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Abstract

We prove that all smooth Fano threefolds in the families No2.1, Ne2.2, Ne2.3, Ne2.4, Ne2.6 and Ne2.7 are K-stable,
and we also prove that smooth Fano threefolds in the family Ne2.5 that satisfy one very explicit generality condition
are K-stable.
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1. Introduction

Recently, we witnessed huge progress on K-stability of Fano varieties [1, 15, 18, 22], which resulted in
an immense breakthrough in the solution of the following problem:

Problem. Find all K-polystable smooth Fano threefolds.

Let us describe what is done in this direction. To do this, fix a smooth Fano threefold X. Then X
belongs to one of the 105 deformation families found by Iskovskikh, Mori, Mukai. These families are
often labeled as No1.1, Ne1.2, Ne1.3, Ne1.4, ..., Ne7.1, Ne8.1, Ne9.1, Ne10.1, where the first digit stands
for the rank of the Picard group of the threefolds in the family. For the detailed descriptions of the 105
families, we refer the reader to [3].

The valuative criterion for K-stability [15, 18] allows us to explain when X is K-stable in relatively
simple terms. To do this, let us remind what are S-invariant and ¢-invariant. Recall that £ is a prime
divisor over X if there is a birational morphism f: X — X with normal X and a prime divisor £ C X.
We set B(E) = Ax(E) — Sx (E), where

Throughout this paper, all varieties are assumed to be projective and defined over C.
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_1
(-Kx)3

and Ax (E) is the log discrepancy of the divisor E. Then, for every point P € X, we let

Sx(E) = /Om vol(f*(-Kx) — uE)du,

. Ax(F)

op(X) = f ,

Xy =it S
PECx(F)

where the infimum is taken over all prime divisors over X whose centers on X contain P. Finally, we set
o0(X) = inf 6p(X).
(X) = inf 6p(X)

The valuative criterion says that X is K-stable (respectively, K-semistable) if B(F) > 0 (respectively,
B(F) > 0) for any prime divisor F over X. Hence, X is K-stable if §(X) > 1. We say that X is K-unstable
if it is not K-semistable.

The simplest way to apply the valuative criterion is to check whether 8(S) < 0 or not for some
irreducible surface S in the threefold X. This has been done in [15]. As a result, we know that X is
K-unstable if it belongs to any of the following 26 families:

No2.23, No2.28, No2.30, No2.31, Ne2.33, Ne2.35, Ne2.36, Ne3.14,
No3.16, Ne3.18, No3.21, Ne3.22, Ne3.23, No3.24, Ne3.26, Ne3.28, Ne3.29,
Ne3.30, Ne3.31, Ned.5, Ne4.8, No4.9, Ne4.10, Ne4.11, Ne4.12, Ne5.2.

To be precise, if X is contained in one of these 26 families, then it contains an irreducible surface S such
that B(S) < 0, so that X is K-unstable, which implies that X does not admit a Kéhler—Einstein metric.
Almost in every case, such surface § is not hard to find. For instance, if X is the unique smooth Fano
threefold in the deformation family Ne2.35, then X is a blow up of P* at a point, and S is the exceptional
surface of the blow up.

We listed 26 families of smooth Fano threefolds that contain no K-semistable members. There is
another family that does not contain K-polystable members — the family Ne2.26. This family is quite
special; see [3, §5.10] for its detailed description, and it contains exactly two smooth Fano threefolds.
One of them is K-semistable and not K-polystable, while another one is K-unstable. Moreover, it follows
from [3, Main Theorem] that general members of the remaining 78 families of smooth Fano threefolds
are K-polystable.

Further, all K-polystable smooth Fano threefolds in 53 families among these 78 families are described
in[2,3,4,9, 13,17, 19, 20, 23, 7, 8]. The remaining 25 families are:

Ne1.9, Ne1.10, Ne2.1, Ne2.2, No2.3, No2.4, No2.5, Ne2.6, No2.7, Ne2.9, No2.10, Ne2.11, Ne2.12,
No2.13, Ne2.14, Ne2.16, No2.17, Ne2.19, Ne2.20, Ne3.2, Ne3.5, Ne3.6, Ne3.7, Ne3.8, Ne3.11.
The deformation families Ne1.10, No2.20, No3.5, Ne3.8 contain non-K-polystable members, and [3, §7]
provides conjectures that describe K-polystable smooth Fano threefolds in these four families. On the
other hand, all smooth Fano threefolds in the 21 families
No1.9, No2.1, No2.2, No2.3, No2.4, No2.5, No2.6,
Ne2.7,Ne2.9, No2.10, Ne2.11, Ne2.12, Ne2.13, Ne2.14,
No2.16, Ne2.17, Ne2.19, Ne3.2, No3.6, Ne3.7, Ne3.11

are conjectured to be K-stable [3]. The goal of this paper is to prove this for six families:

Main Theorem. Let X be a smooth Fano threefold contained in one of the following deformation
SJamilies: Ne2.1, No2.2, No2.3, Ne2.4, Ne2.6, Ne2.]. Then X is K-stable.
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Therefore, to solve the problem posed above, it remains to find all K-polystable smooth Fano threefolds
in the following 19 families:

Nel.9,Nel.10, Ne2.5, No2.9, No2.10, No2.11, No2.12, No2.13, No2.14,
No2.16, Ne2.17, Ne2.19, Ne2.20, Ne3.2, Ne3.5, Ne3.6, No3.7, Ne3.8, Ne3.11.

