OSCILLAIORY BEHAVIOR OF NONLINEAR DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENTS

S.R. Grace and B.S. Lalli

New oscillation criteria for nonlinear differential equations with deviating arguments of the form

$$
\begin{array}{r}
\frac{d}{d t}\left[a_{n-1}(t) \frac{d}{d t}\left[\cdots\left[a_{2}(t) \frac{d}{d t}\left[a_{1}(t) \frac{d x(t)}{d t}\right]\right] \cdots\right]\right. \\
+q(t) f(x[g(t)])=0
\end{array}
$$

n even, are established.

1. Introduction

Recently Kamenev [4] considered the linear equation

$$
\begin{equation*}
\ddot{x}+q(t) x=0 \quad\left(\cdot=\frac{d}{d t}\right) \tag{1}
\end{equation*}
$$

where q is a continuous real-valued function on the interval $\left[t_{0}, \infty\right)$ without any restriction on its sign, and proved that the condition

$$
\lim _{t \rightarrow \infty} \sup \frac{1}{t^{m-1}} \int_{t_{0}}^{t}(t-s)^{m-1} q(s) d s=\infty
$$

for some integer $m \geq 3$, is sufficient so that all the solutions of $\left(\alpha_{1}\right)$

Received 18 September 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 $\$ \mathrm{~A} 2.00+0.00$.
are oscillatory. His criterion includes as a special case the well-known Wintner result of [8]. Kamenev's criterion has been extended in various directions by Philos [6, 7] and Yeh [9, 10]. The present authors [1, 2] discussed this criterion for general functional equations of the form

$$
\begin{equation*}
x^{(n)}+q(t) f(x[t], x[g(t)])=0, n \text { even } \tag{2}
\end{equation*}
$$

and
$\left(\alpha_{3}\right)\left(a(t) x^{(n-1)}\right)^{\bullet}+p(t)\left|x^{(n-1)}\right|^{\beta_{x}^{(n-1)}}+q(t) f(x[g(t)]\}=0$, n even and $\beta \geq 0$,
with p and q nonnegative continuous functions on the interval $\left[t_{0}, \infty\right)$.

The purpose of this paper is to extend some of the previously mentioned results and obtain new oscillation criteria for the equation

$$
\begin{equation*}
L_{n} x(t)+q(t) f(x[g(t)])=0, n \text { even } \tag{1}
\end{equation*}
$$

where

$$
L_{0} x(t)=x(t), \quad L_{k} x(t)=a_{k}(t)\left(L_{k-1} x(t)\right)^{\bullet}, \text { for } k=1,2, \ldots, n,
$$

with $a_{0}(t)=a_{n}(t)=1$.

2. Main results

Consider the equation

$$
\begin{equation*}
L_{n} x(t)+q(t) f(x[g(t)])=0, n \text { even } \tag{1}
\end{equation*}
$$

where

$$
L_{0} x(t)=x(t), \quad L_{k} x(t)=a_{k}(t)\left(L_{k-1} x(t)\right)^{\bullet}, k=1,2, \ldots, n
$$

with $a_{0}(t)=a_{n}(t)=1, a_{i}, q, g:\left[t_{0}, \infty\right) \rightarrow R, f: R \rightarrow R$ are continuous, $a_{i}(t)>0(i=1,2, \ldots, n-1), q(t)$ nonnegative and not identically zero on any ray $\left[t^{*}, \infty\right), t^{*} \geq t_{0}$ and $g(t) \rightarrow \infty$ as $t \rightarrow \infty$. We assume that
(2) $\int^{\infty} \frac{1}{\mu_{i}(s)} d s=\infty$, where $\mu_{i}(t)=\max _{t^{*} \leq s \leq t} a_{i}(s)$ for $t \geq t^{*} \geq t_{0}$ and, for $i=1,2, \ldots, n-1$,

$$
\begin{equation*}
x f(x)>0 \text { and } f^{\prime}(x) \geq k>0 \text { for } x \neq 0 \quad\left(1=\frac{d}{d x}\right) \tag{3}
\end{equation*}
$$

