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Axioms of Probability Theory

Probability theory is the branch of mathematics that models and studies
random phenomena. Although randomness has been the object of much
interest over many centuries, the theory only reached maturity with
Kolmogorov’s axioms1 in the 1930s [195].

As a mathematical theory founded on Kolmogorov’s axioms, Probability
Theory is essentially uncontroversial at this point. However, the notion of
probability (i.e., chance) remains somewhat controversial. We will adopt
here the frequentist notion of probability [193], which defines the chance
that a particular experiment results in a given outcome as the limiting
frequency of this event as the experiment is repeated an increasing number
of times. The problem of giving probability a proper definition as it concerns
real phenomena is discussed in [67] (with a good dose of humor).

1.1 Elements of Set Theory

Kolmogorov’s formalization of probability relies on some basic notions of
Set Theory.

A set is simply an abstract collection of ‘objects’, sometimes called
elements or items. Let Ω denote such a set. A subset of Ω is a set made of
elements that belong to Ω. In what follows, a set will be a subset of Ω.

We write ω ∈ A when the element ω belongs to the set A. And we write
A ⊂ B when set A is a subset of set B. This means that ω ∈ A ⇒ ω ∈ B. A
set with only one element ω is denoted {ω} and is called a singleton. Note
that ω ∈ A ⇔ {ω} ⊂ A. The empty set is defined as a set with no elements
and is denoted ∅. By convention, it is included in any other set.

Problem 1.1 Prove that ⊂ is transitive, meaning that if A ⊂ B and B ⊂ C,
then A ⊂ C.

1 Named after Andrey Kolmogorov (1903–1987).
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4 Axioms of Probability Theory

The following are some basic set operations.

• Intersection and disjointness The intersection of two sets A and B is
the set with all the elements belonging to both A and B, and is denoted
A∩B. A and B are said to be disjoint if A∩B = ∅.

• Union The union of two setsA andB is the set with elements belonging
to A or B, and is denoted A∪B.

• Set difference and complement The set difference of B minus A is the
set with elements those in B that are not in A, and is denoted B ∖A. It is
sometimes called the complement of A in B. The complement of A in
the whole set Ω is often denoted Ac.

• Symmetric set difference The symmetric set difference of A and B is
defined as the set with elements either in A or in B, but not in both, and
is denoted A△B.

Sets and set operations can be visualized using a Venn diagram. See
Figure 1.1 for an example.

Figure 1.1 A Venn diagram helping visualize the sets A = {1, 2, 4, 5, 6, 7, 8, 9},
B = {2, 3, 4, 5, 7, 9}, and C = {3, 4, 5, 9}. The numbers shown in the figure represent
the size of each subset. For example, the intersection of these three sets contains 3
elements, since A∩B ∩ C = {4, 5, 9}.

Problem 1.2 Prove that A ∩∅ = ∅, A ∪∅ = A, and A ∖∅ = A. What is
A△∅?

Problem 1.3 Prove that the complement is an involution, i.e., (Ac)c = A.
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1.2 Outcomes and Events 5

Problem 1.4 Show that the set difference operation is not symmetric in the
sense that B ∖A ≠ A ∖ B in general. In fact, prove that B ∖A = A ∖ B if
and only if A = B = ∅.

Proposition 1.5. The following are true:

(i) The intersection operation is commutative, meaning A∩B = B ∩A,
and associative, meaning (A ∩ B) ∩ C = A ∩ (B ∩ C). The same is
true for the union operation.

(ii) The intersection operation is distributive over the union operation,
meaning (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C).

(iii) It holds that (A ∩ B)c = Ac ∪ Bc. More generally, C ∖ (A ∩ B) =
(C ∖A) ∪ (C ∖ B).

