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Soft matter nanoparticles can be synthesized in a wide range of complex geometries and are, hence, useful 

as “soft” templates for the synthesis of “hard” inorganic nanoparticles. This templating strategy offer 

room-temperature pathways to a variety of functional nanostructures with shapes and sizes not realizable 

via conventional inorganic chemical techniques. Among the soft templates, DNA origami [1] due to their 

low-cost, unprecedented highly-controlled assembly and site-specific binding ability, have gained much 

interest for bottom-up assembly. For example, metallized DNA origami can be used to make optical 

metamaterials [2]. However, the mechanism of DNA-templated nanoparticle nucleation remains elusive 

and fundamental understanding is lacking on how the DNA template dictates nanoparticle formation, 

attachment, growth, and ultimately, functional properties. Hence it is a challenge to construct 

geometrically precise metallized layers on DNA origami with high repeatability [3-5]. 

 

Here we use liquid phase in situ scanning transmission electron microscopy (STEM) to study and optimize 

the gold metallization of DNA origami triangles with the sides of 128 nanometers. To metallize the DNA 

origami triangles with Au, we start by introducing 1-2 nm Ag or Pd seeds on the origami structures. This 

seeding process is followed by either e-beam- or chemical agent- driven reduction of an Au precursor in 

the liquid phase in situ. We discuss the size, location of the seeds on the DNA origami, as well as the 

seeding density per triangle, and their effect on the morphology and quality of the formed Au metal 

coverage. Further, we demonstrate how the rate of Au precursor reduction and attachment to the surface 

determines the morphology of the triangles. Finally, we outline strategies for synthesis of metal 

nanostructure that maps the shape of the original DNA template with a continuous and uniform metal 

layer [6].  
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Figure 1. (a) STEM image of multiple DNA origami triangles with Ag seeds prior to Au metallization. 

(b) STEM image and corresponding (c) map of Ag seeds locations on a DNA-origami triangle. STEM 

image of Au metallized DNA origami triangles at (d) higher and (e) lower Au reduction rate and with 

different starting Ag seed population.  
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