We hope that this will be done in a nearest future.

To prove Main Theorem, we use Abban—Zhuang theory [1] and its applications [3, 16]. A similar
approach also works for almost all smooth Fano threefolds in the family No2.5. Namely, if X is a smooth
Fano threefold in the family No2.5, we show that 6 p(X) > 1 for every point P € X that satisfy certain
geometric conditions. As a result, we obtained

Auxiliary Theorem. Let X be a smooth Fano threefold in the deformation family Ne2.5. Recall that
there exists the following Sarkisov link:

where V is a smooth cubic threefold in P*, the morphism 7 is a blow up of a smooth plane cubic curve,
and ¢ is a morphism whose fibers are normal cubic surfaces. Suppose that

no fiber of the morphism ¢ has a Du Val singular point of type D5 or Eg. (%)

Then X is K-stable.

Let us describe the structure of this paper. In Section 2, we prove auxiliary theorem, and we prove that
all smooth Fano threefolds in the families No2.1 and Ne2.3 are K-stable. In Sections 3, 4, 5, 6, we prove
that all smooth Fano threefolds in the families No2.2, No2.4, No2.6, No2.7 are K-stable, respectively. Note
that Section 6 is very technical and long.

As we already mentioned, we use applications of Abban—Zhuang theory [1] which have been dis-
covered in [3, 16]. For the background material, we refer the reader to [3, 16, 22].

2. Families Ne2.1, No2.3, No2.5
Fix d € {1,2,3}. Let V be one of the following smooth Fano threefolds:

d = 1|a smooth sextic hypersurface in P(1, 1, 1,2, 3);

d =2 |a smooth quartic hypersurface in P(1, 1, 1, 1, 2);
d = 3 | a smooth cubic threefold in P*.

Then —Ky ~ 2H for an ample divisor H € Pic(V) such that H> = d and Pic(V) = Z[H]. Let S; and
S» be two distinct surfaces in the linear system |H|, and let C = S; N S». Suppose that the curve C is
smooth. Then C is an elliptic curve by the adjunction formula. Let 7: X — V be the blow up of the
curve C, and let E be the m-exceptional surface.

o If d =1, then X is a smooth Fano threefold in the deformation family No2.1.
o If d = 2, then X is a smooth Fano threefold in the deformation family Ne2.3.
o If d = 3, then X is a smooth Fano threefold in the deformation family Ne2.5.

Moreover, all smooth Fano threefolds in these families can be obtained in this way.
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Note that (—Kx)3 = 4d. Moreover, we have the following commutative diagram:

7

Ve == =P,

where V --> P! is the rational map given by the pencil that is generated by S; and S5, and ¢ is a morphism
whose general fiber is a smooth del Pezzo surface of degree d.

The goal of this section is to show that X is K-stable in the case when d = 1 or d = 2, and to show
that X is K-stable in the case when d = 3 and X satisfies the condition (). To show that X is K-stable,
it is enough to show that 6o (X) > 1 for every point O € X. This follows from the valuative criterion
for K-stability [15, 18].

Lemma 2.1. Let O be a point in X; let A be the fiber of the morphism ¢ such that O € A. Suppose that
A has at most Du Val singularities at the point O. Then

16 16
1’ 1550(A)} fO¢E,

n 16, 16%0(4)
11" 60(A) + 15

mln{
do(X) >
} ifO € E.

Proof. Letube anonnegative real number. Then —Kx —uA ~r (2—u)A+E, which implies that divisor
—Kx —uA is pseudoeffective if and only if u < 2. For every u € [0, 2], let us denote by P(u) the positive
part of Zariski decomposition of the divisor —Kx —uA, and let us denote by N (u) its negative part. Then

,

2-u)A+Eif0 <
P(u) =
U <

u<
2-u)Hif1 < 2,

and

0if0<u<l,
N(u) = ,
(u-DEifl1<u<?2.

Integrating, we get Sx (A) = %. Using [1, Theorem 3.3] and [3, Corollary 1.102], we get

1 Ax(F 16 Aa(F
6o(X) > ming ——, inf L =mingy —, inf L , 2.1
Sx(A)" F/a  S(WA,;F) 117 F/A  S(WA,F)
O€CA(F) ’ O€CA(F) ’

where the infimum is taken by all prime divisors F over the surface A with O € C4(F). The value
S (Wf,; F) can be computed using [3, Corollary 1.108] as follows:

3

2 2 poo
S(Wf},;F) = @[ (P(u)|A)2(u - 1)0rdp(E|A)du + 43_61/0 ‘/0 V01(P(u)|A —vF)dvdu.