We thus may write A∩B ∩C and A∪B ∪C, that is, without parentheses,
as there is no ambiguity. More generally, for a collection of sets {Ai ∶ i ∈ I},
where I is some index set, we can therefore refer to their intersection and
union, denoted

(intersection) ⋂
i∈I
Ai, (union) ⋃

i∈I
Ai .

Remark 1.6 For the reader seeing these operations for the first time, it
can be useful to think of ∩ and ∪ in analogy with the product × and sum +
operations on the integers. In that analogy, ∅ plays the role of 0.

Problem 1.7 Prove Proposition 1.5. In fact, prove the following identities:

(⋃
i∈I
Ai) ∩ B = ⋃

i∈I
(Ai ∩ B),

and

(⋃
i∈I
Ai)c = ⋂

i∈I
Ac

i , as well as (⋂
i∈I
Ai)c = ⋃

i∈I
Ac

i ,

for any collection of sets {Ai ∶ i ∈ I} and any set B.

1.2 Outcomes and Events

Having introduced some elements of Set Theory, we use some of these
concepts to define a probability experiment and its possible outcomes.

https://doi.org/10.1017/9781108779197.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.004


6 Axioms of Probability Theory

1.2.1 Outcomes and the Sample Space

In the context of an experiment, all the possible outcomes are gathered in
a sample space, denoted Ω henceforth. In mathematical terms, the sample
space is a set and the outcomes are elements of that set.

Example 1.8 (Flipping a coin) Suppose that we flip a coin three times in
sequence. Assuming the coin can only land heads (h) or tails (t), the sample
space Ω consists of all possible ordered sequences of length 3, which in
lexicographic order can be written as

Ω = {hhh,hht,hth,htt, thh, tht, tth, ttt}.

Example 1.9 (Drawing from an urn) Suppose that we draw two balls from
an urn in sequence. Assume the urn contains red (r), green (g), and (b) blue
balls. If the urn contains at least two balls of each color, or if at each trial
the ball is returned to the urn, the sample space Ω consists of all possible
ordered sequences of length 2, which in the RGB order can be written as

Ω = {rr,rg,rb, gr, gg, gb, br, bg, bb}. (1.1)

If the urn (only) contains one red ball, one green ball, and two or more blue
balls, and a ball drawn from the urn is not returned to the urn, the number
of possible outcomes is reduced and the resulting sample space is now

Ω = {rg,rb, gr, gb, br, bg, bb}.

Problem 1.10 What is the sample space when we flip a coin five times?
More generally, can you describe the sample space, in words and/or
mathematical language, corresponding to an experiment where the coin
is flipped n times? What is the size of that sample space?

Problem 1.11 Consider an experiment that consists in drawing two balls
from an urn that contains red, green, blue, and yellow balls. However, yellow
balls are ignored, in the sense that if such a ball is drawn then it is discarded.
How does that change the sample space compared to Example 1.9?

While in the previous examples the sample space is finite, the following
is an example where it is (countably) infinite.

Example 1.12 (Flipping a coin until the first heads) Consider an experiment
where we flip a coin repeatedly until it lands heads. The sample space in
this case is

Ω = {h, th, tth, ttth, . . .}.
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1.2 Outcomes and Events 7

Problem 1.13 Describe the sample space when the experiment consists in
drawing repeatedly without replacement from an urn with red, green, and
blue balls, three of each color, until a blue ball is drawn.

Remark 1.14 A sample space is in fact only required to contain all possible
outcomes. For instance, in Example 1.9 we may always take the sample
space to be (1.1) even though in the second situation that space contains
outcomes that will never arise.

1.2.2 Events

Events are subsets of Ω that are of particular interest. We say that an event
happens when the experiment results in an outcome that belongs to the
event.

Example 1.15 In the context of Example 1.8, consider the event that the
second toss results in heads. As a subset of the sample space, this event is
defined as

E = {hhh,hht, thh, tht}.

Example 1.16 In the context of Example 1.9, consider the event that the
two balls drawn from the urn are of the same color. This event corresponds
to the set

E = {rr, gg, bb}.