We further assume that there exists a real-valued function $\sigma \in C^{1}\left[\left[{ }_{0}, \infty\right),(0, \infty)\right)$ such that

$$
\begin{align*}
\sigma(t) & \leq \inf _{s \geq t}\{s, g(s)\}, \\
\sigma^{\cdot}(t) & >0, \tag{4}\\
\sigma(t) & \rightarrow \infty \text { as } t \rightarrow \infty .
\end{align*}
$$

The domain $D\left(L_{n}\right)$ of L_{n} is defined to be the set of all functions $x:\left[t_{0}, \infty\right) \rightarrow R$ such that $L_{j} x(t), 0 \leq j \leq n$, exist and are continuous on $\left[t_{0}, \infty\right)$. By a solution of (1) we mean a function $x \in D\left(L_{n}\right)$ which satisfies (1) on $\left[t_{0}, \infty\right)$. A nontrivial solution of (1) is called oscillatory if the set of its zeros is unbounded and it is called nonoscillatory otherwise.

The following lemma generalizes a well-known Kiguradze's lemma and can be proved similarly.

LEMMA 1. Let condition (2) hold and let $x \in D\left(L_{n}\right)$ be a positive fronction. If $L_{n} x(t)$ is of constant sign and not identically zero for all large t, then there exist $t_{x} \geq t_{0}$ and an integer $\tau, 0 \leq l \leq n$, with $n+l$ even for $L_{n} x$ nonnegative or $n+l$ odd for $L_{n} x$ nonpositive and such that, for every $t \geq t_{x}$,

$$
l>0 \text { implies } L_{k} x(t)>0 \quad(k=0,1, \ldots, z-1)
$$

and

$$
\imath \leq n-1 \text { implies }(-1)^{\imath+k} L_{k} x(t)>0 \quad(k=\imath, \imath+1, \ldots, n-1) .
$$

The following lemma appears in [3] and is needed in the sequel.

LEMMA 2. Let $x \in D\left(L_{n}\right)$ with $x(t)>0$ for $t \geq t_{0}$. If

$$
L_{n-1} x(t) L_{n} x(t) \leq 0 \text { for all } t \geq t_{1} \geq t_{0}
$$

t_{1} is sufficiently large, then there exist $T \geq t_{1}$ and a positive constant M such that, for each $t \geq T$,

$$
x \cdot(t) \geq \frac{M}{\mu_{1}(t)} \omega(T, \mu, t)\left|L_{n-1} x(t)\right|
$$

where

$$
\omega(T, \mu, t)=\int_{T}^{t} \frac{1}{\mu_{1}\left(s_{2}\right)} \int_{T}^{s} \cdots \int_{T}^{s} \frac{1}{\mu_{n-1}\left(s_{n-1}\right)} d s_{n-1} \ldots d s_{2} .
$$

THEOREM 1. Let conditions (2)-(4) hold. Suppose that there exists a continuously differentiable finction

$$
\rho:\left[t_{0}, \infty\right) \rightarrow(0, \infty)
$$

such that for all sufficiently large T with $\sigma\left(T_{1}\right)>T$ for some $T_{1}>T$ we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \int_{T_{1}}^{t}\left[\rho(s) q(s)-\frac{\mu_{1}[\sigma(s)] \dot{\rho}^{2}(s)}{4 M k \rho(s) \dot{\sigma}(s) \omega(T, \mu, \sigma[s])}\right] d s=\infty \tag{5}
\end{equation*}
$$

where M is as in Lemma 2. Then every solution of (1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of (1). Assume that $x(t)>0$ for $t \geq t_{1} \geq t_{0}$, and choose a $t_{2} \geq t_{1}$ so that $\sigma(t) \geq t_{1}$ for $t \geq t_{2}$ and $x[\sigma(t)]>0$ for $t \geq t_{2}$. By Lemma 1 , there exists a $t_{3} \geq t_{2}$ such that

$$
\begin{equation*}
x^{\bullet}(t)>0 \text { and } L_{n-1} x(t)>0 \text { for all } t \geq t_{3} \tag{6}
\end{equation*}
$$

