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MONOTONICITY OF THE ERROR TERM IN GAUSS-TURAN
QUADRATURES FOR ANALYTIC FUNCTIONS
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Abstract

For Gauss-Turan quadrature formulae with an even weight function on the interval [—1, 1]
and functions analytic in regions of the complex plane which contain in their interiors a
circle of radius greater than 1, the error term is investigated. In some particular cases we
prove that the error decreases monotonically to zero. Also, for certain more general cases,
we illustrate how to check numerically if this property holds. Some £2-error estimates are
considered.
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1. Introduction

Let w be an integrable weight function on the interval (—1, 1). It is well known that
the Gauss-Turan quadrature formula with multiple nodes,

/.I

/

Is

u=I i=0

is exact for all algebraic polynomials of degree at most 2{s + \)n — 1 and that its
nodes are the zeros of the corresponding j-orthogonal polynomial nn<s(t) of degree n.
For more details on Gauss-Turan quadratures and j-orthogonal polynomials see the
book [5] and the survey paper [9]. Numerically stable procedures for calculating the
Gauss-Turan quadrature formula have been proposed in [3,10,16].
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Let f be a simple closed curve in the complex plane surrounding the interval [ -1 , 1]
and D be its interior. If the integrand / is an analytic function in D and continuous
on D, then we take as our starting point the well-known expression of the remainder
term RnAf) in the form of the contour integral

r$ (1.2)

The kernel is given by

f / \ Qn,s \Z) . r , , n
KAz) = Z * [ l l ]
K"Az) r

[»..., (z)]
where

w(t)dt, n € N,
z-t

and TtnA*) is ^ s-orthogonal polynomial with respect to the measure w(t)dt on

(-1 ,1) .
Let io be one of the four generalized Chebyshev weight functions:

(c) w3(t) = (1 - O~1/2(l + t)1/2+s, (d) w4(t) = (1 - r)1/2+i(l + 0~1/2-

It is well known that the Chebyshev polynomials of the first kind Tn are s-orthogonal
subject to wi(t) on [—1,1] for each s > 0 (see [1]), and that for three other
weights Wj(t), i = 2, 3, 4, the ^-orthogonal polynomials can be identified as Cheby-
shev polynomials of the second, third and fourth kinds: Un, Vn and Wn, which are
defined by (see, for example, [18])

sin6 cos 6/2cos 6/2 sin 6/2

respectively, where t = cos 6. However, such weights depend on s. The weight
function in (d) can be omitted from investigation because Wn(—t) = (—1)" Vn(r).

Gori and Micchelli [6] have introduced for each h a class of weight functions
defined on [—1, 1] for which the explicit Gauss-Turan quadrature formulae can be
found for all s. In other words, these classes of weight functions have the peculiarity
that the corresponding ^-orthogonal polynomials, of the same degree, are independent
of s. This class includes certain generalized Jacobi weight functions
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where Un-\(cos9) = sinnO/ sin9 (a Chebyshev polynomial of the second kind) and
fx > — 1. In this case, the Chebyshev polynomials Tn{t) appear to be s-orthogonal
polynomials.

Using the representation (1.2) of the remainder term Rn,s(f), the results from
[4,8,19] for Gauss quadrature formulae, and taking F to be a confocal ellipse or
circle, some very precise error bounds of |/?njJ(/)| are derived in [11-14]. The case
with strong singularities has been considered in [15].

The monotonicity of quadrature approximations for some quadrature rules has
been considered by several authors. For example, Newman [17] showed that, for a
certain class of functions, the convergence of the general Newton-Cotes quadrature is
monotone. Also, under the condition /(2n) > 0, Brass [2] considered the quadrature
rule Qn(f), with n nodes, and proved certain monotonicity results in the case of
Gaussian and Newton-Cotes rules.

In this paper we consider the error term Rn,s(f) in the Gauss-Turan quadrature
formula, with an even weight function on the interval [—1, 1], for functions analytic
in regions of the complex plane which contain in their interiors a circle of radius
greater than 1. For some important particular cases we prove that Rn,s(f) decreases
monotonically to zero. Also, we investigate numerically some more general cases
and analyze some £2-error estimates. The paper is organized as follows. In Section 2
we give some preliminary results. The monotonicity of the error term is given in
Section 3, including a numerical analysis. Finally, the £2-error estimates are considered
in Section 4.

