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OSCILLAIORY BEHAVIOR OF NONLINEAR DIFFERENTIAL EQUATIONS
WITH DEVIATING ARGUMENTS

S.R. GrRace anD B.S. LALLI

New oscillation criteria for nonlinear differential equations

with deviating arguments of the form

< a_ (t) Edg l}e(t) % Ezl(t) ——d“";(tt)J

+q(e)f(zlg()]) =0 ,

n even, are established.

1. Introduction

Recently Kamenev [4] considered the linear equation

(ay) x+q(t)z=0 [. = é%] s

vhere ¢ 1is a continuous real-valued function on the interval [}O’ w)

without any restriction on its sign, and proved that the condition

(*) lim sup

¢ m-1
f (t-s)" "q(s)ds = = ,
£ t t

m—-l,

for some integer m = 3 , is sufficient so that all the solutions of (o))
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are oscillatory. His criterion includes as a special case the well-known
Wintner result of [§]. Kamenev's criterion has been extended in various
directions by Philos [6, 7] and Yeh [9, 10]. The present authors [1, 2]

discussed this criterion for general functional equations of the form

(a2) x(n) + q(t)f(=zlt], z[g(¢))) =0, n even,

and

n-1)y* n-1 n-1
(a3) ﬂz(t)x( )) + p(t)lx( )|Bx( )y q(t) flzlg(t)]) =0,
n even and B =0 ,

with p and g nonnegative continuous functions on the interval
[ty =)

The purpose of this paper is to extend some of the previously
mentioned results and obtain new oscillation criteria for the equation
(1) L x(t) + q(t)flxlg(t)]) =0, n even,
where

Lya(t) = 2(t) , Lya(t) = ak(t)(Lk_lx(t))‘ , for k=1,2, ..., n,

with ao(t) =a(t) =1.

2. Main results

Consider the equation

(1) Lx(t) + q(t)F(xlg(¢)]) =0, n even,
where

Lyz(t) = a(t) , La(t) = a(e)(L,_j=(£))" , k=1,2, ..., n,
with ay(t) =a(¢) =1, a;,q,49: [to,oo) +R, f:R~>R are
continuous, ai(t) >0 (£=1,2, ..., n-1) , q{(t) nonnegative and not

identically zero on any ray [t*, «) , t*= t, and g(t) »» as ¢t -+,

We assume that
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(2) {“’ 1 ds = ® , where ui(t) max a.(s) for t = t*zto

;owle) t*<sst
and, for 1 =1, 2, ..., n-1 ,
(3) zf(x) >0 and f'(x) 2k >0 for x #0 (' = Z%J

We further assume that there exists a real-valued function

o ect[[ o ©}, (0, ©)}) such that

o(t) < inf {s, g(8)} ,
s>t

(1) o' (t) >0,
o(t) r® as t >,
The domain D[Ln] of L is defined to be the set of all functions
x : [to, ) > R such that ij(t) , 0=<j=n, exist and are continuous
on [to, ®} . By a solution of (1) we mean a function x € D(Ln) which
satisfies (1) on [to, °°) . A nontrivial solution of (1) is called

oscillatory if the set of its zeros is unbounded and it is called non-

oscillatory otherwise.

The following lemma generalizes a well-known Kiguradze's lemma and can

be proved similarly.
LEMMA 1. Let condition (2) hold and let zx € D(Ln) be a positive
funetion. If Lnx(t) is8 of constant sign and not identically zero for all

large t , then there exist tx >z t, and an integer 1 , 0 =1 =n , with

0
n+ 1 even for Lnx nonnegative or n + L odd for Ln:c nonpositive and

such that, for every t =t

>

x

L >0 dimplies Lya(t) >0 (k=0,1, ...,1-1)
and
. . 1+k
1=n-1 implies (-1) ka(t) >0 (k=1, 1+, ..., n-1)

The following lemma appears in [3] and is needed in the sequel.
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LEMMA 2. Let =z GD[Ln) with z(¢) >0 for t2t,. If

