
Proceedings of the Edinburgh Mathematical Society (1999) 42, 455-468 ©

UNIQUENESS IN THE CAUCHY PROBLEM FOR THE HEAT
EQUATION

by SOON-YEONG CHUNG

(Received 22nd May 1997)

We relax the growth condition in time for uniqueness of solutions of the Cauchy problem for the heat
equation as follows: Let u(x, t) be a continuous function on R" x [0, T] satisfying the heat equation in
R" x (0, 0 and the following:

(i) There exist constants a > 0,0 < a < 1, and C > 0 such that

|u(x, 01 < Cexp[(y)'+a|x|2] in R" x (0, T).

(ii) u(x, 0) = 0 for x e R".

Then u(x, i) = 0 o n R " x [0, T].

We also prove that the condition 0 < a < 1 is optimal.

1991 Mathematics subject classification: 35K.15.

1. Introduction

In this paper we deal with uniqueness of solutions of the Cauchy problem for the
heat equation

(3, - A)u(x, 0 = / in W x (0, T) (T > 0),

u(x, 0) = q>{x) for XGR".

For the uniqueness problem, it suffices, by linearity, to consider only the
homogeneous case/ = cp = 0.

It is well known that the temperature of the infinite rod is not uniquely determined
by its initial temperature (see [1,3,7,8]).

In fact, a very sharp counterexample will be given in the last part of this paper.
With additional growth conditions there are uniqueness theorems. The following is

the famous uniqueness theorem which was originally given by Tychonoff.

Theorem A ((8,9,10,111). Let u(x,t) be a continuous function on R" x [0, T]
satisfying
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(9, - A)u(x, t) = 0 in R" x (0, T)

and for some constants a > 0 and C > 0

|u(x, t)| < Cexpa|x|2 on R" x [0, T].

77ie/j u(x, 0) = 0 implies u(x, t) = 0 o/i R" x [0, T].

For most uniqueness theorems the solution u(x, 0 must be uniformly bounded with
respect to the t variable. However, sometimes we need a uniqueness theorem with a
milder condition on time.

Some authors have had interests in this direction and have relaxed the condition on
t. For example, Shapiro [8] has shown:

Theorem B (|8|). Let u(x, t) be a solution of the heat equation in the strip 0 < t < c
and bounded in every substrip of the form 0 < t0 < t < c. Suppose that

(i) ||u(x, OIL = o(r ' ) as t -* 0;

(ii) Hm,_0 u(x, 0 = 0 except possibly for a countable set E;

(iii) liminf,_0 r
1/2w(x, 0 = 0 for every x in E.

Then w(x, 0 = 0 in the strip 0 < t < c.

On the other hand, Chung and Kim [2] showed the following:

Theorem C (|2J). Let u(x, 0 be a solution of the heat equation in M." x (0, T)
satisfying:

(i) There exist constants k > 0 and C > 0 such that

|u(x, 01 < C e x p / c M x | 2 + - j , 0 < t < T ;

(ii) lim,^,^. /u(x, t)(f>(x)dx = Ofor every C°° function $(x) such that for every h > 0,

|9"0(x)|exp2fe|x|
< °°

Then u(x, t) = 0 on R" x [0, T].

In the above two theorems they relaxed the growth condition on time so that the
uniqueness classes determined by them are larger than that of Theorem A. In fact,
Theorem C gives a much larger uniqueness class than others. But, nevertheless, the
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hypotheses are not so natural that one can apply them effectively. The hypothesis (ii)
is stronger than u(x, 0) = 0, since there exists a nonzero temperature function satisfying
(i) and u(x, 0) = 0 (see Section 4).

The purpose of this paper is to prove the following theorem:

Theorem 3.1. Let u(x, t) be a continuous function on R" x [0, T] satisfying the heat
equation in W x (0, T) and the following:

(i) There exist constants a > 0,0 < a. < 1, and C > 0 such that

|u(x, 01 < CexpfQValxl2] in E" x (0, T).