Now, let F be any prime divisor over the surface A such that O € C4(F). Since

P —KAifO<u<1,
ATV 2wk if 1 <u<2,
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we have
sSWAcF) = 2 [ d@ == Dordr (E|,)d
(W )—@ (2—u)*(u— Dordg ( |A) u+
/ / vol(— K4 — vF dvdu+—/ / vol((2 — u)(=Ka) — vF)dvdu =
ordp (E 0
= F16 |A_+id/ VOl( KA—VF)dV+—/ (2—14)3/ Vol( Ka—vF)dvdu =
0
OrdF(E|A) 3 o 3 )
=716 1 (= Ka-VvF — (= Ka—vF)dv =
Ty | vol(—Ka —v )dv+l6d vol(— Ka — vF)dv

ordp (E|A) 15 «
_1—6+m—dé VOI(—KA—VF)dV—
ordr (E|,) 15 ord (E|,)  15AA(F)

-7 16 1654 < —5 1660 (A)

Therefore, if O ¢ E, then ordg (E|4) = 0, which implies that

15A4(F)

A.
S(We F) < 1660(A)

Similarly, if O € E, then ordp (E|4) < Aa(F) because (A, E|4) is log canonical, so that

ordp (E|,) 15 AA(F)  15AA(F)  60(A)+15
S(WAF) = ———2 + —S4(F) < + = Aa(F).
(Weei F) 16 1654 (F) 16 1600(A)  1660(A) alF)
Now, using Equation (2.1), we obtain the required inequality. [

Suppose X is not K-stable. Let us seek for a contradiction. Using the valuative criterion for K-stability
[15, 18], we see that there exists a prime divisor F over X such that

B(F) =Ax(F)-Sx(F) <0

where Ay (F) is a log discrepancy of the divisor F, and Sx (F) is defined in [15] or [3, §1.2]. Let Z be the
center of the divisor F on X. Then Z is not a surface [3, Theorem 3.17]. We see that Z is an irreducible
curve or a point. Let P be a point in Z. Then 6p(X) < 1.

Lemma 2.2. One has P ¢ E.

Proof. Letuscompute Sx (E). Note that Sy (E) < 1by [3, Theorem 3.17]. Fixu € Ry¢. Then —Kx —uFE
is pseudoeffective &= —-Kx —uFE isnef <= u < 1. Thus, we have

1 ! 1 3
Sx(E) = 4d/ (- Kx —uE)’du = 2d ), d(2u3—6u+4)du=§

Suppose that P € E. Let us seek for a contradiction.
Note that E = C x P'. Let s be a fiber of the projection ¢|z: E — P! that contains P, and let f be a
fiber of the projection 7|g: E — C. Fix u € [0, 1], and take v € R>(. Then

—-Kx —uElE —vs=(1+u—-v)s+d(1 —-u)f.
This implies that

(- KX—uE)|E—vs1spseudoeffect1ve — (- KX—uE)|E—vs1snef — v<1+v.
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Therefore, using [3, Corollary 1.109], we get

3 1 1+u 11
s(wf.;s)=@/0 /O 2d(1 =) (1 +u=v)dvdu = 1.
Similarly, using [3, Theorem 1.112], we get
3 1 1+u 2 5d
SW.E;S.;Pz—// d(1 —u)) dvdu = —.
( ’ ) 4d 0 0 ( ( u)) vau 16
Therefore, it follows from [3, Theorem 1.112] that
Ax (F) . 1 1 1 . [8 16 16 16
Z <y 2 min , , =min{ >, —, ¢ 27> 1,
Sx (F) Sx(E) S(WE,s) s(wEvS .P) 3711°5d) 7 15
which is a contradiction. ad

Let A be the fiber of the del Pezzo fibration ¢ such that A passes through the point P. Then A is a del
Pezzo surface of degree d € {1,2,3} that has at most isolated singularities. In particular, we see that A
is normal. Applying Lemmas 2.1 and 2.2, we obtain

Corollary 2.3. One has §p(A) < %.

Proof. Since 1 > g‘;g)) >6p(X),wegetdp(A) < % by Lemmas 2.1 and 2.2. O
Corollary 2.4. The surface A is singular.
Proof. If A is smooth, then 6p(A) > 6(A) = % [3, §2], which contradicts Corollary 2.3. O

Let S be a general surface in |H| that passes through 7 (P), and let S be the proper transform on X of
the surface S. Then

o the surface E is a smooth del Pezzo surface of degree d,
o the surface § intersects the curve C transversally at d points,
o the induced morphism 7|s: § — S is a blow up of the points S N C.

Observe that ¢|s: S — P! is an elliptic fibration given by the pencil | — K|. Set C = A s Then Cisa
reduced curve of arithmetic genus 1 in | — K| that has at most d components. In particular, if d = 1,
then C is irreducible. Therefore, the following cases may happen:

(1) the curve C is irreducible, and C is smooth at P,

(2) the curve C is irreducible, and C has an ordinary node at P,
(3) the curve C is irreducible, and C has an ordinary cusp at P,
(4) the curve C is reducible.

Fix u € Ryp. Then —Kx —uSisnef & u <1 & —Kx —uS is pseudoeffective. Using this,
we see that

1! 1 ! 5
SX(S)zﬁfo (—KX—MS)3du=@/0 d(4—u)(1—u)2du:1—6< 1,

which also follows from [3, Theorem 3.17]. Moreover, if u € [0, 1], then

d
(=Kx —uS)ls ~x (1 - u)(xls)"(-Kg) = Ks ~z (1-u) ) e + (2= u)(~Ks),

i=1

where ey, . . ., €4 are exceptional curves of the blow up n|s: § — S.
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Lemma 2.5. Suppose that C is irreducible. Then C is singular at the point P.