Notice next that the hypotheses of Lemma 2 are satisfied on $\left[t_{3}, \infty\right)$ which implies that there exists a $t_{4} \geq t_{3}$ and a positive constant M so that

$$
x(t) \geq \frac{M}{\mu_{1}(t)} \omega\left(t_{4}, \mu, t \jmath L_{n-1} x(t) \text { for all } t \geq t_{4}\right.
$$

Choose $t_{5} \geq t_{4}$ so that $\sigma(t)>t_{4}$ for all $t \geq t_{5}$. Thus

$$
\begin{align*}
\dot{x}[\sigma(t)] & \geq \frac{M}{\mu_{1}[\sigma(t)]} \omega\left(t_{4}, \mu, \sigma(t)\right) L_{n-1} x[\sigma(t)] \tag{7}\\
& \geq \frac{M}{\mu_{1}[\sigma(t)]} \omega\left(t_{4}, \mu, \sigma(t)\right] L_{n-1} x(t), \text { for } t \geq t_{5} .
\end{align*}
$$

Let $W(t)=\rho(t) L_{n-1} x(t) / f(x[\sigma(t)])$. Thus $W(t)$ satisfies

$$
\dot{W}(t)=-\rho(t) q(t) \frac{f(x[q(t)])}{f(x[\sigma(t)])}+\frac{\dot{\rho}(t)}{\rho(t)} W(t)-\frac{\dot{\dot{G}}(t) \dot{x}[\sigma(t)] f^{\prime}\{x[\sigma(t)])}{f(x[\sigma(t)])} W(t)
$$

From (6) and (7) we have
(8) $\dot{W}(t) \leq-\rho(t) q(t)+\frac{\dot{\rho}(t)}{\rho(t)} W(t)-\frac{M k \omega\left(t_{4}, \mu, \sigma(t)\right) \dot{\sigma}(t)}{\mu_{1}[\sigma(t)] \rho(t)} W^{2}(t)$

$$
\begin{aligned}
&=-\rho(t) q(t)+\frac{\mu_{1}[\sigma(t)] \dot{\rho}^{2}(t)}{4 M k \rho(t) \dot{\sigma}(t) \omega\left(t_{4}, \mu, \sigma(t)\right)} \\
&-\left[\left(\frac{\left.M k \omega\left(t_{4}, \mu, \sigma(t)\right) \dot{\sigma}(t)\right)^{\frac{1}{2}}}{\mu_{1}[\sigma(t)] \rho(t)}\right]^{2} w(t)\right. \\
&\left.-\frac{\dot{\rho}(t) / \rho(t)}{2\left(M k \omega\left(t_{4}, \mu, \sigma(t)\right) \dot{\sigma}(t) / \mu_{1}[\sigma(t)] \rho(t)\right)^{\frac{1}{2}}}\right]^{2} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\dot{W}(t) \leq-\rho(t) q(t)+\frac{\mu_{1}[\sigma(t)] \dot{\rho}^{2}(t)}{4 M R \rho(t) \dot{\sigma}(t) \omega\left(t_{4}, \mu, \sigma(t)\right)} . \tag{9}
\end{equation*}
$$