(ii) u(x,0) = 0for xeR".

Then u(x, i) = 0 on R" x [0, T].

Moreover, we prove the uniqueness of the solution with weaker initial condition,
not imposing the continuity of u(x, t) at t = 0.

Besides these results we prove that the condition 0 < a < 1 in the above is optimal
with a counterexample showing that if we take a = 1 then the theorem is no longer
true.

To prove the main theorem we heavily make use of the generalized function theory.
In particular, we depend largely on the nonquasianalytic properties of the ultradistri-
butions of Gevrey type.

2. Notation and basic results

We introduce briefly the ultradistributions of Gevrey type which will be very useful
later. See [6] and also [5] for more details.

Definition 2.1. Let fi be an open subset of R" and q> e C°°(fi). Then we say that cp
belongs to Sw(Ci) for s > 1 if for any compact subset K of Q and for every h > 0 there
exists a constant C = C(K, h) > 0 such that

sup|3>(x)| <C/iNa!J, a eNJ
xeK

where No is the set of nonnegative integers, and we use the multi-index notations
\a\ = a, + • • • + an and 3" = #' 3? • • • 3f, 3, = £ , j = 1, 2, • • •, n, for a = (a,, a2, • • •, a j .

We denote by X>(j)(fi) the subspace of £w(fi) which consists of functions with
compact support in Cl. The topologies of these spaces are defined as follows:
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(i) {(j>j(x)} e £(j)(fi) converges to zero in £w(fi), s > 1, if for any compact subset K
of fi and for every h > 0,

sup-

(ii) {(f>j(x)) e Z?w(fl) converges to zero in D(j), s > 1, if there is a compact set K of
Q such that supp<£; c K, j = 1, 2, • • •, and <fy - • 0 in £W(O).

As usual, we denote by X^Q) (by £(S)(£2)) the strong dual space of X>(J)(Q) (of
£(J)(Q), respectively) and we call its elements the ultradistributions of Gevrey type.

We have the inclusion

where I)'(Q) and £'(Q) are the space of Schwartz distributions and the space of
Schwartz distributions with compact support respectively. It is well known that £"(J)(Q)
consists of the ultradistributions in P^fi ) with compact support in Q like the space
£'(Ci) in V(Ci). In fact, since there exist cut off functions and partitions of unity in
I>(5)(fi), s > 1, the properties of the ultradistributions in V^Q) are very similar to those
of Schwartz distributions. In particular, the concepts of the support, convolution, etc.
are defined very similarly and naturally.

We note here that in view of the topology on V(s){il), u belongs to V{s)(Qi) if and only
if for every compact subset K of Q there exist constants h > 0 and C > 0 such that

for every <j> e Dw(fi) with support in K.
On the other hand, define the partial differential operators of class (s) of infinite

order as follows:

for some L > 0 and C > 0. Then the mappings

are continuous.
From now on we denote by £(x, t) the fundamental solution of the heat equation:

https://doi.org/10.1017/S0013091500020459 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020459


UNIQUENESS IN THE CAUCHY PROBLEM 459

(47it)""/2exp(-|x|2/4t), t > 0E(x, t) =
1 0, t < 0.

Then the following can be obtained by some tedious calculation.

Proposition 2.2. Let g(x) be a continuous function on W satisfying that for some
constants a > 0 and C > 0

\g(x)\ < Cexpa|x|2, xeW.

Then G(x, t) — g(x) * E(x, t) is a well defined C00 function in W x (0, l/4a) and satisfies

(i) (3, - A)G(x, t) = 0, 0 < t < I/4a,

(ii) |G(x, 01 < Cexp(2a|x|2), 0 < t < l/8a,

(iii) G(x, 0 -> g(x) uniformly on each compact subset ofR" as t ->• 0+.

Here, * denotes the convolution with respect to x variable.