Proof. As in the proof of Lemma 2.2, it follows from [3, Theorem 1.112] that

Ax (F) 1 1 1
> ———— > min s 5 B
Sx (F) Sx(8)" S(W3.;0)" s(W25,; P)

where S(Wf,; C) and S(W.S”f.; P) are defined in [3, §1.7]. Since we know that Sx (§) < 1, we see that

S(WE,; C)>1lor S(W.Sf.; P) > 1. Let us compute these numbers.
Let P(u, v) be the positive part of the Zariski decomposition of (-Kx — uS)|s — vC, and let N (u, v)
be its negative part, where u € [0, 1] and v € R¢. Since

d
(—Kx —uS)|s —vC ~r (1 —u) Ze,- +2-u-v)C,
i=1
we see that (—Kx — uS)|s — vC is pseudoeffective &= v < 2 — u. Moreover, we have

d
(l—u)Zei+(2—u—v)Cif0<v< 1,

P(u,v) = =

d
(2—u—v)(C+Zei)if1<v<2—u,
i=1

and

0if0<v <,

N(u,v) = d
() (v—l)Zeiif1<v<2—u.

i=1

Thus, it follows from [3, Corollary 1.109] that
3 1 2-u
S(W3.:C) = —/ / P(u,v)?dvdu =
’ 4d 0 0

3 ! ! 3 1 2-u 5 11
:E'/OAd(l—u)(3—u—2v)dvdu+@/0/1' d(2—u—v)dvdu:1—6<1,

Thus, we conclude that S(Wf’f.; P) > 1.
Since P ¢ €] U - - - U eg by Lemma 2.2, it follows from [3, Theorem 1.112] that

sc.py 3 [ 2 B
S(W-,Q,Q7P) - (P(l/l, V) . C) dvdu =
4d Jo Jo

3 1 1 3 1 2-u Sd
= d*(u - 1)*dvdu + — d*(2—u—-v)?dvdu="— <1
4d/0‘/0 (u ) VM+4d‘/0/1 ( u—v)°dvdu 16< ,

which is a contradiction. O

Now, let us show that C is reducible for d € {1,2}.

Lemma 2.6. Suppose that C is irreducible. Then d = 3 and C has a cusp at P.
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Proof. By Lemma 2.5, the curve C is singular at the point P.

Now, leto: S — S be the blow up of the point P; let f be the o--exceptional curve, and lete, . . . , €4, C
be the proper transforms on S of the curves ey, . . ., e4, C, respectively. Then the curve C is smooth, and
it follows from [3, Remark 1.113] that

A X (F) 1 2 1
> min< in — , , )
Z Sx(F) o sSWSE,.0) S(VSsD 5x(S)

where S(W;E,’.f’.; 0) and S(Vf,; f) are defined in [3, §1.7]. Since we know that Sx (S) < 1, we see that

YUA oe:f) > 2 or there exists a point O € f such that S(W,S:’.f,.; 0)>1
Let us compute S(Vf,;f). Fix u € [0, 1] and v € Ry. Since o*(C) ~ C +2f, we get

d
o ((-Kx = uS)ls) =vf ~x 2 =w)C+ (4= 2u—)f + (1 -u) Y &.

i=1

Then the divisor o ((—=Kx — uS)|s) — vf is pseudoeffective &= v <4 -2u.
Let P(u,v) be the positive part of the Zariski decomposition of o*((—Kx — uS)|s) — vf, and let
N(u,v) be its negative part. Then

d
~ — d-d
Q-wC+@-2u-f+(1-u) Yy &if0<v< =,
i=1 2
d
8+d—-4u—-du-2v ~ _ ..d-du 4+d-du
P(u,v) = i C+(4—2u—v)f+(1—u);e,~1f SV ——,
4 —-2u — 4+d du
IV O f (4 d)f 42 ) SR v <d-,
y (C+( af + lzllel > <v u
and
Oif0<v<d_2du,
2v+du—dc~,,fd—du< <4+d—du
N(U,V)Z 4 1 ) SV ) 5
d
2v+du—-2d ~ 2v+du-4-d — . 4+d-du
41— d + 4_d ZeilfT<v<4—2u.

Thus, using [3, Corollary 1.109], we get

S(WS.t) = =

vy (du® — 4du —v* + 3d)dvdu+

4+d du

/ / d(l—u)(12—d5+d—4u—4v)dvdu+

4 2u —_ )2
/ / d(4 - 2u V) d@=2u-v)” = du=44+5d <2
4+d du 32

Therefore, there exists a point O € f such that § (W§ ’.f’.; 0)=>1
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Let us compute S (WE .f «; 0). Observe that

vﬁ0<v<d;W,
P(u’v).f: d_dulfd_du<v<w7
2 2 2

d(4-2u—-v) 11C4+d du
4-d 2

<v<4-2u.

Hence, it follows from [3, Remark 1.113] that

S(WE’.{.;O) = % /01 ‘/04_214 ((P(u,v) 'f))zdvdu+

1 p4-2u
i/ / (P(u,v) - f)ordo (N (u, v)|f)dvdu =

d— du
= / / vdvdu+
4+d du
d —du 4-2u d4 2
( “- )) dvdu+
4d (Iu 4+d du 4 d

4-2u
_/ / (P(u,v) - f)ordo (N(u,v)lf)dvdu =
4-2u
32 2/ / (P(u,v) - f)ordo (N (u, v)|)dvdu.

