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Abstract. The Zeldovich approximation (ZA) predicts the formation of a web of singularities.
While these singularities may only exist in the most formal interpretation of the ZA, they
provide a powerful tool for the analysis of initial conditions. We present a novel method to find
the skeleton of the resulting cosmic web based on singularities in the primordial deformation
tensor and its higher order derivatives. We show that the A3 -lines predict the formation of
filaments in a two-dimensional model. We continue with applications of the adhesion model to
visualise structures in the local (z < 0.03) universe.

1. The Zeldovich approximation
The Zeldovich Approximation (ZA) (Zeldovich 1970, Shandarin & Zeldovich 1989)

describes structure formation in the form of a deceptively simple equation

x(q, t) = q − D+ (t)∇Φ0(q). (1.1)

Rather than describing just ballistic motion, this equation hides a formalism of La-
grangian collision-free fluid mechanics. In the context of emerging interest in phase-space
folding descriptions of structure formation (Shandarin et al. 2012, Falck et al. 2012, Abel
et al. 2012), it becomes all the more relevant to understand this expression at a much
deeper level. We can see why there is more to the ZA than inertial motion, if we compute
particle densities from the above expression. Density increases or decreases locally as
a fluid element contracts or expands. Taking a fluid element from Lagrangian location
q, we can quantify its deformation in terms of the deformation tensor dij = −∂i∂jΦ0.
This tensor is best studied locally in the eigenvector frame of reference {eλ}, where dij

becomes diagonal. The density is then
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where {q�} is the set of Lagrangian locations solving for x in equation 1.1, and λi are
the eigenvalues of the deformation tensor dij . Note that this expression for the density
has singularities whenever for one of the eigenvalues we have

λi = 1/D+ (t).

This notion gives us the traditional interpretation of ZA, namely one where gravita-
tional collapse occurs in three possible stages. First objects form along the major axis
of collapse, making pancakes; then along the second eigenvector filaments form; and fi-
nally if and when all three eigenvalues have passed a singularity, a cluster forms. This

69

https://doi.org/10.1017/S1743921316009650 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921316009650


70 J. Hidding, R. van de Weygaert & S. Shandarin

Figure 1. The Zeldovich approximation. Density map of the cosmic structure following the
evolution according to the Zeldovich formalism. The cosmic web is sharply rendered, with most
of the structures residing just before or around shell crossing. From Hidding 2016.

corresponds to the Morse theory view of nodes and saddles exploited in many structure
finders. We show that, even in the narrow confines of the ZA, this interpretation is not
complete; even that it is wrong on the account of the formation of the first filaments
(Hidding et al. 2014). Taking the mathematics of Morse theory a step further, we arrive
at Lagrangian singularity theory (Arnold et al. 1982, Arnold 1986). This theory shows
how to predict the evolution of folds, cusps, swallow-tails, butterflies and umbilics directly
from the initial velocity potential Φ0. Due to the relative complexity of this method we
are forced to restrict our further discussion to the two-dimensional case.

Formation of pancakes. A fold is the simplest kind of singularity we have. It is the
caustic that separates single-stream from multi-stream regions and is also found under
the cryptic name A2 †. At any moment in time, pancakes can be identified as the locations
of A2 folds. At a fold the phase-space sheet (see Fig. 2) is tangent to line of projection.
In the case of ZA, this happens when λ = 1/D+ , identifying the level-sets of λ as the
Lagrangian progenitors of folds. Two folds may connect at a cusp. A fold being a line of
tangency on the phase-space sheet, there exists points where the fold line itself is tangent
to the projection, these points are the cusps (see Fig. 2). In the tensor field dij , a cusp
is found where a level-set of λ is tangent to the corresponding eigenvector eλ , or

∇λ · eλ = 0. (1.3)

† A2 refers to the ADE classification of singularities introduced by Arnold. In this paper we
also deal with A3 for cusp, A4 for swallow-tail, and D4 for umbilic singularities.
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Figure 2. The cusp singularity. Singularities arise if we project a smooth manifold down one
or more directions. In this case we show one Lagrangian direction as the z-axis and the two
remaining axes in Eulerian space. On the right is the projected view, with the fold and cusp
locations marked. Between the folds we find a three-stream region.

Figure 3. Pancake genesis. On the left we see in Lagrangian space the contours of the first
eigenvalue around an A+

3 -point. The Eulerian counterpart of the dashed contour is shown on
the right. It shows the pancake at its prime, highly elongated with a cusp on each end.