Ln_l:c(t)l;nx(t) =0 forall tzt, z¢t,,

t 18 sufficiently large, then there exist T = t and a positive

constant M such that, for each t =T,

z-(t) 2 ul—'(”t—)w(T, u, )L, =(8)]

where

(om0 = [ (Y g —
w(T, u, t) = I f _(——)' s oo ds, .
ip W (85) g 7 Walyy) -l 2

THEOREM 1. [Let conditions (2)-(4) hold. Suppose that there exists a
continuously differentiable function

p: [tg, =) » (0, =)
such that for all sufficiently large T with o(Tl) >7T for some T, >T
we have

mlo e |
UMkp(s)o(s)w(T,u,0ls ])‘[

3

t
(5) lim sup f p{g)q(s) -
L Tl

where M 1is as in Lemm 2. Then every solution of (1) is oseillatory.
Proof. Let x(¢) be a nonoscillatory’ solution of (1). Assume that

> >
x(t) >0 for t = I and choose a t, 2 t, so that oft) = t, for

tzt, and zlo(t)] >0 for t=¢

5 - By Lemma 1, there exists a

t3 d t2 such that

(6) z (t) >0 and L _,x(t) >0 forall t= ty -
Notice next that the hypotheses of Lemma 2 are satisfied on [t3, W) which
implies that there exists a th = t3 and a positive constant M so that

z (t) = —A(dﬁw[th, H, tJLn_l:r(t) for all t = th .

o]
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Choose tg 2 £) so that o(t) >ty forall ¢tz ts . Thus
(0 #lo(8)] 2 spargyy wltys W o)L, jalo()]
1

M >
= W [o(6) T oft,, w, o)L, j=(t) , for ¢ = tg -

Let W(t) = p(t)Ln_lx(t)/fo[o(t)]) . Thus W(t) satisfies

On o(t)z(a(t ol t
i) = -otoiate) FEIEA) + S v - SRLEAEIEO] wrs)

From (6) and {7) we have

. Mew (8, u,0(8))o(¢t)
. p(t L
(8) Ww(t) = -p(tlq(t) + olt w(t) - w, [a(£) Jo(2) )

u [o() 16%(£)
hikp(£)a(t)u (8, u,0(2))

Mkw(th,u,o(t))é(t)‘s
- W, [o(£) Tp(%) J wit)

= -p(t)q(t) +

2
_ p(t)/p(t) .
2 (M (2, 1,0(£))3() /1 [0(£) 1p(£)) *

ul[O(t)]bz(t)

Miko(£)3(E)u (£, m,0(2))

(9) W(t) < -p(t)q(t) +

Integrating (9) from ts to t we obtain

t uy[o(s) 16°(s)
f p(s)q(s) - - ) ds = W(ts) - W(t)
p

t hako(s)o(s)w(e, ,u,0(8)

= W(ts) <o
vhich contradicts (5) and the proof of the theorem is complete.

THEOREM 2. Let conditions (3) and (5) of Theorem 1 be replaced by
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(10) L(xx—)zy>o for xz#0
and
t ul[c(S)]bz(S)
(11) 1lim sup ( yo(slgq(s) - — ds =,
L0 Tl hMG(s)p(s)w(T,u,o(s))

respectively. Then the conclusion of Theorem 1 holds.
Proof. The proof of Theorem 2 is similar to that of Theorem 1 except

that we let W(t) = p(t)Ln_lx(t)/x[o(t)] , and hence is omitted.

COROLLARY 1. In Theorem 1 (respectively Theorem 2), let conditions
(5) (respectively (11)) be replaced by

t
(12) 1im sup f p(e)qls)ds = =
oo T
1
and
u, [o(s) 16%(s)
(13) lim sup r = < o
s T, p(s)o(s)w(T,u,0(s))

1
Then the conclusion of Theorem 1 (respectively Theorem 2) holds.

THEOREM 3. Let conditions (2)-(4) hold, m be an integer with
m=3 and P be a positive continuusly differentiable function on the

interval [to, ®)  such that

(14) 1im sup

T

t
f (£-g)™3

T

m-1
v 1

[(t-s)p(s)-(m-1)p(s) ]eul[o(S) ]_l
ds

ko (s)o(s)w(T,u,0(s)) J S

. ﬁt—s)gms)q(s) -

for all large T with O(Tl] > T for some Tl > T, where M is as in
Lemma 2. Then equation (1) is oscillatory.
Proof. Let (%) be a non-osecillatory solution of (1), say «(t) >0

for t = tl = to . As in the proof of Theorem 1, we obtain (8). Now we
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multiply both sides of (8) by (t—S)m"l and integrate from ts to t to