Therefore, if O ¢ C, we obtain S (Wf .f e, 0) =
O € C and C intersects the curve f transversally at the point O, then

44 +5d
64

4-2u
S(W;g.f.,O) = 32 4d,/ / (P(u,v) - f)ordo (N (u,v)|;)dvdu = <1,

32, which contradicts to S (Wf .f o; 0) > 1. Similarly, if

which again contradicts S(Wf ’.f’.; 0) > 1. Therefore, the curves C and f are tangent at O, which implies

that C has a cusp at the point P.
Thus, to proceed, we may assume that d = 1 or d = 2.
Now, let us consider the following commutative diagram:

S
S

P n

s

N
g
S

)

where

o

p is the blow up of the point Cnf,

e}

curve C,
¥ is the contraction of the proper transforms of both (o o p)-exceptional curves,
v is the birational contraction of the proper transform of the n-exceptional curve.

(e}

e}

https://doi.org/10.1017/fms.2024.5 Published online by Cambridge University Press
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Let & be the v-exceptional curve; let € be the proper transform on & of the curve C. Then & and €
are smooth, €2 = -6, F2 = —%, € -F=1,andv*(C) =€ +6F.

Observe that & contains two singular points of the surfaces &, which are quotient singular points of
type %(l, 1) and %(1, 1). Denote these points by O, and Q3, respectively. Note that € does not contain
0 and Q3. Write Ag = %QZ + %Q3. Then, since As(F) =5, it follows from [3, Remark 1.113] that

Ax (F) ). 1-ordg(Ag) 5 1
> > ming inf — , s .
Sx (F) 07 S(We7:0)  S(VEe:F) Sx(S)

But we already proved that Sx (S) < 1. Hence, we conclude that S (Vf o; F) = 5 or there exists a point
Q € F such that S(W.%; 0) > 1 - ordp (Ag).
Let us compute S(V;S:,; F). Take v € Ry. Set P(u) = —Kx — uS. Then

d
U (P()ls) = vF ~p Q=)+ (1-u) Y &+ (12— 6u - V) F,

i=1

where &; is the proper transform on & of the (—1)-curve e;. Using this, we conclude that the divisor
v*(P(u)|s) — v is pseudoeffective < v < 12 — 6u.

Let 2 (u, v) be the positive part of the Zariski decomposition of v*(P(u)|s) — vF, and let A (u, v)
be its negative part. Then

d
(2—u)"{€+(1—M)Z%i+(12—6u—v)9if0<vsd(l—u),

i=1

12+d - (6+d)u-—

d
P(u,v) = - v%+(1—u)Z%,-+(12—6u—v)?7vifd(1—u)<v<6+d—du,
i=1
12— 6u—v d
v(%+l;“%l-+(6—d):‘/ﬁ)1f6+d—du<v<12—614,
and
0if0<v<d(l-u),
d(u~—1
YHAW =D it a1 1) < v < 64 d - du.
N (u,v) = 6
d
v+du-2d v+du—-6-d .
e ;%i1f6+d—du<v<12—6u.
This gives

6du® = 24du —v* +18d

if0<v<d(l-u),

6
d(1 - 18- (d+6 d-2
Plu,vy? = { LU= (6+ Ut d=29) e a1 —u) < v < 6+d — du,
d(12 - 6u —v)? .
—— = if - <v<12-6u.
6(6—d) if6+d—-du<v 6u
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Thus, using [3, Corollary 1.109] and integrating, we get

3 [l izt 66 Sd 19
S(WS .. F) = E/ / P(u, v)2dvdu = 2% Z 5= Ag(F)
0 0

16 4

since d = 1 or d = 2. Thus, there is a point Q € & such that S(W:Sj’.,gi; Q) =2 1-ordg(Ag).
Now, using [3, Remark 1.103] again, we see that

s 3 1 12—6u 2
S(Weie: Q) = E/() /0 ((g(u,v) . 9)) dvdu+
6 1 pl2-6u
—/ / (P(u,v) - F)ordg (N (u, v)|o~)dvdu.
dJo Jo 7
On the other hand, we have

gif0<v<d(1—u),

Pu,v) - F = @ifd(l—ummmd—du,
%if6+d—du<v<l2—6u,
and
0if 0 <v < d(l-u),
N(u,v) - F = Wifd(l—u)<v<6+d—du,
v+du—2d

c—d if6+d—du <v<12-6u.

In particular, we have

12—-6u
S(WZ0) = 96 4d/ / (P(u,v) - F)ordg (N (u,v)|y,)dvdu.

Hence, if Q ¢ €, then % < 1-ordp(Ag) < S (W:S.%,Q) = % < %, which is absurd. Thus, we
conclude that Q = € N #. Then

12-6u
S(Wee0) = 96 4d/ / (P(u,v) - F)ordg (N (u,v)|,)dvdu <

12—6u
96 4d// (P(u,v) - F) (A (u,v) - 9)dvdu—_6 ,

which is a contradiction, since S (W.“Sj ’.’g.; Q) =21-ordg(Ag)=1. o
In particular, we conclude that either d =2 or d = 3.
Corollary 2.7. All smooth Fano threefolds in the family No2.1 are K-stable.