Integrating (9) from t_{5} to t we obtain

$$
\begin{aligned}
\int_{t_{5}}^{t}\left[\rho(s) q(s)-\frac{\mu_{1}[\sigma(s)] \dot{p}^{2}(s)}{4 M k \rho(s) \dot{\sigma}(s) \omega\left(t_{4}, \mu, \sigma(s)\right)}\right] d s & \leq W\left(t_{5}\right)-W(t) \\
& \leq W\left(t_{5}\right)<\infty
\end{aligned}
$$

which contradicts (5) and the proof of the theorem is complete.
THEOREM 2. Let conditions (3) and (5) of Theorem 1 be replaced by

$$
\begin{equation*}
\frac{f(x)}{x} \geq \gamma>0 \quad \text { for } \quad x \neq 0 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup _{T_{1}}^{t}\left[\gamma \rho(s) q(s)-\frac{\mu_{1}[\sigma(s)] \dot{\rho}^{2}(s)}{4 M \dot{\sigma}(s) \rho(s) \omega(T, \mu, \sigma(s))}\right] d s=\infty, \tag{11}
\end{equation*}
$$

respectively. Then the conclusion of Theorem 1 holds.
Proof. The proof of Theorem 2 is similar to that of Theorem 1 except that we let $W(t)=\rho(t) L_{n-1} x(t) / x[\sigma(t)]$, and hence is omitted.

COROLLARY 1. In Theorem 1 (respectively Theorem 2), let conditions (5) (respectively (11)) be replaced by

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \int_{T_{1}}^{t} \rho(s) q(s) d s=\infty \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \int_{T_{1}}^{\infty} \frac{\mu_{1}[\sigma(s)] \dot{\rho}^{2}(s)}{\rho(s) \dot{\sigma}(s) \omega(T, \mu, \sigma(s))} d s<\infty \tag{13}
\end{equation*}
$$

Then the conclusion of Theorem 1 (respectively Theorem 2) holds.
THEOREM 3. Let conditions (2)-(4) hold, m be an integer with $m \geq 3$ and ρ be a positive continuously differentiable function on the interval $\left[t_{0}, \infty\right]$ such that
(14) $\lim _{t \rightarrow \infty} \sup \frac{1}{t^{m-1}} \int_{T_{1}}^{t}(t-s)^{m-3}$

$$
\left[(t-s)^{2} \rho(s) q(s)-\frac{[(t-s) \dot{\rho}(s)-(m-1) \rho(s)]^{2} \mu_{1}[\sigma(s)]}{4 M k \rho(s) \dot{\sigma}(s) \omega(T, \mu, \sigma(s))}\right] d s=\infty
$$

for all large T with $\sigma\left(T_{1}\right)>T$ for some $T_{1}>T$, where M is as in Lenma 2. Then equation (1) is oscillatory.

Proof. Let $x(t)$ be a non-oscillatory solution of (1), say $x(t)>0$ for $t \geq t_{1} \geq t_{0}$. As in the proof of Theorem 1, we obtain (8). Now we
multiply both sides of (8) by $(t-s)^{m-1}$ and integrate from t_{5} to t to obtain

$$
\int_{t_{5}}^{t}(t-s)^{m-1} p(s) q(s) d s
$$

$$
\begin{aligned}
\leq\left(t-t_{5}\right)^{m-1} W\left(t_{5}\right) & +\int_{t_{5}}^{t}(t-s)^{m-2}\left[(t-s) \frac{\dot{\rho}(s)}{\rho(s)}-(m-1)\right] W(s) d s \\
& -\int_{t_{5}}^{t}(t-s)^{m-1} \frac{M k \omega\left(t_{4}, \mu, \sigma(s)\right) \dot{\sigma}(s)}{\mu_{1}(\sigma(s)) \rho(s)} W^{2}(s) d s
\end{aligned}
$$

$$
=\left(t-t_{5}\right)^{m-1} W\left(t_{5}\right)
$$

$$
+\int_{t_{5}}^{t} \frac{(t-s)^{m-3}[(t-s) \dot{\rho}(s)-(m-1) \rho(s)]^{2} \mu_{1}[\sigma(s)]}{4 M k \rho(s) \dot{\sigma}(s) \omega\left(t_{4}, \mu, \sigma(s)\right)} d s
$$