2. Preliminaries

Let / be an analytic function in [z : \z\ < 1 + 2e), where e > 0, that is,

+00

f(z) = J2akz
k, | z | < l + 2 e . (2.1)

k=0

Let Xn.siO be the s-orthogonal polynomial of the nth degree subject to the given
weight function w(t): nns(t) = Knt" + «-n_1f"~

1 H , where we take Kn = K^ > 0.
In the following, we suppose that w(t) is even, that is, w(—t) = w(t) on [—1,1],

and that the contour f is the circle of radius 1 + e.
The results which will be presented in this paper are a continuation of the results

from [13]. Because of that we need some facts from [13], and we give them in this
section again (without proofs).
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LEMMA 2.1. In the expansion
+00

n,5 \~y j_0

forn > 1 it holds that bfyj+i = 0, b^2j > 0 (y = 0, 1, 2, . . . ) , and for n = 1 it holds
that l/nhs(z) = b^z'1, where b\% =\/KX> 0.

Therefore, in the case with even weight function, we have

, +OO

= 2_J^2Jz~"~2'< kl > 1. and
n"AZ) J=o

, /+oo \2s+l + o o

,z~
un,2j •

It is clear that bn
s
2j+i = 0 and b*2j > 0.

^ are known, by using [7, Equation 0.314], it is possible to determine b*2] in
the following way:

*=i

LEMMA 2.2. For en,j(z) it holds that
+00

where c%} > 0, n = 0, 1, 2 , . . . (5 e No); ; = 0,1, 2

THEOREM 2.3. Lef Rn,s(f) be the remainder term in the Gauss-Turan quadrature

formula (1.1) ande% = EU^aj^-V Then, forn > 1,

+00

*;i. (2.2)

Let /x;s be the moments of the weight function w(t), that is, fij = /_, w(t)tJ dt
(j =iO, 1,2,...). At the same time we introduce the quantities

n 2s . ,

it1, j = 0 , 1 , 2 , . . . ,2EAi-u .-J.-v
=i ,=0 w r

which are obtained by applying the Gauss-Turan quadrature sum on tJ, and which
can be numerically calculated by using the above mentioned procedures.

Because e^\ > 0, we also obtained the following consequences of Theorem 2.3.
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COROLLARY 2.4. We have

en?k = M2n(,+i)+2Jt - / ^ ( J + D + 2 * . * = 0 , 1 , 2 , . . . , and

^\ + 0(1)] .

Therefore, there exists k0 such that for all k > k0 it holds that 7l2n(i+i)+2i > 0. Also,
mt̂ +oo e ^ = 0, and the sequence (e£*)t=0,2 is bounded.

3. Monotonicity of the error term

In this section we prove that the remainder Rn,s(f) decreases monotonically to
zero in some particular cases, when all a^ in the expansion (2.1) are nonnegative. We
use an analogous way of concluding as in Stenger [19, Lemma 4, Theorem 2] for the
Gaussian quadrature formula (s — 0).

1. The case when n is fixed. We have

O I f \ T> { f\

RnAJ) — Kn,s+\U)
+OO +OO

— 2^, a2n(s+\)+7k enk — 2_^ ^2n(s+2)+2k £„,*
k=0 k=0

+oo +oo

en,Q + ' - ' + 02n(s+l)+2n-2 e
n,n-\ + / _ , a2n(s+i)+2k ̂ n,k ~2—1 Q2"(s+2)+2k ^n,k

k=n k=Q

+00

It will hold that /?„,,(/) > Rn,s+i(f), s = 0, 1, 2 , . . . , if it holds that

e(Xn-en,tl)>0, k = 0,1,2,.... (3.1)

Let us show that (3.1) holds if n = 1, 2, 3, and w(t) belongs to the class of
Gori-Micchelli weight functions.

We have

- — 4f
2ni JrJ_i

7
[7rn,J+1(z)J

d t d z •
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After a little reordering we obtain

As)
en,k+n

1 r 2/I(J+2)+2* /•!