obtain

t m-1
( (t-s)" “p(s)q(s)ds

J
%
t .
< m-1 m-2 p(s) _
=< (t—ts) W[ts) + "(t (t-s) Et—s) o) (m—l)]W(S)ds
5
t Mkw (¢, ,u,0(s))a(s)
m-1 by :
- fts (t-s) NEEEE) WP (s)ds
m-1
= (t-t5)" W (z)
ft (£-8)"3[(£-8)b(8)-(m-1)0(5) 1P [0(s)]
+
ts hl.\lkp(s)c'x(s)w[tu,u,o(s))
t M<(t-s)m_lw(th,u,c(s))é(s)—l%
'f [o(5) To(8) Ws)
ts B Lotesipts |
2
(£=5)""2[(¢-8) (p(s) /0(5)}-(m=1) ] gs
2| (et =50 M 1 ,0())5(0)) /1 [o() (o) |
Thus

[(t-5)p(s)-(m-1)0(s) ]2“1[0(3”]49

1 [t m=-3 2
__ J’ (t—s) (t“s) D(s)q(s) - .
5 UMko(s)o(s)w(t,u,0(s))
< m=-1_- > o - o
<1 - [ts/t} w(ts) w(ts) <o as t >

which contradict (14). A similar proof holds if x(t) < 0 for
t =z tl > to .

THEOREM 4. In Theorem 3, let conditions (3) and (14) be replaced
respectively by condition (10) and
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, 1 ([t m-3
(15) lim suwp =7 f (t-g)

L t Tl

il
8

» [(t-8)b(8)-(m-1)p(s) 1°u, [o(8)]
« |v(t-8)"p(s)q(s) -~ - ds
WMp(s)o(s)w(t,u,0(s))
then the conclusion of Theorem 3 holds.
Proof. The proof of Theorem 4 is similar to that of Theorem 3 except

that we let W(t) = p(£)L  2(£)/x[o(t)] , and hence ve omit it.

COROLLARY 2. In Theorem 3 (respectively Theorem 4), let condition
(4) (respectively (11)) be replaced by’

(16) lim sup

t m=-1
f (t~8)" “p(s)qls)ds = =
o t T

m-1

and

t [(8-8)p(6)-(m-1)p(s) 1, [o(s)]

(1) lim sup ds < o .

too T le p(s)a(s)w(T,u,0(s))

Then the conclusion of Theorem 1 (respectively Theorem 2) holds.
For illustration we consider the following examples.

EXAMPLE 1. The differential equation

(18) (% (% ((1/t)5:]'} ] + %x(t) =0, t=21,

has the nonoscillatory solution x=(t) = V& . Only condition (5) of Theorem

1 is violated.
EXAMPLE 2. Consider the equation

(19) (% [% [(1/t)5c)'] ] + ;%x[g(t)]exp(sin zlglt)y =0, t=z1,

g(t) = et or t *sin t . All conditions of Theorem 2 and Theorem 4 are

2
satisfied for p(¢) =t and o(t) = et , 0 <e¢ =<1 for the first case
and o(t) = t - 1 for the second. Hence all solutions of (19) are
oscillatory.
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EXAMPLE 3. Consider the equation

]
(=
<+
v
—

(20) (t(£2)°) + 25 alg(2)]
t

where g(t) = et or g(t) = t¢ or gty =t tecost, ¢>0. All

conditions of Corollaries 1 and 2 are satisfied for p(t) = ¢ , o(t) < et

or t° , 0<e =1 or t-c¢ (respectively for the three cases) and
m = 3 , and hence all solutions of (20) are oscillatory. We note that
Theorem 1 in [5] can be applied to (20), however in [5] only bounded
solutions of (20) are discussed. Thus our results are more general than
those in [5].

REMARK |. The main results of Kamenev [4], Philos [6, 7], Wintner
(8] and Yeh [9, 10] are included in our Corollary 2, for n = 2 and

g(t) = t . Those criteria are not applicable to equations of the form
k2
x+=—5z=0, k>%,
t

however Theorems 1 and 2 can be applied. Hence our results are a

substantial improvement on the above mentioned results.

REMARK 2. The results obtained here are new, and we do not stipulate
that the function g in equation (1) is either retarded or advanced.
Hence our theorems hold for ordinary, retarded, advanced, and mixed type

equations.
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