$$
-\int_{t_{5}}^{t}\left(\left[\frac{M k(t-s)^{m-1} \omega\left(t_{4}, \mu, \sigma(s)\right) \dot{\sigma}(s)}{\mu_{1}[\sigma(s)] \rho(s)}\right]^{\frac{1}{2}} W(s)\right.
$$

$$
\left.-\frac{(t-s)^{m-2}[(t-s)(\dot{\rho}(s) / \rho(s))-(m-1)]}{2\left[\left(M k(t-s)^{m-1} \omega\left(t_{4}, \mu, \sigma(s)\right) \dot{\sigma}(s)\right) / \mu_{1}[\sigma(s)] \rho(s)\right]^{\frac{1}{2}}}\right]^{2} d s
$$

Thus

$$
\begin{aligned}
\frac{1}{t^{m-1}} \int_{t_{5}}^{t}(t-s)^{m-3}\left[(t-s)^{2} \rho(s) q(s)\right. & \left.-\frac{[(t-s) \dot{\rho}(s)-(m-1) \rho(s)]^{2} \mu_{1}[\sigma(s)]}{4 M k \rho(s) \dot{\sigma}(s) \omega(t, \mu, \sigma(s))}\right] d s \\
& \leq 1-\left(t_{5} / t\right)^{m-1} \dot{W}\left(t_{5}\right) \rightarrow W\left(t_{5}\right)<\infty \text { as } t \rightarrow \infty
\end{aligned}
$$

which contradict (14). A similar proof holds if $x(t)<0$ for $t \geq t_{1} \geq t_{0}$.

THEOREM 4. In Theorem 3, let conditions (3) and (14) be replaced respectively by condition (10) and
(15) $\quad \lim _{t \rightarrow \infty} \sup \frac{1}{t^{m-1}} \int_{T_{1}}^{t}(t-s)^{m-3}$

$$
\cdot\left[\gamma(t-s)^{2} \rho(s) q(s)-\frac{[(t-s) \dot{\rho}(s)-(m-1) \rho(s)]^{2} \mu_{1}[\sigma(s)]}{4 M \rho(s) \dot{\sigma}(s) \omega(t, \mu, \sigma(s))}\right] d s=\infty
$$

then the conclusion of Theorem 3 holds.
Proof. The proof of Theorem 4 is similar to that of Theorem 3 except that we let $W(t)=\rho(t) L_{n-1} x(t) / x[\sigma(t)]$, and hence we omit it.

COROLLARY 2. In Theorem 3 (respectively Theorem 4), let condition (4) (respectively (11)) be replaced by'

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \frac{1}{t^{m-1}} \int_{T_{1}}^{t}(t-s)^{m-1} \rho(s) q(s) d s=\infty \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \frac{1}{t^{m-1}} \int_{T_{1}}^{t} \frac{[(t-s) \dot{\rho}(s)-(m-1) \rho(s)]^{2} \mu_{1}[\sigma(s)]}{\rho(s) \dot{\sigma}(s) \omega(T, \mu, \sigma(s))} d s<\infty \tag{17}
\end{equation*}
$$

Then the conclusion of Theorem 1 (respectively Theorem 2) holds.
For illustration we consider the following examples.
EXAMPLE 1. The differential equation

$$
\begin{equation*}
\left(\frac{1}{t}\left(\frac{1}{t}((1 / t) \dot{x})\right)^{\cdot}\right)^{\cdot}+\frac{231}{16 t^{7}} x(t)=0, \quad t \geq 1 \tag{18}
\end{equation*}
$$

has the nonoscillatory solution $x(t)=\sqrt{t}$. Only condition (5) of Theorem 1 is violated.

