P(ax)Q(ax) gives a contradiction. 
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Suppose now that A over Dk(X) is full. Without loss of generality, we may assume 
that A is invertible over Dk((X)) (by applying a translation t such that t(A) is invertible). 
Certainly, A is then full over Dk((X}), which proves the theorem. 

Note that the second assertion is also a consequence of the inertia theorem ([CI], 
Theorem 2.9. 15 p. 133). • 

The latter result shows that if an element/ of Dk{X} is S-defined, then, under the 
identification of Dk{X} with a subfield of Dk{{X}},f is actually in Dk((X)). This will 
allow us to transfer the results of Section 2 to elements of Dk{X}. 

For k{X}, a little more work is needed. 

LEMMA 4. The natural mapping D * k{X} —> Dk{X} is honest, and in particular 
injective. 

This implies that the universal field of fractions of D * k{X} is Dk{X} (a fact we shall 
not use here). 

PROOF. Let A be a full matrix over D * k{X}. Then, by Cramer's rule ([C1 ] Proposi
tion 7.1.3), A is stably associated to a full matrix A \ over D * k(X) = Dk{X). Then A \ is 
invertible in Dk{X}. Hence the image of A in Dk{X} is invertible, being stably associated 
to an invertible matrix. • 

COROLLARY 5. For D and k as before, D and k{X} are linearly disjoint over k in 
Dk{X}. Letf,f\ ,...,fn belong to k{X}. Then the following conditions are equivalent: 

(i) f is in the left D-space generated by f \ , . . . Jn. 
(ii) t(f) is in the left D-space generated by t(f\),..., t(fn), for some translation t over 

D. 
(Hi) f is in the k-space generated byf\,... ,/„. 

PROOF. By Lemma 4, the natural homomorphism D ®k k{X} —• Dk{X} is injective, 
which proves the linear disjointness. Now, the equivalence of (i) and (ii) is clear, because t 
is an automorphism of Dk{X} over Z), and (i) is equivalent to (iii) by linear disjointness. • 

4. Normal forms in free fields. 
4.1 The free field Dk{X}. 

THEOREM 1. Let (A,M, p) be a minimal representation of f G Dk{X}, and 
(A', M', p') be another representation off. Then (A7,Mr, p') is equivalent to a represen
tation (A i, M\, p\ ), which has the block decomposition 

/ x 0 OX /OX 
Ai = (x,A,0), Mi = x M 0 , p\ = \ p . 

In particular, minimal representations off are equivalent. 

PROOF. The matrix M 0 M1 is full, so there exists a translation t such that t(M) and 
t(Mf) are both invertible over Dk((X)). Hence, without loss of generality, we may assume 
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that M and M' are both invertible over Dk((X)). Then for some invertible matrices Q, Q' 

over D, the matrices QM and Q'Mf have the form QM = 1 — N, QfMf = 1 — AT', where 

N, N' are linear matrices without constant terms. Then (A, QM, Qp) and (A', Q'M, Q'pf) 

are ^-representations equivalent to the original representations. 

Hence, without loss of generality, we may assume that the original representations 

are ^-representations, and in particular,/ is in Dk{{X)}. Then (A,M,p) is minimal as S-

representation, hence the theorem follows from Proposition 2.12. • 

Similarly to Proposition 2.10 and Corollary 2.13, we also obtain the following result. 

COROLLARY 2. Let TT be a representation off. Then 7r is minimal if and only if its left 

family is left D-linearly independent and its right family is right D-linearly independent. 

In this case L(if) (resp. R(n)) depends only onf. 

4.2 The free field k{X}. Recall that k is infinite. Let D be a skew field, with center k, 

and of infinite dimension over k (if |X| > 2, one may take D = k{X}). 

THEOREM 3. Any two minimal representations off £ k{X} are equivalent. 

We first prove three lemmas. 

LEMMA 4. Let M — (N, C) be an n by n invertible matrix over afield, where N is 

n by n — 1 and C is the last column ofM. Then some n — 1 by n — 1 submatrix ofN is 

invertible. 

