SUMMING A COMMON TYPE OF SLOWLY CONVERGENT SERIES OF POSITIVE TERMS

J. E. DRUMMOND

(Received 6 June 1976)
(Revised 30 September 1976)

Abstract

If the terms of a series behave like n^{-k} where k is an exactly known constant, a formula using two terms transforms the series into a series of terms like n^{-k-2} provided $k \neq 1$. The multıple use of this transformation is demonstrated in summing three series.

1. Introduction

When the nth term of a series is a quotient of powers or polynomials or γ-functions in n and the ratio of successive terms is close to 1 the series is difficult to sum. The three main reasons for this are that a lot of terms of the series are needed, the individual terms are much smaller than the sum, and rounding off errors in a numerical calculation can be troublesome.

Two methods for transforming such series are Lubkin's [1] transformation and Wynn's [2] ρ-algorithm which may be used to repeatedly transform the series or its corresponding sequence into more rapidly convergent forms.

The following method bears a close resemblance to an improvement on Wynn's ρ-algorithm and is easier to use.

2. Derivation of the formula

Let u_{n} be the nth term of a series.
Let Z_{n} be the sum to infinity of the series starting with u_{n}, thus $Z_{n}=u_{n}+u_{n+1}+u_{n+2}+\cdots$.

We first take a special series for which

$$
Z_{n}=\frac{A}{(n-k)(n-k+1) \cdots(n-2)}
$$

Hence

$$
u_{n}=\frac{A(k-1)}{(n-k)(n-k+1) \cdots(n-1)}
$$

and

$$
\begin{equation*}
Z_{n}=\frac{k}{k-1} \frac{u_{n-1} u_{n}}{u_{n-1}-u_{n}}=u_{n}+\frac{k}{k-1} \frac{u_{n} u_{n+1}}{u_{n}-u_{n+1}} \tag{1}
\end{equation*}
$$

The particular series given above is summed exactly from a knowledge of k and the first two terms of the series. However if we have some other series for which $A n^{-k}$ is the dominant part of the nth term we may still transform the series as follows:

Let $Z_{1}=u_{1}+u_{2}+u_{3}+\cdots$ and take $u_{0}=0$ and define

$$
\begin{equation*}
T_{n}=\frac{k}{k-1} \frac{u_{n-1} u_{n}}{u_{n-1}-u_{n}} \quad \text { so } \quad T_{1}=0 \tag{2}
\end{equation*}
$$

then by simple rearrangements we get

$$
Z_{1}=u_{1}^{*}+u_{2}^{*}+u_{3}^{*}+\cdots
$$

where

$$
\begin{equation*}
u_{n}^{*}=u_{n}-T_{n}+T_{n+1} \tag{3}
\end{equation*}
$$

provided that $k \neq 1$ and $\lim _{n \rightarrow \infty} T_{n}=0$.
Also if $u_{n} \sim A n^{-k}$ we substitute in equations (2) and (3) to get

$$
u_{n}^{*} \sim-[A(k+1) / 12](n-1)^{-k-2}
$$

for $n>1$ and $k \neq 1$.
The transformed series may be transformed a second time, but now the series behaves like $\sum n^{-k-2}$ so we change k to ($k+2$) in equation (2) and continue to increase k by 2 for each successive transformation.

Several comments on the transformation formula are:
(i) Equations (2) and (3) can be written into a calculator programme which stores k and calculates u_{n}^{*} when u_{n+1} is inserted.
(ii) Rounding off errors are magnified because of the factor $\left(u_{n-1}-u_{n}\right)$ in the denominator of T_{n} so where possible it is advisable to do at least the first transformation of the series exactly and the early transformations as accurately as possible.
(iii) k may be estimated using three terms of the series. Thus when the equations (1) are approximately true we eliminate Z_{n} from them to obtain an approximator
Table 1
Summing a series for $10^{9} \pi$ knowing that the terms behave hike $n^{-3 / 2}$

u_{n}	$3 A_{n}$	u_{n}^{*}	$7 A_{n}^{* / 5}$	$u_{n}^{* *}$	$11 A_{n}^{* * / 9}$	$u_{n}^{* * *}$	$15 A_{n}^{* * *} 13$
$2000,000,000^{*}$							
$333,333,333$	$1200,000,000^{*}$						
$150,000,000$	$818.181,818$	$-48,484,848^{*}$					
$89,285,714$	$661,764,706$	$-6,417,112$	$-10,354,391^{*}$				
$60,763,889$	$570,652,174$	$-1,826,818$	$-3,575,381$	$361,898^{*}$			
$44,744,318$	$509,159,483$	$-728,802$	$-1,697,558$	51,006	72.568^{*}		
$34,705,528$	$464,062,500$	$-352,665$	$-956,649$	12,106	19,401	$-2,161^{*}$	
$27,929,686$	$429,163,491$	$-193,480$	$-600,104$	3,881	6,981	-314	-424^{*}

$$
u_{n}^{*}=u_{n}-T_{n}+T_{n+1}
$$

$A_{n}=u_{n, 1} u_{n} /\left(u_{n},-u_{n}\right) \quad T_{n}=k A_{n} /(k-1)$

$$
k=\frac{\left(u_{n-1}-u_{n}\right)\left(u_{n}-u_{n+1}\right)}{u_{n-1} u_{n+1}-u_{n}^{2}}
$$