EXAMPLE 2. Consider the equation

$$
\begin{equation*}
\left(\frac{1}{t}\left[\frac{1}{t}((1 / t) \dot{x})^{\cdot}\right]^{\bullet}\right]^{\cdot}+\frac{1}{t^{3}} x[g(t)] \exp (\sin x[g(t)])=0, \quad t \geq 1 \tag{19}
\end{equation*}
$$

$g(t)=$ ct or $t \pm \sin t$. All conditions of Theorem 2 and Theorem 4 are satisfied for $\rho(t)=t^{2}$ and $\sigma(t)=c t, 0<c \leq 1$ for the first case and $\sigma(t)=t-1$ for the second. Hence all solutions of (19) are oscillatory.

EXAMPLE 3. Consider the equation

$$
\begin{equation*}
\left(t(t \ddot{x})^{\bullet}\right)^{\bullet}+\frac{1}{t^{2}} x[g(t)]=0, \quad t \geq 1 \tag{20}
\end{equation*}
$$

where $g(t)=c t$ or $g(t)=t^{c}$ or $g(t)=t \pm c \cos t, c>0$. All conditions of Corollaries 1 and 2 are satisfied for $\rho(t)=t, \sigma(t) \leq c t$ or $t^{C}, 0<c \leq 1$ or $t-c$ (respectively for the three cases) and $m=3$, and hence all solutions of (20) are oscillatory. We note that Theorem l in [5] can be applied to (20), however in [5] only bounded solutions of (20) are discussed. Thus our results are more general than those in [5].

REMARK 1. The main results of Kamenev [4], Philos [6, 7], Wintner [8] and Yeh [9, 10] are included in our Corollary 2, for $n=2$ and $g(t)=t$. Those criteria are not applicable to equations of the form

$$
\ddot{x}+\frac{k^{2}}{t^{2}} x=0, k>\frac{1}{2},
$$

however Theorems 1 and 2 can be applied. Hence our results are a substantial improvement on the above mentioned results.

REMARK 2. The results obtained here are new, and we do not stipulate that the function g in equation (l) is either retarded or advanced. Hence our theorems hold for ordinary, retarded, advanced, and mixed type equations.

References

[1] S.R. Grace and B.S. Lalli, "Oscillation theorems for nth order nonlinear functional differential equations", J. Math. Anal. App2. 94 (1983), 509-524.
[2] S.R. Grace and B.S. Lalli, "An oscillation criterion for nth order nonlinear differential equations with functional arguments", Canad. Math. Bull. 26 (1983), 35-40.
[3] S.R. Grace and B.S. Lalli, "Oscillatory and asymptotic behavior of solutions of differential equations with deviating arguments", J. Math. Anal. Appl. (to appear).
[4] I.V. Kamenev, "An integral criterion for oscillation of linear differential equations of second order", Mat. Zametki 23 (1978), 249-251.
[5] D.L. Lovelady, "On oscillatory behavior of bounded solutions of higher order differential equations", J. Differential Equations 19 (1975), 167-175.
[6] Ch.G. Philos, "On a Kamenev's integral criterion for oscillation of linear differential equations of second order", Utilitas Math. 24 (1983), 277-289.
[7] Ch.G. Philos, "Oscillation of second order linear ordinary differential equations with alternating coefficients", BulZ. Austral. Math. Soc. 27 (1983), 307-313.
[8] A. Wintner, "A criterion of oscillatory stability", Quart. Appl. Math. 7 (1949), 115-117.
[9] C.C. Yeh, "An oscillation criterion for second order nonlinear differential equations with functional arguments", J. Math. Anal. Appl. 76 (1980), 72-76.
[10] C.C. Yeh, "Oscillation theorems for nonlinear second order differential equations with damped term", Proc. Amer. Math. Soc. 84 (1982), 397-402.

Faculty of Engineering,
Cairo University,
Caíro,
Egypt;
Department of Mathematics,
University of Saskatchewan,
Saskatoon,
Saskatchewan S7N OWO,
Canada.