The following lemma is very useful later. In fact, this is the main tool used to prove
the main theorem.

Lemma 2.3. For any L > 0, s > 0 and for a small e > 0 there exist functions
v(t), w(t) e CJ5°(]R) and a differential operator p(d/dt) of infinite order such that

W(t); (2.1)

suppv c [0, e], suppw c [e/2, e]; (2.2)

p(d/dt) = J2 "k(d/dt)k, \ak\ < Chf/W; (2.3)
Jc=O

for some positive constants C and h and

\v(t)\ < Cexp[-(CL/0l / (5-0]. (2.4)

where 5 is the Dirac measure and c is a constant depending only on s.

Proof. We set

[ ^where

The function u(x) is the inverse Fourier transform of l/p(it). Notice that 1/(1 + iXt) is
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the Fourier transform of the function

I 0, x < 0.

Hence u(x) is the convolution of a sequence of functions ux(x) with

A = 1,1,L,L/2S,L/3J
>--.

This implies the properties u(x) = 0 for x < 0, w(x) > 0 for x > 0,

u(x)dx = 1, and p(d/dx)u(x) = <5(x).
)

Further, for x > 0 and q eN,

•dt

1

1
2 <

2L«

,(it)| 27ty_oo|l4-(t|2

; ' + iLt

Thus if we use this and

then we have for each q e N and x > 0

since inf -^ < 2e"'/2 for t > 0. This implies that u(x) satisfies the inequality (2.4).

In order to estimate ak, we write
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In MO =

for real ( > 0. By substitution q = (LQ]"t, we get

I/J f ln(l + t~')dt = C(LC)1/Jlnp,(O < C(LC)I/J f ln(l + t~')dt = C,(LC)1

Jo

The above estimate obviously holds also for p((), with a different constant C,. For
complex C,

|p(C)l<p(ICI)<exp(C,|LC|1/I)-

From the Cauchy equality

1 / P(O „fl* = 2̂  f r C
(ICI=R)

with R = /c'/L, it follows

Therefore, the estimate (2.3) holds.
By multiplying M(X) with a function in £W(R) which is equal to 1 in (—oo, e/2] and

equal to 0 in [e, oo) the function v(x) can be obtained. By the definition of p(C) in (2.5)
we can easily see that it is an entire function of order 1/s such that

3. Main theorems

We give here a much better uniqueness theorem than those in [2,3,4,8].

Theorem 3.1. Let u(x, t) be a continuous function on K" x [0, T] satisfying

(i) (3, - A)u(x, t) = 0 in K" x (0, 7].

(ii) \u(x, 01 < Cexp[(a/0" + a|x|2] in W x (0, T] for some constants a > 0,0 < a < 1,
and C > 0.

(iii) u(x, 0) = 0 on R".
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Then u{x, i) is identically zero on W x [0, T\ Here T may be oo.

Proof. In view of Theorem A given by Tychonoff in the introduction we have only
to show that u ss 0 on R x [0, To] for sufficiently small To > 0.

Let s = ^(l +5) > 1. Then according to Lemma 2.3 we can choose CJJ° functions
v(t), w(t) on R and a differential operator p(d/dt) of infinite order such that

(3.1)

supp v C [0, To], supp w c [T0/2, To]; (3.2)

= J2 ak{d/di)\ \ak\ < Chk/k?; (3.3)

KOI < Cexp[-(2a/0I/(2^1)], (3.4)

where To > 0 is a small number such that 2T0 < min(T, l/16a).
Define two functions G(x, t) and H(x, t) by

G(x, 0 = / u(x, t + T)p(T)dT,

and

, 0 = - / «(X, t

Then it follows from (3.2), (3.4) and the condition (ii) that the integrals converge and
are continuous functions on R" x [0, To]. Moreover, they satisfy the heat equation and
the growth condition

|G(x, 01 < Cexpa|x|2 (3.5)

and

|ff(x,0l<Cexpa|jc|2 (3.6)

for all (x, 0 e R" x [0, To]. If we take g(x) = G(x, 0) and h(x) = H(x, 0) then Proposition
2.2 implies that g * E and h * E are continuous functions on R" x [0, To] which converge
to g(x) and h(x) respectively as !->• 0+. In view of Theorem A in the introduction
and the growth conditions (3.5), (3.6) it follows that