Example 1.17 In the context of Example 1.12, the event that the number of
total tosses is even corresponds to the set

E = {th, ttth, ttttth, . . .}.

Problem 1.18 In the context of Example 1.8, consider the event that at least
two tosses result in heads. Describe this event as a set of outcomes.

1.2.3 Collection of Events

Recall that we are interested in particular subsets of the sample space Ω and
that we call these ‘events’. Let Σ denote the collection of events. We assume
throughout that Σ satisfies the following conditions:

• The entire sample space is an event, meaning

Ω ∈ Σ. (1.2)
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8 Axioms of Probability Theory

• The complement of an event is an event, meaning

A ∈ Σ ⇒ Ac ∈ Σ. (1.3)

• A countable union of events is an event, meaning

A1,A2, ⋅ ⋅ ⋅ ∈ Σ ⇒ ⋃
i≥1
Ai ∈ Σ. (1.4)

A collection of subsets that satisfies these conditions is called a σ-algebra.2

Problem 1.19 Suppose that Σ is a σ-algebra. Show that ∅ ∈ Σ and that a
countable intersection of subsets of Σ is also in Σ.

From now on, Σwill denote aσ-algebra overΩ unless otherwise specified.
(Note that such a σ-algebra always exists: an example is {∅,Ω}.) The pair
(Ω,Σ) is then called a measurable space.

Remark 1.20 (The power set) The power set of Ω, often denoted 2Ω, is the
collection of all its subsets. (Problem 1.49 provides a motivation for this
name and notation.) The power set is trivially a σ-algebra. In the context
of an experiment with a discrete sample space, it is customary to work
with the power set as σ-algebra, because this can always be done without
loss of generality (Chapter 2). When the sample space is not discrete, the
situation is more complex and the σ-algebra needs to be chosen with more
care (Section 3.2).

1.3 Probability Axioms

Before observing the result of an experiment, we speak of the probability
that an event will happen. The Kolmogorov axioms formalize this assign-
ment of probabilities to events. This has to be done carefully so that the
resulting theory is both coherent and useful for modeling randomness.

A probability distribution (aka probability measure) on (Ω,Σ) is any
real-valued function P defined on Σ satisfying the following properties or
axioms:3

• Non-negativity

P(A) ≥ 0, ∀A ∈ Σ.

• Unit measure

P(Ω) = 1.
2 This refers to the algebra of sets presented in Section 1.1.
3 Throughout, we will often use ‘distribution’ or ‘measure’ as shorthand for ‘probability

distribution’.
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1.3 Probability Axioms 9

• Additivity on disjoint events For any discrete collection of disjoint
events {Ai ∶ i ∈ I},

P(⋃
i∈I
Ai) = ∑

i∈I
P(Ai). (1.5)

A triplet (Ω,Σ,P) with Ω a sample space (a set), Σ a σ-algebra over Ω,
and P a distribution on Σ, is called a probability space. We consider such a
triplet in what follows.

Problem 1.21 Show that P(∅) = 0 and that

0 ≤ P(A) ≤ 1, A ∈ Σ.

Thus, although nominally a probability distribution takes values in R+, in
fact it takes values in [0,1].

Proposition 1.22 (Law of Total Probability). For any two events A and B,

P(A) = P(A ∩ B) + P(A ∩ Bc). (1.6)

Problem 1.23 Prove Proposition 1.22 using the 3rd axiom.

The 3rd axiom applies to events that are disjoint. The following is a
corollary that applies more generally. (In turn, this result implies the 3rd
axiom.)

Proposition 1.24 (Law of Addition). For any two events A and B, not
necessarily disjoint,

P(A ∪ B) = P(A) + P(B) − P(A ∩ B). (1.7)

In particular,

P(Ac) = 1 − P(A), (1.8)

and,

A ⊂ B ⇒ P(B ∖A) = P(B) − P(A). (1.9)

Proof We first observe that we can get (1.9) from the fact that B is the
disjoint union of A and B ∖A and an application of the 3rd axiom.