= 2̂ 7 J r i*« / (')[r(0]
2/I(J+2)+2* /•!

r i /

where we put 5n_,(z, f) = (Tn(z) - Tn(t))/{z -1).
Finally, because of orthogonality,

2n(s+2)+2k

i Jr [Tn(z)\

The value of the last expression will be equal to the coefficient of z~x when
the expression under the integral over f is expanded in the series of z1. It is
clear that all the coefficients of the series, which have been obtained by expanding
z2«(,+2)+2*/[7;(z)]2J+3) are p O s i t i v e .

Since the weight function is even, the corresponding (s-) orthogonal polynomial of
degree n has the form (here this is the Chebyshev polynomial of the first kind)

Tn(t) = ctnt" - an-2t
n-2 + an_4f"-

4 ,

where Kn = an > 0, an_2 > 0, an_4 > 0, . . . .

• Let n = 1. Then Ti(t) = a\t and S0(z, t) = ct\ > 0. Therefore

S0(z,t)dt = a, / w(t)[Ti(t)T+2dt > 0.

• Let n = 2. Then T2(t) = a2t
2 - a0 and Sx(z, t) = a2(z + t). Therefore

f w(t)[T2(t)]
2s+2Sl(z,t)dt = a2zj w(t)[T2{t)f+2dt,

which gives that the coefficient of z"1 is positive.
• Let n = 3. Then T3(r) = a3t

3 - axt and S2(z, t) = T3(z)/z + a3t
2 + a3tz.

Therefore

j
Z

Now, because of

f u,(0[73(0f+2dt + a3 f
J-\ J-

dt.

/

i /.I

u;(r)[r3(O]2 l + 2^ > 0 and a3 / w(t)t1[T3(t)]
2'+2dt > 0,
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we conclude that the coefficient of z~* is positive.
It is not possible, in this way, to prove positivity of the coefficient of z~x for n > 4.

2. The case when s is fixed. Consider the generalized Chebyshev weight functions
which are even, that is, wt(t) and w2(t).

We have
+00 +OO

„** ~ / ,fl2(n+ l)(t+l)+2* en+l,k

+00 +00
(s) ^ ^ (s)

enk - ) ia2{n+\2ke
k=s+\ k=0

+00

(en,k+s+\ ~ en+\,k) •
k=0

It will hold that /?„,,(/) > /?„+!,,(/), n = 0, 1, 2 if it holds that

< £ L + . - * « + u > 0 . ^ = 0, 1,2, . . . . (3.2)

We have

cn,k+s+\ en+l,k

2ff i / r 7-1 [^. z -

Finally, by using the Christoffel-Darboux identity,

^n.k+s+l en+\.k

\ K , f 72n(s+\)+2(k+s+l) "

/•I
x /

J\

/•I
/
J-\

where 7rt is the corresponding ordinary orthogonal polynomial.

https://doi.org/10.1017/S1446181100003229 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100003229


574 Gradimir V. Milovanovic and Miodrag M. Spalevic [8]

Consider now the case w(t) = Wi(t), t e (—1, 1). By substituting t = cos0 in the
last integral we obtain

cn,k+s+\ cn+\,k

2jJX I fC« /r* 17T»»

Jo

z2n(.s+\)+2(k+s+l)

We see that Kn+i/icn > 0, and that the expansions of

72n(s+l)+2(k+s+\)

- 7 , « = 0 , l 2s,

in the series of zJ are such that all their coefficients are positive.
Further, we use the following known formulae [cos nO]21'' = YlJ=o a j ' ) c o s Jn&

and [cos(n + 1)9]' = E ' = o ^ ° cosr(n + 1)0, and put

and1 /0" cos2 yne d9 r /„" cos2 r(n + 1)0 d6> '
where

a)° = / [COSH0]25"' cos jn6d9 and V = / [cos(n + 1)0]' cos r(n + 1)6 dO .
Jo Jo

Both af and t j 0 can be found by using [7, Equation 3.631-17].
Now,

/ "
Jo

+ 1)0]'<*0

ls-i i

c o s k e cosJnQ c o s r ( n

;=0 r=0

= - ^ 2 ^ 2 <*fb(? / [ cos(ik + j n + r + r n ) 0 + cos(i t + j n - r - rn)9
4 ;=0 r=0 >'0

+ cos(A: - Jn + r + rn)0 + cos(& - jn-r - rn)0] d0 . (3.3)

Since u)(/) = W\(t) is an even weight function, the previous integrals are different
from zero in those cases when k, i are both of even parity. Further, aj0 = Oifi + j is
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odd and br' = 0 if / + r is odd. Therefore, we consider the cases in which k, i, j , r
are all of even parity. The last integrals are of the form f* cos/0 dd, I e I, and are
equal to zero, except when / = 0.