Recall that A is the fiber of the del Pezzo fibration ¢: X — P! that passes through P. Note also that
we have the following possibilities:

o d =2, and A is a double cover of P? branched over a reduced quartic curve;
o d =3, and A is a normal cubic surface in P3.
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Observe that C = S N A, where S is a general surface in |7*(H)| that contains the point P. Since
C is singular at P, the surface A must be singular at P, which confirms Corollary 2.4. Now, using
classifications of reduced singular plane quartic curves and singular normal cubic surfaces [6], we see
that P = Sing(A), and one of the following three cases holds:

o d =2, and A is a double cover of P? branched over four lines intersecting in a point;
o d =3, and A is a cone in P? over a smooth plane cubic curve;
o d =3, and A has Du Val singular point of type Dy, Ds, or Eg.

Let us show that the first case is impossible.
Lemma 2.8. One has d = 3.

Proof. Suppose that d = 2. Then P = Sing(A), and A is a double cover of P? branched over a reduced
reducible plane quartic curve that is a union of four distinct lines passing through one point. Let us seek
for a contradiction.

Leta: X — X be _the blow up of the point P, let Ep be the a- exceptlonal divisor and let A be the
proper transform on X of the surface A. Then A N Ep is a line L ¢ Ep = P2, and the surface A is
singular along this line. Let 8: X — X be the blow up of the line L, let £, be the B-exceptional divisor,
let A be the proper transform on X of the surface A and let E p be the proper transforms on X of the
surface Ep. Then

=P,
the intersection E p N Ey is the (—2)-curve in Ey,
the surface A is smooth, and there exists a P!-bundle A — C, .
AN Ey is a smooth elliptic curve that is a section of the P'-bundle A — C,

gle surfaces A _and Ep are disjoint,
Ep = P?and Eplg, = Op(-2).

O O 0O O O O

There is a birational contraction y: X — X of the surface E p such that X is a projective threefold that
has one singular point O = y(E p), which is a terminal cyclic quotient singularities of type %(1, 1,1).
Thus, there exists the following commutative diagram

L

M
]

Q

where o is a birational morphism that contracts the surface y(EL) to the point P.
Let G = y(EL), let A = y(A) and let E be the proper transform on X of the surface E. Then
Ax (G) = 4. Moreover, we have

o*(-Kx) ~2A+E +8G,
o (A) ~ A +4G.

Note that A = A and G = P(1,1,2), so we can identify G with a quadrig cone in P3. Note also that
O is the vertex of the cone G. Moreover, by construction, we have O ¢ A. Furthermore, the exists a
P'-bundle A — C such that G|; is its section.

Let g be a ruling of the quadric cone G, let1be a fiber of the P!-bundle A — C and let f be a fiber of
the P'-bundle 7 o o = IR : E — C. Then Glg ~qo —g and A|G ~q 4g. Moreover, the intersections of the

surfaces G, A, E with the curves g, 1, f are given here:
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~ ||| )

Fix a nonnegative real number u. We have 0*(-Kx) — uG ~g 2A+E + (8 — )G, which implies
that o*(—Kx) — uG is pseudoeffective <= u € [0, 8]. Furthermore, if u € [0, 8], then the Zariski
decomposition of the divisor 0" (—Kx) — uG can be described as follows:

QA+E+(B-u)Gif0<u <1,
9—u~ = .
P(u) = TA+E+(8—M)G1f1<u<5,

8 —u S (A+E+3G)if5<u<s,

and
0if0<u<l,

u—
N(M) — TA if 1<u< 5,
U—2~ u—-95=
+

<u <8,

where P(u) and N (u) are the positive and the negative parts of the decomposition. Then

3

u
§——if0<u<l,
g i u

18 — 3u

vol(o*(~=Kx) — uG) = P(u)* = ifl<u<s,

Integrating, we get Sx (G) = 27 <4 =Ax(G).But [16, Corollary 4.18] gives

A (A0

32
nf & %)t =min{ =, inf 6o(G,V,
7 Sx(®) (G’V"')} mm{m’é‘éc ol@ )}

Sx(G)" 06

where 6o (G, Vf,) is defined in [16]. Moreover, if Q is a point in G and Z is a smooth curve in G that
passes through Q, then it follows from [ 16, Corollary 4.18] that

1 1 —ordp (A

60(G,VE,) > min = GQZ( 2)
S(V.,'; Z) S(Wo,c,,o; Q)
where S(V, ,,Z) and S(Wf.’?.; Q) are defined in [16], and
0ifO ¢ Z,
Az =31

-0if0O € Z.
2
Let us show that ¢ (G, VE,) > 1 for every Q € G, which would imply a contradiction.
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Let € = X|G, and let ¢ be the curve in |f| that contains Q. Then O ¢ € and O € ¢ so that Az =0
and Ay = %0. Take v € Ryo. Then

(u-v)gif0<u<l,
()|, - vt~ {0 VBITT S <5,

8-u-3

%gifSSuS&

Now, using [16, Theorem 4.8], we get

Y
S(WC,;¢) = // vol (P(w)|; — v€)dvdu = = // (u v)ddu+

(1-v)? //'3 (8—u—3v)2 5

2[ /(; ) dvdu+12 . s 3 dvdu—l6.