(iv) If k is unknown it may be eliminated from equations (1) to give Lubkin's [1] formula (17) namely

$$
Z_{n}=\frac{u_{n}\left(1-R_{n+1}\right)}{1-2 R_{n+1}+R_{n} R_{n+1}} \quad \text { where } \quad R_{n}=\frac{u_{n}}{u_{n-1}} .
$$

3. Demonstration of the formula

The use of equations (2) and (3) is demonstrated in table 1 on the first eight terms of a slowly convergent series for π namely

$$
\pi=\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n-1}(n!)^{2}(2 n+1)}
$$

multiplied by 10^{9} to avoid tabulating decimals. This series would require about 10^{16} terms to give an error of 10 in the tabulated values or 10^{-8} in π.

If it is known that the first, third, fifth and seventh columns are terms of series which behave like $n^{-3 / 2}, n^{-7 / 2}, n^{-11 / 2}, n^{-15 / 2}$ then we take $k=3 / 2,7 / 2$, $11 / 2,15 / 2$ in successive uses of equation (2) or use the equivalent formulae at the bottom of table 1 in order to construct the table. The numbers marked with an asterisk at the top of each column are summed to give $3,141,592,641$ which differs from $10^{4} \pi$ by 12 .

4. Comparison with other formulae

The two transformations most closely related to this are those of Lubkin and Wynn.

If we do not know k we may use Lubkin's transformation, the difference being that we use three terms of the series to reduce the size of the terms by a factor $(k+1) / 6(k-1) n^{2}$ instead of using two terms and a knowledge of k to reduce the size of the terms by a factor $(k+1) / 12 n^{2}$. The results of summing six terms of three series for which k is $1.5,2$, and 4 are given in table 2 . A comparison of columns A and C demonstrates the improvement resulting from a knowledge of k.

Wynn's [2] ρ-algorithm for transforming a sequence at the start of his section 2 is

$$
\begin{equation*}
\rho_{s}\left(S_{n}\right)=\rho_{s-2}\left(S_{n+1}\right)+\frac{S}{\rho_{s-1}\left(S_{n+1}\right)-\rho_{s-1}\left(S_{n}\right)} \tag{4}
\end{equation*}
$$

Table 2
Comparison of formulae
I Six terms of $\Sigma 2(2 n)!2^{2 n}(n!)^{2}(2 n+1)$

	A	B	C
Sum	2.6781273	2.6781273	2.6781273
1st transformation	3.1425424	3.1425424	3.1365079
2nd transformation	3.1415737	3.1415715	3.1413978
3rd transformation	3.1415952	3.1415967	-
Infinite sum		$\pi=3.1415927$	

II Six terms of Σn^{-2}

	A	B	C
Sum	1.4913889	1.4913889	1.4913889
1st transformation	1.6454293	1.6454293	1.6436111
2nd transformation	1.6449244	1.6449226	1.6448949
3rd transformation	1.6449350	1.6449357	-
Infinite sum		$\pi^{2} / 6=1.6449341$	

III Six terms of $\sum n^{-4}$

	A	B	C
Sum	1.08112353	1.08112353	1.08112353
1st transformation	1.08233901	1.08233901	1.08230690
2nd transformation	1.08232242	1.08232208	1.08232213
3rd transformation	1.08232340	1.08232368	-
Infinite sum		$\pi^{4} / 90=1.08232323$	

A Present formula, B Modified Wynn's ρ-algorithm, C Lubkin's formula.
where S_{n} is the sum of a series from u_{0} to u_{n} inclusive and ρ_{s} for even s is an estimate of the sum of the infinite series. His initial conditions are ideal if $k=2$ and his three examples are of this type. However if k is known and is not 2 we can take as initial conditions $\rho_{k-3}\left(S_{n}\right)=0, \rho_{k-2}\left(S_{n}\right)=S_{n}$ hence $\rho_{k-1}\left(S_{n}\right)=(k-1) / u_{n+1}$ and

$$
\rho_{k}\left(S_{n}\right)=S_{n+1}+\frac{k}{k-1} \frac{u_{n+1} u_{n+2}}{u_{n+1}-u_{n+2}} .
$$

The first two steps in this modification of Wynn's formula are now identical with the transformation derived in section 2 but thereafter the two transformations give slightly different results. In the examples in table 2 a comparison of columns A and B shows that the present formula gives results slightly closer to the infinite sum than does the ρ-algorithm. Also the amount of calculation done using equation (4) twice or equations (2) and (3) is comparable but in using a programmable desk calculator where most of the time taken is in inserting numbers the ρ-algorithm is longer.

References

[1] S. Lubkin, 'A method of summing infinite series', J. Res. Nat. Bur. Stand. 48 (1952), 228-254.
[2] P. Wynn. 'On a procrustean technique for the numerical transformation of slowly convergent sequences and series', Proc. Cambridge Phil. Soc. 52 (1956), 663-671.

Department of Applied Mathematics, School of General Studies,
Australian National University, Canberra, A.C.T. 2600,
Australia.