Consider the case s = 1. It is not difficult to conclude that the integral in (3.3)
is not zero only in the cases when (k, i, j , r) take the following values: (0, 0, 0,0),
(0, 2, 0, 0) and (1, 1, 1, 1). In these cases we have:

(i) If (k, i, j , r) = (0,0, 0, 0), then

a0
(0) = f cos2 710 dd > 0, b™ = f dd > 0 .

Jo Jo

(ii) If (k, i, j , r) = (0, 2, 0, 0), then

/

IT pn

dd > 0, b0 = cos2(n + 1)0 dd > 0.
Jo

(iii) If (k, i, j , r) = (1, 1, 1, 1), then

a,(1) = / cos2 nd dd > 0, b~\' = / cos2(« + 1)0 dd > 0 .
Jo Jo

Therefore, we conclude that the requested coefficient of z~] will be positive.
We derived the same conclusion in the case when w(t) = w2(t).
Concluding in an analogous way we cannot see what happens if s = 1. All that we

can conclude is that R\,i(f) > Ri,i{f)-

3.1. Numerical analysis The formulae (3.1) and (3.2) give us a way to check nu-
merically if monotonicity holds, for the error in the Gauss-Turan quadrature formulae
in the cases under consideration in this paper.

Let us consider the Legendre weight function w(t) = wL{t) = 1 on [—1, 1]. It is
possible to display the graphs of e(*\+n and e^l) for 0 < k < M, for M sufficiently
large, by using programme packages such as MATLAB or MATHEMATICA, and so
checking the conditions (3.1). The same can be said for the conditions (3.2).

Let n be fixed, for instance, n = 4. In Figure 1 we see the graphs of e4'[+4

(connected by dashed lines) and e^l) (connected by solid lines), for s = 1 (left) and
s = 2 (right), where Jfc = 0, 1, 2 , . . . , 70.

Finally let s be fixed, for instance, s = 1. In Figure 2 we see the graphs of e^\+2

(connected by dashed lines) and £*+, k (connected by solid lines), for n = 3 (left) and
n = 4 (right), where k = 0, 1, 2 60.
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FIGURE 1. The graphs show: /?4i, > Ri2 (left) and /?4,2 > /?4,3 (right).

10 20

FIGURE 2. The graphs show: R3l > /J4,, (left) and fl4i > RSJ (right).

4. Some £2-error estimates

For the remainder term in the Gauss-Turan quadrature formula (1.1) we can derive
the following estimate:

I *„.*(/) I <ll^».l (4.1)

If a given sequence (e^k)k=0, («, s fixed) belongs to the space lp (p > 1), we
apply Holder's inequality to (2.2) to obtain

1/9

(4.2)
*=0

where 1/p + \/q = 1.
The quantities a^s)

p = (X)So {enlY) 'are independent of / and can be computed.
The case when p -»• +00 was considered in [13].
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) (i = L, 2) for some n, s and for the weight functions wL(t) = 1,TABLE 1. Error constants

io2(O = • / i ~ r

n

5
6
7
8
9

10

1.58(-1)
1.33(-1)
1.14(-1)
l.Ol(-l)
8.97(-2)
8.09(-2)

1.24(-1)
1.04(-l)
8.93(-2)
7.84(-2)
6.98(-2)
6.30(-2)

1.86(-2)
1.33(-2)
9.99(-3)
7.77(-3)
6.22(-3)
5.09(-3)

<2>2)

l . l l(-2)
7.88(-3)
5.88(-3)
4.55(-3)
3.63(-3)
2.96(-3)

Here we consider the case p = q = 2. The estimate (4.2) of type (4.1) gives

(4.3)

On the basis of the results from Section 2, there exists a k0 such that

that is,

^

Ir U U I 1
, K — /Co, S ( | T 1, . . . ,

, k > k0 .