, H{x, 0 = h(x) * E(x, t) (3.7)

on R" x [0, To].
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It is clear that for the differential operator p(—A) = J27=o ak(—&f is a differential
operator of class (s) which acts continuously on P^R") . Thus, if we define

u = p(-A)g(x) + h(x), (3.8)

then u belongs to 27(j)(R").
On the other hand, since u(x, t) is uniformly continuous on each compact subset of

R" x [0, T), the initial condition u(x, 0) = 0 implies that u(x, t) converges uniformly to
0 on each compact subset K of K" as t -> 0+.

Applying the differential operator p(—d/dt) in (3.1) we have

p(-d/dt)G(x, t) = p(-A)G(x, 0 = u(x, 0 - H{x, t) (3.9)

in R" x (0, To). Then we note that u - p(-A)g + /i is a 2^-limit (or weak limit) of
p(—A)G(x, t) + H(x, t), since G(x, t) ->• g(x) and H{x, t) -*• h(x) uniformly on each
compact subset of R". Therefore, we have

u = lim u(x, t) in
1-.0+

From this we obtain that

u(q>) = lim fu(x, t)<p(x)dx = 0, q> e D(J)(R"), (3.10)

which implies that u — 0 as an element of X^R").
Now we show that p(—A)[g * E] — \p(—A)g] * E. To do this we need the following

estimate for £(x, t):

|9J£(x, 01 < C'"lt-<"+|ll|)/2a!iexp[-|x|2/8t], t > 0 (3.11)

for some constant C > 0. We shall prove this for n — 1 for simplicity. Since £(z, t) is
entire holomorphic the derivatives of £(x, t) can be evaluated by Cauchy's integral
formula

where FR is a circle of radius R in the complex plane C with centre at x. Then we
find

where x — x-R or x + R. Let us choose R so that exp[R2/4t]/Rk would attain its

https://doi.org/10.1017/S0013091500020459 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020459


464 SOON-YEONG CHUNG

minimum. This is realized for R = -Jlkt, so that (3.12) reduces to

\ftF(tc t\\ < (e/2V:/2t~(1+'l)/2klk~(A:/2) exnf—i2/4fl
V47t

The last factor may be estimated as follows.

exp[-x2/4t] < exp[-(|x| - R)2/4t] < exp| - ^ - + 7-

Since R2 = 2kt we have

C 01 < Ck

for some constant C > 0, which gives (3.11).
On the other hand, we have for each xeW and 0 < t < To

k=0

2 / " a l y l 2 } • \ak\ • |A*£(x - y, t)\dy (3.13)
k=0

The last inequality in the above is obtained in view of (3.3) and (3.11). Since
k\2 < (2k)! < 4k(/c!)2 and 2s - 1 = ± > 1 we estimate (3.13) as follows.

Since 0 < t < To and To < ̂  the last integral is finite, so that (3.13) reduces to a
finite number depending on x and t. Therefore, the Lebesgue dominated convergence
theorem implies that

k=0

k=0

p{-A)[g * £].
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But since {p(—A)g] *E — g*p(—A)E from the definition of differential operator of
class (s) acting on the ultradistributions we have p(—A)[g * E] = \p(—A)g] * E.

Then it follows from (3.7) and (3.9) that

u(x, t) = p(-A)G(x, t) + H(x, t)

= p(-A)g *E + h*E

= \p(-A)g + h]*E

= u * E = 0,

which completes the proof.