Finding all A3-points for each level-set of λ traces an A3-line. The set of A3-lines trace
the entire network of filaments formed in the ZA, throughout time. It can be shown that
all maxima and saddle points of the function λ(q) also lie on an A3-line. Lowering a level-
plane down on the function λ(q), we can see that at the maxima of λ (A+

3 -points) two
cusps are created, while at the saddle points (A−

3 -points) they annihilate, merging two
pancakes. A3-lines terminate only in D4 umbilic points, but we choose to also truncate
them where λ = 0, beyond which they loose their physical significance.

Splitting of pancakes. A pancake may branch by creating two new cusps at a fold.
Typically one of these cusps remains within the confines of the present pancake and the
other dashes out to create a subsidiary pancake, often to merge later with another pancake
at an A−

3 -point, creating a three-legged structure. The point at which a pancake branches
is called a swallow-tail, denoted A4 . An A4 singularity is found in Lagrangian space at
points where an A3-line is tangent to the corresponding eigenvector, or equivalently at
local maxima of λ limited to the A3-line. Important to note here, is that we don’t need
to involve the second eigenvalue to create a node in the network of caustics. Moving
this discussion to the three-dimensional case, we don’t strictly need to collapse along the

https://doi.org/10.1017/S1743921316009650 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921316009650


72 J. Hidding, R. van de Weygaert & S. Shandarin

Figure 4. Comparison with N-body. On the left: ZA on filtered initial conditions; contours show
the first eigenvalue, A3 -lines in red, and triangles showing D4 points. On the right: the density
contrast resulting from a 2D PM code, with the Eulerian displaced A3 -lines over-plotted.

second eigenvector to create a filament-like structure. This also suggests the existence of
different possible late-time morphologies for filaments.

Scaling and comparison with N-body. We computed the A3-lines for a set of initial
conditions and compared the result with those of a 2D N-body code. A non-linear time
evolution may be approximated by truncating power of the initial conditions at scales
smaller than the scale of non-linearity. It is well known that observable filaments have
a density contrast around unity, so this method should give realistic results. We find
good agreement for all relevant P (k) ∝ kn power-spectra, in an eye-ball comparison of
filaments predicted by ZA with density fields from a 2D PM code. An example is given
in Fig. 4.

2. The Adhesion approximation
We showed how the emergence of caustics in the ZA allows us to trace the formation

of cosmic structures in a formal, yet physically meaningful way. However, the ZA suffers
from a major flaw in that it doesn’t allow for gravitational interaction, and therefore
hierarchical structure formation. This is because the ZA is solely based on local analysis of
the velocity potential and its chain of derivatives. The adhesion model moves beyond local
considerations, which makes it computationally more intensive than the ZA (though still
much faster than N-body). Still, results are computed from initial conditions directly and
with complete accountability. The adhesion model is arrived at by taking the source-free
(hence collision-free) Euler equation, and adding an artificial viscosity term to emulate
the effects of gravity (Gurbatov & Saichev 1984, Shandarin & Zeldovich 1989). The
resulting equation

∂tu + (u · ∇)u = ν∇2u, (2.1)
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Figure 5. ZA and adhesion compared. Outside multi-stream regions the results from the ZA
and adhesion are identical. Adhesion contains an artificial viscosity term that only ‘activates’
when streams cross. Multi-stream regions are thus collapsed to infinitesimally thin structures.

Figure 6. Dual structures in adhesion.

is known as Burgers’ equation; in the limit where ν → 0, it has the exact solution

Φ(x, t) = max
q

(
Φ0(q) − (x − q)2

2D+ (t)

)
. (2.2)

The global maximum in this solution can be computed efficiently using either a Legendre
transform, convex hull (Vergassola et al. 1994) or a weighted Voronoi diagram (Hidding
et al. 2012, Hidding et al. 2016a (2016)). One condition for reaching an extremum is
that the first derivative of the maximised quantity should vanish. Performing this test
reduces above equation to the ZA as presented in equation 1.1. The global maximisation
guarantees that the resulting map from Lagrangian to Eulerian space stays monotonic
always. Where and whenever shell-crossing occurs in the ZA, adhesion creates a solid
structure. Matter inside these structures is confined to stay inside, which is the reason
people may refer to the adhesion model as having “sticky particles”. Outside collapsed

https://doi.org/10.1017/S1743921316009650 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921316009650