Therefore, the series J^t^o f^Lis+^+u converges if the series
the last series converges if and only if the integral

converges. But

I =
w(y)

-ty
dtdy

converges, since
+oo

k=o k=o
/_;

w(y)y2kdy =

Therefore, if the integral / converges, then the quantities W^J = W^(w) exist and
can be calculated. The error constants W^{wt) (i = L, 2) for some values of n, s
and for weight functions wL(t) — 1, wz(t) = Vl — f2, t e [—1, 1], are displayed
in Table 1. Numbers in parentheses indicate decimal exponents. These do not exist
for the weight function wi(t) = 1/Vl - t2 (see, for example [19]). A calculation of
WXJQ in (4.3) for the Gaussian rule was given by Wilf [20] and Stenger [19, table on
page 157].

We finish, by deriving another expression for Wns. Formula (4.2), for p = q = 2,
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has been derived as follows:

[12]

n 2s

i > = l 1 = 0

/

I

1

+00

+oo n 2s +oo

/=o v=i 1=0 j=o

j=0
+oo

v=\ 1=0

j=2n(s+l)

I +oo + 0 o
1/2

(4.4)
\;=2n(j+l) / \;=2n(j+l)

Equality can be obtained in (4.4) by putting

(O, j =0,l,...,2n(s

ij - JZj, j = 2n(s + 1), 2n(s + 1) + 1 , . . . ,
(4.5)

that is, for the function

+00

fif)=
j=2n(s+l)

We have that (subject to (4.5), a; = 0 always when j is odd, since /J,J -
the function / in (4.6) it holds that

«; = fl2n(*+i)+2* = e$\ > °> J = 2n(s + 1)- 2 " ( s + 1) + 2,

On the basis of these facts and (4.5) we conclude that

aj >0, j = 0, 1

By using (4.4), where ay are given by (4.5), we have

(4.6)

O)for

(4.7)

I 1 +oo r n 2s , "1

\ w(t) £ U-£EA,.-^-r,>-' *'*
I " 7 " 1 j=2n(s+\) L v=l 1=0 KJ '• J

n Is ( +0O r n Zs ..

- £ £ M £ ^-££^77=70?^
u=l ,=0 \j=2n(i+l) L y, = l i,=0 V J l / -
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In fact, on the basis of (4.4) and (4.7), WnJ is equal to the last expression inside the
absolute value, that is,

Vn,s = f
J — 1/

, +oo I" n 2s "I

1 j=2n(s+\) L v=l i=0 ^ '' J

n 2s / +oo I" n 2s . , "1 \ <'">

EEM E ^ - E E ^ < - ^ ) T C " <' •
v=l 1=0 \j=2n(s+l) L "1 = 1 <l=0 yJ '' J / T>

Let us put the last formula in order. First, we have

Second,

+ 0 0

= j w(t)i

L l-x
we have

[/:
f2n(s+

u(t)u

dt

we

l)dt

Ky)
l -

J' w(y):

ty

/

I +oo r n 2s , -j

,-» E -EE^yrni'r' H
1 ;=2n(j+l)L v=l i=0 W ' ' • Jn Zr +oo

- E
v=l 1=0 ;=2n(s+l)

n 2s +oo

u=l i=0

+

2 ( l ) ^^ ' '

We now determine the last sum in this expression.
Since (1 - £)-( / + 1 ) = E ;

+ ~ (ft*'"'. If I < 1. we have

+00

j=2n(s+\)

w ( y ) y m d y

.) dy] dt
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I f+oo • .v 2n(j+l)-l

/

I f+oo • .v 2n(j+l)-l ,

Therefore

n 2s +00

y 2 ( + 1 )i=0

" * T /.I . . . / - A - . i J . . 2 n d + l ) - l

Finally, we have

n 2s n Is

W W A >4 I V ^!^ TJ-I.
u=l i=0 v1 = l i|=0 V=2n(s+1) yJ

+00

= E »*•
+00

On the basis of the previous analysis, the quantity WniS can be given in the form

+00

j=2n(s+\)

where

>n,s-i I dtdy
/_, y_, 1 - ty

n 2s

- 2 '
i > = l 1 = 0
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