We now use this to prove (1.7). We start from the disjoint union

A∪B = (A ∖ B) ∪ (B ∖A) ∪ (A ∩ B).

Applying the 3rd axiom yields

P(A ∪ B) = P(A ∖ B) + P(B ∖A) + P(A ∩ B).
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10 Axioms of Probability Theory

Then A∖B = A ∖ (A ∩ B), and applying (1.9), we get

P(A ∖ B) = P(A) − P(A ∩ B),

and exchanging the roles of A and B,

P(B ∖A) = P(B) − P(A ∩ B).

After some cancellations, we obtain (1.7), which then immediately implies
(1.8). �

Problem 1.25 (Uniform distribution) Suppose that Ω is finite. For A ⊂ Ω,
define U(A) = ∣A∣/∣Ω∣, where ∣A∣ denotes the number of elements in A.
Show that U is a probability distribution on Ω (equipped with its power set,
as usual).

1.4 Inclusion-Exclusion Formula

The inclusion-exclusion formula is an expression for the probability of a
discrete union of events. We start with some basic inequalities that are
directly related to the inclusion-exclusion formula and useful on their own.

Boole’s Inequality
Also know as the union bound, this inequality4 is arguably one of the
simplest, yet also one of the most useful, inequalities of Probability Theory.

Problem 1.26 (Boole’s inequality) Prove that for any countable collection
of events {Ai ∶ i ∈ I},

P(⋃
i∈I
Ai) ≤ ∑

i∈I
P(Ai). (1.10)

Note that the right-hand side can be larger than 1 or even infinite. [One
possibility is to use a recursion on the number of events, together with
Proposition 1.24, to prove the result for any finite number of events. Then
pass to the limit to obtain the result as stated.]

Bonferroni’s Inequalities
These inequalities5 comprise Boole’s inequality. For two events, we saw
the Law of Addition (Proposition 1.24), which is an exact expression for
the probability of their union. Consider now three events A,B,C. Boole’s

4 Named after George Boole (1815–1864).
5 Named after Carlo Emilio Bonferroni (1892–1960).
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1.4 Inclusion-Exclusion Formula 11

inequality (1.10) gives

P(A ∪ B ∪ C) ≤ P(A) + P(B) + P(C).

The following provides an inequality in the other direction.

Problem 1.27 Show that

P(A ∪ B ∪ C) ≥ P(A) + P(B) + P(C)
− P(A ∩ B) − P(B ∩ C) − P(C ∩A).

[Drawing a Venn diagram will prove useful.]

In the proof, one typically proves first the identity

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)
− P(A ∩ B) − P(B ∩ C) − P(C ∩A)
+ P(A ∩ B ∩ C),

which generalizes the Law of Addition to three events.

Proposition 1.28 (Bonferroni’s inequalities). Consider any collection of
events A1, . . . ,An, and define

S k ∶= ∑
1≤i1<⋯<ik≤n

P(Ai1 ∩⋯∩Aik).

Then

P(A1 ∪⋯∪An) ≤
k

∑
j=1
(−1) j−1S j, k odd;

P(A1 ∪⋯∪An) ≥
k

∑
j=1
(−1) j−1S j, k even.

Problem 1.29 Write down all of Bonferroni’s inequalities for the case of
four events A1,A2,A3,A4.

Inclusion-Exclusion Formula
The last Bonferroni inequality (at k = n) is in fact an equality, the so-called
inclusion-exclusion formula,

P(A1 ∪⋯∪An) =
n

∑
j=1
(−1) j−1S j. (1.11)

(In particular, the last inequality in Problem 1.29 is an equality.)
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12 Axioms of Probability Theory

1.5 Conditional Probability and Independence

1.5.1 Conditional Probability

Conditioning on an event B restricts the sample space to B. In other words,
although the experiment might yield other outcomes, conditioning on B
focuses the attention on the outcomes that made B happen. In what follows
we assume that P(B) > 0.