74 J. Hidding, R. van de Weygaert & S. Shandarin

Figure 7. Local Universe adhesion reconstruction. Structure of the lcoal Universe. The recon-
struction of the weblike structure in the local Universe, sampled by the 2MRS survey, has been
obtained on the basis of the adhesion formalism applied to a set of 25 constrained Bayesian KI-
GEN realizations of the primordial density and velocity field in the Local Universe. The image
shows the density field in a 10 Mpc thick slice perpendicular to the plane of the Local Super-
cluster. Note that the density field concerns the dark matter distribution. The red dots are the
2MRS galaxies in the same volume. From Hidding 2016, Hidding et al. 2016b.

structures the results from the ZA and adhesion are identical; caustics from ZA are
compressed to infinitesimally thin structures (see Fig. 5). This unifies Zeldovich’ idea of
collapsed structures in terms of shell crossing with a hierarchical formation model.

Dual geometry. The solution to Burgers’ equation given in expression 2.2 is identical
to the definition of the weighted Voronoi tessellation, weighted by the potential. The
Voronoi cell of a Lagrangian point q ∈ L occupies an area in Eulerian space E given by

Vq =
{

x ∈ E
∣∣∣ (x − q)2 + wq � (x − p)2 + wp, ∀ p ∈ L

}
. (2.3)

Taking w(q) = 2D+ Φ0(q) as the weights in this expression reduces it to the given solution
in equation 2.2. Where there is a Voronoi tessellation, there is its dual: the Delaunay
triangulation. It is the latter that gives us the origin and mass of matter residing in the
nodes, edges and faces of the Voronoi tessellation (see Fig. 6).
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Figure 8. The Pisces-Perseus Supercluster. A 3-D isodensity surface rendering of the intricate
filamentary structure around the Pisces-Perseus supercluster. It is based on the adhesion re-
construction of the local Cosmic Web, based on constrained realizations of the local primordial
density and velocity field implied by the 2MRS galaxy redshift survey. From Hidding 2016,
Hidding et al. 2016b.

3. The Local Universe
One application of the adhesion model is the detection of walls, filaments and nodes in

cases where some form of an initial potential is available. We ran our adhesion code on a
set of 25 constrained initial conditions reconstructed (Kitaura 2013, Heß et al. 2013) to
produce structures in our local universe (z < 0.03) (Hidding 2016, Hidding et al. 2016b
(2016)). This reconstruction is based on the 2MASS redshift catalog (Huchra et al. 2012),
which covers the full sky except for galactic lattitudes |b| < 5◦.

Figure 7 provides a remarkably detailed reconstruction of the cosmic web in the 2MRS
volume. It shows the (surface) density of the weblike structures in the Local Universe.
These are the result of adhesion simulations by Hidding 2016 and Hidding et al. 2016b
(2016), based on the the constrained Bayesian KIGEN reconstruction by Kitaura 2013 of
the initial conditions in the local volume traced by the 2MRS redshift survey. For a given
Gaussian primordial field, the adhesion formalism allows the accurate reconstruction of
the rich pattern of weblike features that emerge in the same region as a result of gravi-
tational evolution. The adhesion formalism was applied to 25 constrained realizations of
the 2MRS based primordial density field (Hidding et al. 2012, Hidding 2016). The mean
of these realizations gives a reasonably accurate representation of the significant filamen-
tary and wall-like features in the Local Universe. Most outstanding is the clear outline of
the void population in the local Universe. The reconstruction also includes the velocity
flow in the same cosmic region. It reveals the prominent nature of the outflow from the
underdense voids, clearly forming a key aspect of the dynamics of the Megaparsec scale
universe.
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The Local Universe structure in figure 7 presents a telling image of a void dominated
large scale Universe. Many of the voids in the adhesion reconstruction can be identified
with the void nomenclature proposed by Fairall (Fairall (1998)), who mainly identified
these voids by eye from the 6dFGRS survey. It is interesting to see that the socalled
Tully void appears to be a richly structured underdense region, containing at least the
Microscopium Void, the Local Void and the “Trans Tully Void”.

In the same reconstruction, we are studying the intricate filamentary network in and
around the Pisces-Perseus supercluster. The image in figure 8 provides a nice impress-
sion of the complex 3-dimensional structure and connectivity along the main ridge of
the Pisces-Perseus supercluster. It also shows how the main ridge connects to several
neighbouring filaments, connecting near massive clusters along the ridge, and how these
filaments surround a lower density planar structure. Interesting is to note the clustering
and alignment of the small (whitish) filamentary tendrils in and around the main arteries
of the Cosmic Web. Analysis of this weblike structures region is under progress and will
be first reported in Hidding 2016.
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