In the above proof the continuity of M(X, t) at t = 0 can be weakened. In fact, the
continuity was used only to derive (3.10), which means that u(x, t) weakly converges to
0 in Z ĵ). Thus we can obtain the following uniqueness theorem without continuity on
t = 0.

Theorem 3.2. Ifu(x, t) satisfies the conditions in R" x (0, T):

(i) (3, - A)u(x, t) = 0,

(ii) |«(x, 01 < Cexp[(a/t)a + a\x\2]for some constants a > 0, 0 < a < 1 and C > 0,

(iii) lim,^0+/M(x, t)q>(x)dx = 0, cp € P(j)(M") where s = i ( l + i ) , then u(x, t) = 0 in
R" x [0, T).

4. Example

In this section we show that the uniqueness class in the previous section is the
optimal one. In particular, it will be shown that the growth condition on the time
variable is optimal.

For the space variable it is well known (see [3]) that for every e > 0 there exists a
C°° function u(x, f) # 0 satisfying the following:

(i) (3, - A)u(x, 0 = 0 in R" x (0, T).

(ii) u is continuous on R" x [0, T).

(iii) |u(x, 01 < Ceexp |x|2+e on R" x (0, T).

(iv) «(x, 0) = 0 on Kn.

This shows that Theorem 3.1 is not true if in that condition we replace exp(a|x|2) by
exp(a|x|2+'),e>0.

Now we will show that Theorem 3.1 is also no longer true if we replace the condition
0 < a < 1 by a — 1. To see this let DN be a domain in the complex plane C given by
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DN = {z e C | z = x + yi, x > N, -n < y < n], N > 0

and CN be the boundary of DN. Define a function u(x, t) on 1 x (0, oo) by

(4.1)

where the integral is taken counterclockwise.
Since the function exp(e') decreases very rapidly as Re( ->• oo on the curve CN the

integral converges and u(x, t) satisfies

(8, - A)M(X, 0 = 0 in E x (0, oo).

Also, Cauchy's integral theorem implies that u(x, t) is independent of N > 0. Since the
integral

is finite it follows that

\u(x, 01 < C(N) sup \E(x -£,t)\.

Writing C = £ + if\ we obtain

sup|£(x-C,0l =
1

exp -

1 (n2\ f (x-O2l
= fvpl— I supexp ,

since C = ^ + î  implies N < £ and |r?| < TT by its definition.
Then it follows that for some constant a > 0

Kx, 01 < C(A0exp(^exp[-d(x',,fw)1 (4.2)
4r J

where d is the Euclidean distance.
Thus we have

|u(x, 01 < C(N) exp - in Rn x (0, oo). (4.3)
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Let r > 0 and x < r. Since the integral (4.1) is independent of N we may choose a
sufficiently large N > 0 so that 4a < (N - r)2. Then by (4.2) we obtain

sup |u(x, 01 < C(N) e x P r 4 f l ~ ( ^ ~ r ) l , t > 0. (4.4)

The right hand side of (4.4) converges to 0 as t —• 0+ and u(x, t) converges uniformly
to 0 as t -» 0+ in every half-line (—oo, r], r > 0. Therefore, we can conclude that
u(x, t) is continuous on R" x [0, oo) and u(x, 0) = 0.

Now it remains to show that u(x, t) # 0.
To do this we suppose that u(x, t) = 0 in R x [0, oo). Then we obtain from (4.1)

that

in R" x [0, oo). Applying the Lebesgue dominated convergence theorem we can see
that

(4.5)

Since the integral (4.1) does not depend on N > 0 we may choose N = 0. Then (4.5)
can be written as

0 = - / exp(-ecyC - ' / exp(eyi)dy 4- /
J0 J-n JO

= -2i I ecmy cos(sin y)dy.
Jo

But the integral eCO5ycos(sin3>) > 0 on [0, n], which leads a contradiction. Thus we can
conclude that u(x, t) 0 0.

Remark. In [1] they gave an example with the same estimate as (4.3). But that
was more complicated than the above one.
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