Problem 1.30 Show that Q, defined for A ∈ Σ as Q(A) = P(A ∩ B), is a
probability distribution if and only if P(B) = 1.

To define a bona fide probability distribution we renormalize Q to have
total mass equal to 1 (required by the 2nd axiom) as follows:

P(A ∣B) = P(A ∩ B)
P(B) , for A ∈ Σ.

We call P(A ∣B) the conditional probability of A given B.

Problem 1.31 Show that P(⋅ ∣ B) is indeed a probability distribution on Ω.

Problem 1.32 In the context of Example 1.8, assume that any outcome is
equally likely. Then what is the probability that the last toss lands heads if
the previous tosses landed heads? Answer that same question when the coin
is tossed n ≥ 2 times, with n arbitrary and possibly large. [Regardless of n,
the answer is 1/2.]

The conclusions of Problem 1.32 may surprise some readers. And indeed,
conditional probabilities can be rather unintuitive. We will come back to
Problem 1.32, which is an example of the Gambler’s Fallacy. Here is another
famous example.

Example 1.33 (Monty Hall Problem) This problem is based on a television
show in the US called Let’s Make a Deal and named after its longtime
presenter, Monty Hall. The following description is taken from a New York
Times article [189]:

Suppose you’re on a game show, and you’re given the choice of three
doors: Behind one door is a car; behind the others, goats. You pick a door,
say No. 1, and the host, who knows what’s behind the other doors, opens
another door, say No. 3, which has a goat. He then says to you, “Do you
want to pick door No. 2?” Is it to your advantage to take the switch?

Not many problems in probability are discussed in the New York Times, to
say the least. This problem is so simple to state and the answer so counter-
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1.5 Conditional Probability and Independence 13

intuitive that it generated quite a controversy (read the article). The problem
can mislead anyone, including professional mathematicians, let alone the
layperson appearing on television!

There is an entire book on the Monty Hall Problem [154]. The
textbook [84] discusses this problem among other paradoxes arising when
dealing with conditional probabilities.

1.5.2 Independence

Two events A and B are said to be independent if knowing that B happens
does not change the chances (i.e., the probability) that A happens. This is
formalized by saying that the probability of A conditional on B is equal to
its (unconditional) probability, or in formula,

P(A ∣B) = P(A). (1.12)

The wording in English would imply a symmetric relationship, and it is
indeed the case that (1.12) is equivalent to P(B ∣A) = P(B). The following
equivalent definition of independence makes the symmetry transparent.

Proposition 1.34. Two events A and B are independent if and only if

P(A ∩ B) = P(A)P(B). (1.13)

The identity (1.13) is often taken as a definition of independence.

Problem 1.35 Show that any event that never happens (i.e., having zero
probability) is independent of any other event. In particular,∅ is independent
of any event.

Problem 1.36 Show that any event that always happens (i.e., having
probability one) is independent of any other event. In particular, Ω is
independent of any event.

The identity (1.13) only applies to independent events. However, it can be
generalized as follows. (Note the parallel with the Law of Addition (1.7).)

Problem 1.37 (Law of Multiplication) Prove that, for any events A and B,

P(A ∩ B) = P(A ∣B)P(B). (1.14)

Problem 1.38 (Independence and disjointness) The notions of indepen-
dence and disjointness are often confused by the novice, even though
they are very different. For example, show that two disjoint events are
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14 Axioms of Probability Theory

independent only when at least one of them either never happens or always
happens.

Problem 1.39 Combine the Law of Total Probability (1.6) and the Law of
Multiplication (1.14) to get

P(A) = P(A ∣B)P(B) + P(A ∣Bc)P(Bc) (1.15)

Problem 1.40 Suppose we draw without replacement from an urn with r
red balls and b blue balls. At each stage, every ball remaining in the urn is
equally likely to be picked. Use (1.15) to derive the probability of drawing
a blue ball on the 3rd trial.