Similarly, if Q ¢ €, then it follows from [16, Theorem 4.17] that
Gt 3 1 u 2 3 5 1 2
S(Weli0) =3 /0 /0 ((P(u)|G —ve) - 5) dvdu+3 /1 /0 ((P(u)|G —ve) - 5) dvdu+

3 8 8%“ 2 3 1 M(M—V)z
+§/5 ‘/0 ((P(u)iG—vf)%’) dvdu+FQ=§‘/O ; 2 dvdu+
35 (1 -v)? 38 L5 (8—u—3v)? 5
= dvdu + = ———dvdu = —
8/] 0o 4 ”*8/5 /0 36 TR

32, which implies that 5o (G, Vf’;,) > %. Likewise, if Q € €, then

so that S(W.G.Z., Q)=

S(WE,:€6) = %‘/8 (P(u)? - G) ~0rdqg(N(u)\G du + 3 /8 /OOVOI(P(M)|G -v&)dvdu =
0

:2/ u—l / (u—2)(8—u)2 / / (u—4v)2dvdu+
// (1—4v)2dd L3 //lz (8—u—12v)2 _n
16

and

S(WE%.0) = %/01/0!‘I (Pl - ) -%)zdvdzﬁ

1

A A (R e A A ¥ (ol - ) - 6) v =
/ / (2u — 8v) dvdu + = / / (2 - 8v)2dvdu+
+§/5 /012 (—(16_2”9_24")2@@:%.

This implies that o (G, V, ,) mln{l—6 %} = 1—6 which is a contradiction. O

Corollary 2.9. All smooth Fano threefolds in the family Ne2.3 are K-stable.
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We see that d = 3 so that A is a singular cubic surface in P* such that P = Sing(A). Let o: X->X
be the blow up of the point P, and let G be the o-exceptional surface. Denote by A and E the proper
transforms on X of the surfaces A and E, respectively.

Lemma 2.10. The surface A has Du Val singularities.

Proof. Suppose that A is a cone in P3 with vertex P. Take u € Rs(. Then
o*(-Kx) —vG ~x 2A+ E + (6 — u)G.

Thus, the divisor o*(—Kx) — vG is pseudoeffective &= u € [0, 6]. Moreover, if u € [0, 6], then the
Zariski decomposition of the divisor 0" (—Kx) — vG can be described as follows:

2A+E+(6-u)Gif0<u<]l,
T—u~ = .

P(u) = TA+E+(6—u)G1fl<u<4,
6-u ~ = )
T(A+E+2G)1f4<u<6,

and

0if0<u<l,

u—1~.
N(I/l): TAlf1<M<4,

u-—2
2

u—4

A+ Eif4<u<6,

where P(u) and N (u) are the positive and the negative parts of the Zariski decomposition, respectively.
Using this, we compute

3oty 3[4 3 [0 u(6-u)? 43
= J— —_— = —_— :A .
Sx(G) —12‘/0. wdu + 7, udu + 12‘/4 , du T <3 x(G)

Let us apply [16, Theorem 4.8], [ 16, Corollary 4.17], [ 16, Corollary 4.18] using notations introduced
in [16, §4]. To start with, we apply [16, Corollary 4.18] to get

Ax (F) . [Ax(G) . G 48 G
> > ——=, inf 6p(G,V7,) ¢ = —, inf 0p(G,V, 7)1, 2.2
Sx(B) ~ "M 5% (G) 06 0(G,Vel) p =min) 1=, inf 00 (G, V.7 2.2)
where 50 (G, VS,) is defined in [16, §4]. Let Q be an arbitrary point in the surface G, and let € is a
general line in G = P? that contains Q. Then [16, Corollary 4.18] gives

1 1
60(G,VE,) > min{ }

SV 6) s(w&i0)

where S(Vf,; ¢) and S(W.(?.’f}.; Q) are defined in [16, §4]. Take v € R5(. Then

(u-v)lif0<u<l,
P(M)|G—v£~]R (61—V)€if1 <u<4,

—u-2
%fif4<u<6.
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Let@ = A |c. Then € is a smooth cubic curve in G = P2, Let

0if0<u<l,

u—1__ .
N'(},{):N(u)|G: T%%fl <u<d4,

<u<o.

Now, using [16, Theorem 4.8], we get

S(W&.:t) = 13—2/6/00v01(P(u)|G —vl)dvdu = i/1 /u(u —v)2dvdu+
//(l—v)zdvdu+—// ( —u—2v) dvduz%.

Similarly, it follows from [16, Theorem 4.17] that

s(w.‘?;f’.;Q)=%/01/0u((f>(u)|c—vf) dvdu+—/ / (P(w)|g —ve) - ) dvdu+
1/6‘/6_2“ (P(u)\c—vt’)-f) dvdu+FQ:—/ / (u —v)2dvdu+
/ / (l—v)2dvdu+—/ /6( _”_2") dvdu+FQ=15—6+FQ,

where
6 4 1
= —2/1 /0 ((P(u)|G—v€) -K)ordQ(N (w)|,)dvdu+
6 6
— P(u)|. —vC) - €)ordp (N’ (u)|,)dvdu <
s [ [ (Pl =v0) - orao (v,
4 pl 6 5%
(I=v)(u-1) 6/ / 2 (6—u-2v)(u-2) 7
———=dvdu+ — dvdu = —
/0 3 12)e Jo 4 12
So, we have S(Wf.’f.;Q) Then 00(G,V,’ G.) > 1, which contradicts Equation (2.2 O

Thus, we see that P is a Du Val singular point of the surface A of type D4, Ds, Eg¢. Now, arguing as
in the proof of [22, Lemma 9.11], we see that 3(F) > 0 if

(1) the inequality B(G) > 0 holds,
(2) and for every prime divisor E over X such that Cx (E) is a curve containing P, the following
inequality holds:

Ax(E) 4
Sx(E) ~ 3

Since B(F) < 0 by our assumption, we see that at least one of these conditions must fail.