This is well-known. 

LEMMA 5. Let IT be a minimal representation of an element f in k{X}. Then its left 

and right families are both k-linearly independent. 

PROOF. If the left family of 7r is not independent then, by taking an equivalent repre

sentation, we may suppose that this left family i s / i , . . . ,/„_i, 0. Then, for i\ — (A, M, p) 

and M — (/?//), we have 
n-\ 

By Lemma 4, some n — 1 by n — 1 submatrix of iPij)\<i<n,\<j<n-\ is invertible in k{X}, 

N — (Pij)\<ij<n-\ saY- Then ( (Ai , . . . , Xn^\),N, ( p i , . . . , pn-\)
T) is a representation of/, 

of smaller dimension than IT. m 

LEMMA 6. Let TT, -K' be two representations of the same element which have the 

same left and right families. Suppose that these two families are linearly independent. 

Then i\ — i\f. 

PROOF. By Theorem 3.2, we may apply a translation t over D, and obtain two repre

sentations f(7r) and /(TT7) of an element of Dk{X} whose matrices are invertible in Dk((X}}. 

By Corollary 3.5, their left and right families are left and right D-independent. Moreover, 

they are still equal. Now, f(7r) and t(ir') are respectively equivalent to the representations 

(r(A), Qt(M), QKp)), and (/(A'), Q't{M'\ Q't(p')), where Q and Qf are chosen in GLn(D) 
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in such a way that Qt(M) = 1 - N9 Q't(Mf) =l-Nf, with N, Nf linear. The left family 
of the first representation is (gf(M)) Qt(p) = t(M)~xt{p), and similarly for the other. 
Hence, these two left families are equal, and D-independent. 

These representations are therefore ^-representations, with left D-linearly indepen
dent equal families. We thus may apply Lemma 2.9, and we deduce that t(X) = t(X'), 
Qt(M) = Q't(M% Qt(p) = Q't(p'). Thus A = A', QM = Q'M' and Qp = Q'p'. 

Furthermore, we know that the right families of TT and TT' are equal, and right D-linearly 
independent by Corollary 3.5. Hence AM"1 = A'M'-1. Since XM~xQrx = X(QMyx = 
\'(Q'M'YX = \!M'-XQ'-X = XM~lQ'-\ we conclude that Q = Q', which completes 
the proof. • 

PROOF OF THEOREM 3. Let TT, TT' be two minimal representations of/. By Lemma 5, 
their left and right families are ^-linearly independent. Hence, in Dk{X}, they are also 
D-linearly independent, by Corollary 3.5. Thus TT, TT' are minimal as representations in 
Dk{X}, by Corollary 2. The same result implies that L(TT) = L{K') and R(ir) — R(TT'), in 
Dk{X}. Hence the same holds in Jc{X}, by Corollary 3.5. Thus, we may replace IT' by an 
equivalent representation IT" such that the left (resp. right) families of IT and IT" coincide. 
Then Lemma 6 shows that TT = IT1 . m 

We can also characterize minimal representations. 

PROPOSITION 7. A representation TT off G k{X} is minimal if and only if its left and 
right families are k-linearly independent. In this case, L(TT) andR(ir) depend only onf. 

PROOF. The necessity has already been established in Lemma 5. Conversely, if the 
two families are ^-independent, they are also D-independent by Corollary 3.5, so that TT 
is minimal as representation in Dk{X}. A fortiori it is minimal in k{X}. The last assertion 
follows from Theorem 3. • 

Finally, we show how general representations are related to minimal ones. 

PROPOSITION 8. Let TT — (X,M,p) and it = (A,M, p) be two representations of 
f G k{X}, the second being minimal. Then the first one is equivalent to a representation 
having the block form 

( x , A , 0 ) , ( x M 0 | , I p J . 

The proof follows the proof of Proposition 2.12, by replacing 1 — M by M, D by k, 
Lemma 2.11 (ii) by the lemma below, and Proposition 2.10 by Proposition 7. 