1.5.3 Mutual Independence

One may be interested in several events at once. Some events, Ai, i ∈ I, are
said to be mutually independent (or jointly independent) if

P(Ai1 ∩⋯∩Aik) = P(Ai1) ×⋯ × P(Aik),
for any k-tuple 1 ≤ i1 < ⋯ < ik ≤ r.

They are said to be pairwise independent if

P(Ai ∩A j) = P(Ai)P(A j), for all i ≠ j.

Obviously, mutual independence implies pairwise independence. The
reverse implication is false, as the following counter-example shows.

Problem 1.41 Consider the uniform distribution on

{(0,0,0), (0,1,1), (1,0,1), (1,1,0)}.

Let Ai be the event that the ith coordinate is 1. Show that these events are
pairwise independent but not mutually independent.

The following generalizes the Law of Multiplication (1.14). It is
sometimes referred to as the Chain Rule.

Proposition 1.42 (General Law of Multiplication). For any collection of
events, A1, . . . ,Ar,

P(A1 ∩⋯∩Ar) =
r

∏
k=1
P(Ak ∣A1 ∩⋯∩Ak−1). (1.16)

For example, for any events A,B,C,

P(A ∩ B ∩ C) = P(C ∣A ∩ B)P(B ∣A)P(A).
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1.5 Conditional Probability and Independence 15

Problem 1.43 In the same setting as Problem 1.32, show that the result of
the tosses are mutually independent. That is, define Ai as the event that the
ith toss results in heads and show that A1, . . . ,An are mutually independent.
In fact, show that the distribution is the uniform distribution (Problem 1.25)
if and only if the tosses are fair and mutually independent.

1.5.4 Bayes Formula

The Bayes formula6 can be used to “turn around” a conditional probability.

Proposition 1.44 (Bayes formula). For any two events A and B,

P(A ∣B) = P(B ∣A)P(A)
P(B) . (1.17)

Proof By (1.14),

P(A ∩ B) = P(A ∣B)P(B),

and also

P(A ∩ B) = P(B ∣A)P(A),

which yield the result when combined. �

The denominator in (1.17) is sometimes expanded using (1.15) to get

P(A ∣B) = P(B ∣A)P(A)
P(B ∣A)P(A) + P(B ∣Ac)P(Ac) . (1.18)

This form is particularly useful when P(B) is not directly available.

Problem 1.45 Suppose we draw without replacement from an urn with r
red balls and b blue balls. What is the probability of drawing a blue ball on
the 1st trial when drawing a blue ball on the 2nd trial?

Base Rate Fallacy
Consider a medical test for the detection of a rare disease. There are two
types of mistakes that the test can make:

• False positive when the test is positive even though the subject does
not have the disease;

• False negative when the test is negative even though the subject has the
disease.

6 Named after Thomas Bayes (1701–1761).
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16 Axioms of Probability Theory

Let α denote the probability of a false positive; 1 − α is sometimes called
the sensitivity. Let β denote the probability of a false negative; 1 − β is
sometimes called the specificity. For example, the study reported in [143]
evaluates the sensitivity and specificity of several HIV tests.

Suppose that the incidence of a certain disease is π, meaning that the
disease affects a proportion π of the population of interest. A person is
chosen at random from the population and given the test, which turns out to
be positive. What are the chances that this person actually has the disease?
Ignoring the base rate (i.e., the disease’s prevalence) would lead one to
believe these chances to be 1 − β. This is an example of the Base Rate
Fallacy.

Indeed, define the events

A = ‘the person has the disease’,

B = ‘the test is positive’.

Thus, our goal is to compute P(A ∣B). Because the person was chosen at
random from the population, we know that P(A) = π. We know the test’s
sensitivity, P(Bc ∣Ac) = 1−α, and its specificity, P(B ∣A) = 1−β. Plugging
this into (1.18), we get

P(A ∣B) = (1 − β)π
(1 − β)π + α(1 − π) . (1.19)

Mathematically, the Base Rate Fallacy arises from confusing P(A ∣B)
(which is what we want) with P(B ∣A). We saw that the former depends on
the latter and on the base rate P(A).
Problem 1.46 Show that P(A ∣B) = P(B ∣A) if and only if P(A) = P(B).
Example 1.47 (Finding terrorists) In a totally different setting, Sage-
man [160] makes the point that a system for identifying terrorists, even
if 99% accurate, cannot be ethically deployed on an entire population.

Fallacies in the Courtroom
Suppose that in a trial for murder in the US, some blood of type O- was
found on the crime scene, matching the defendant’s blood type. That blood
type has a prevalence of about 1% in the US.7 This leads the prosecutor to
conclude that the suspect is guilty with 99% chance. But this is an example
of the Prosecutor’s Fallacy.

7 https://redcrossblood.org/learn-about-blood/blood-types.html
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1.6 Additional Problems 17

In terms of mathematics, the error is the same as in the Base Rate Fallacy.
In practice, the situation is even worse here because it is not even clear how
to define the base rate. (Certainly, the base rate cannot be the unconditional
probability that the defendant is guilty.)

In the same hypothetical setting, the defense could argue that, assuming
the crime took place in a city with a population of about half a million,
the defendant is only one among five thousand people in the region with
the same blood type and that therefore the chances that he is guilty are
1/5000 = 0.02%. The argument is actually correct if there is no other
evidence and it can be argued that the suspect was chosen more or less
uniformly at random from the population. Otherwise, in particular if the
latter is doubtful, this is is an example of the Defendant’s Fallacy.

Example 1.48 People v. Collins is a robbery case8 that took place in Los
Angeles, California in 1968. A witness had seen a Black male with a beard
and mustache together with White female with a blonde ponytail fleeing in
a yellow car. The Collins (a married couple) exhibited all these attributes.
The prosecutor argued that the chances of another couple matching the
description were 1 in 12000000. This lead to a conviction. However, the
California Supreme Court overturned the decision. This was based on the
questionable computations of the base rate as well as the fact that the
chances of another couple in the Los Angeles area (with a population in the
millions) matching the description were much higher.

For more on the use of statistics in the courtroom, see [187].

1.6 Additional Problems

Problem 1.49 Show that if ∣Ω∣ = N, then the collection of all subsets of Ω
(including the empty set) has cardinality 2N . This motivates the notation 2Ω

for this collection and also its name, as it is often called the power set of Ω.

Problem 1.50 Let {Σi, i ∈ I} denote a family of σ-algebras over a set Ω.
Prove that ⋂i∈I Σi is also a σ-algebra over Ω.

Problem 1.51 Let {Ai, i ∈ I} denote a family of subsets of a set Ω. Show
that there is a unique smallest (in terms of inclusion) σ-algebra over Ω that
contains each of these subsets. This σ-algebra is said to be generated by the
family {Ai, i ∈ I}.

8 https://courtlistener.com/opinion/1207456/people-v-collins/
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Problem 1.52 (General Base Rate Fallacy) Assume that the same diagnostic
test is performed on m individuals to detect the presence of a certain
pathogen. Due to variation in characteristics, the test performed on
Individual i has sensitivity 1 − αi and specificity 1 − βi. Assume that a
proportion π of these individuals have the pathogen. Show that (1.19)
remains valid as the probability that an individual chosen uniformly at
random has the pathogen given that the test is positive, with 1−α defined as
the average sensitivity and 1 − β defined as the average specificity, meaning
α = 1

m ∑
m
i=1 αi and β = 1

m ∑
m
i=1 βi.
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