LEMMA 9. Let TT = (A,M, p) be a representation off with left family 0, . . . , 0 , 
fp+\,...,fn (p zeros), where the latter elements are k-linearly independent. Then TT is 
equivalent to a representation (A',M', p') having the p + (n — p) block form. 
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PROOF. Let t be a translation over D such that t(M) is invertible in Dk((X}). Then, let 
Q be an invertible matrix over D such that Qt{M) = 1 — N, N linear in Dk(X). 

Then (f(A), Qt{M), Qt(pj} is an S-representation. Its left family is by Theorem 2 and 
Corollary 3.5 of the form (0, . . . , 0, gp+\,..., gn)

T, where gp+\,..., gn are left D-linearly 
independent series in Dk((X)). 

Hence Lemma 2.10(ii) shows that one has the block form 

Hence gM and Qp have the same decomposition. Since they are obtained from M and 
p by row operations over D, and since the entries of M and p are in k(X), we may perform 
some row operations over k which will produce the same rectangle of 0's. Hence, there 
exists Q' over £, invertible, such that Q'M and Q'p have the same block decomposition, 
and we take (A', M', pf) = (A, Q'M, <2'p). • 

4.3 An example. Proposition 8 means that if IT and H are both representations of / G 
&{X}, 7f being minimal, then one may, by performing elementary row and column oper
ations over k on IT, decompose 7r into block form such that 7f appears as a central block. 
More precisely, if 7r = (À, M, p), the row operations must be performed on M and p, and 
the column operations on M and A. We illustrate this on an example. 

Let/ = (JC—.y-1)-1 = x~x+{xyx—x)~x (Hua's identity).Then we have, with/7 = y~lf: 
l = (x- y~l)f = xf - / ' and/ - yf = 0. Thus 

f-xf' = o. 

This is written 

(ï "4)(fl-(i)-
which shows that 

is a representation of/. Indeed, the matrix in the middle is full (the assignment x = y = 0 
makes it invertible), and it is necessarily minimal. 

Now, consider the other expression for/. Let g\ = (xyx — JC)-1, g2 = yxg\, g3 = xg\, 
#4 = x_ l. Then 

1 = (xyx-x)gi = -xgi +xg2 

0 = #2 - }vg3 

0 = *£i -<?3 

1 =x^4 . 
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This is written 
(-X 

0 
x 

\ o 

x 0 
1 -y 
0 - 1 
0 0 

\ ( 8 l \ 

<?4 W 

'A 
o 

Let M be this 4 x 4 matrix, p = (1001)rand A = (1001).Since/ = gi+g4,7r = (A,M,p) 
is a representation of/. 

Then we perform a chain of elementary operations on TT (the notation is self explana
tory): 

(1001) 

l~x 
0 
x 

\ o 

X 

1 
0 
0 

R\—RA 
(1000) 

/?3+/?4 
(1100) 

0 

-y 
- l 
0 

x 0 
1 
0 
0 

-x 0 0 
0 1 - j 
x x —1 

\ 0 0 0 

\ A 1 

0 
X 

\ 0 

/ -

- 1 
0 

0 
0 

\ l / 

C4—C) 
(1000) 

0 
x 

\ 0 

O 
0 

\ 1 / 

c2+c, 
(1100) 

x 
1 
0 
0 

-x 
0 
x 

°M°A 0 
0 
xl 

0 
1 

\ l / 

(1100) 
/-* 

X 

0 
V 0 

0 

-y 
- 1 

X 

0 
—x 

X 

0 
\ i / 

S\n 

0 

1 
0 

-y 
0 

0 
0 

x I I ° 

0 
\ i / 

The latter representation has a 1 + 2 + 1 triangular block decomposition, and 7f appears 
as its central block. This gives also a proof (rather lengthy) of Hua's identity. 

The previous example raises the question whether the proofs given here are construc
tive. We shall not discuss this here, but refer the reader to [C2] Section 6.4, for the word 
problem in free fields. 
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