Lemma 2.11. One has B(G) > %.

Proof. Let A and E be the proper transforms on X of the surfaces A and E, respectively. Take u € Ry.
Then

o*(-Kx) —uG ~ 0*(2H — E) —uG ~ 0*(2A+E) —uG ~ 2A + E + (4 — u)G,

https://doi.org/10.1017/fms.2024.5 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.5

Forum of Mathematics, Sigma 17

which easily implies that the divisor —K ¢ — G is pseudoeffective <= u < 4 because we can contract
the surfaces A and E simultaneously after flops. Then

4
B(G) = Ax(G) - $x(G) =3~ /0 vol(o* (Kx) — uG)du

Note that 0*(—Kx) — uG is nef for u € [0, 1] because the divisor —Kx is very ample. Thus, if
u € [0, 1], then

vol(c*(-Kx) — uG) = (o*(-Kx) —uG)> =12 - u®.
Similarly, if 1 < u < % then

vol (0" (=Kx) — uG) < vol(c*(=Kx) — G) = (0" (-Kx) — G)’ = 11.
Finally, let us estimate vol(o*(—Kx) — uG) in the case when 4 > u > 3

Let Z be a general hyperplane section of the cubic surface A that passes through P, and let Z be its
proper transform on the threefold X. Then Z is an irreducible cuspidal cubic curve, and Z c A. Observe
that (c*(-Kx) —uG)-Z =3 — 2u and A-Z = —4,50 A is contained in the asymptotic base locus of the
divisor o ( Kx)—uG foru > 5 3 Moreover, if o7*(— KX) uG ~p D+ 1A ford € R0 and an effective

R-divisor D whose support does not contain A, then Z ¢ D, which implies that

o<D~Z=(a*(—KX)—uG—AZ)~Z=3—zu—4a

sothat 1 > %. Thus, if4 > u > % then

vol(o* (—Kx) — uG) < Vol( “(2H — E) 2”4_3A).

Moreover, if 4 > u > %, then

W3~ 11-2 7-2 3
Sy . 4”0-*(H uo-*(E)—EG.

c*(2H - E) —uG —

Therefore, if 4 > u > %, then

—2u

o'(H) -

vol(o™(-Kx) —uG) < Vol(11 (E)) (11 ;zuH— 7_22uE).

Furthermore, if 7 > u > 3, then 1524 H — 72X E is nef so that

11 -2u 7—2uE):(11—2uH 7—2uE)3:25—6u.

V°1( 7 - 4 ) 16

Similarly, if 4 > u > %, then

11 -2u 7—2u
Vol( H - E)

11-2u \3 (11 -2u)?
( H) =
4 2

4 256

https://doi.org/10.1017/fms.2024.5 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.5

18 L. Cheltsov et al.

Now, we can estimate 8(G) as follows

4
ﬁ(G)zs—i Vol(a'( Kx) - uG)d 3——/ (12—u3)du——/ 1du—

25 6u / (11—2u)3 3 5679 465
12 a

12 2048 ~ 2048

as claimed. O
Therefore, there exists a prime divisor E over X such that Cx(E) is a curve, P € Cx(E), and

Ax(E) < %SX(E). Set Z = Cx(E). Then 6p (X) < % for every point O € Z.

Lemma 2.12. One has Z C A, and Z is a line in the cubic surface A.

Proof. Let O be a general point in Z, and let Ap be the fiber of ¢ that passes through O.If Z ¢ A, then
Ao is smooth, so that 6o (Ap) > % by [3, Lemma 2.13], which gives

4 Ax(E) 16 1660(40) 16 163 _l6 4
- > 50(X) > min{ —, —20l20) 1 4
37 5e(®) > 0o mm{n SolAoy+ 15[~ MM T4 15[ 117 3

by Lemma 2.1. This shows that Z C A and Ap = A.

To complete the proof of the lemma, we have to show that Z is a line in the surface A. Suppose that Z
is not a line. Then the point O is not contained in a line in the surface A because A contains finitely many
lines [6]. Now, arguing as in the proof of [3, Lemma 2.13], we get 6o (A) > % So, applying Lemma 2. 1
again, we get a contradiction as above. |

Now, our auxiliary theorem follows from the following lemma:

Lemma 2.13. The surface A does not have a singular point of type Dy.

Proof. Suppose A has singularity of type D4. Then it follows from [6] that, for a suitable choice of
coordinates x, y, z, t on the projective space P>, one of the following cases hold:

(A) A={m?=y3-23} cP3,
(B) A={m?=y> -7 +xyz} C P

Note that P =[0:0: 0 : 1], and A contains six lines [6]. In case (A), these lines are

Li={x=y-2z=0},
Ly={x=y-w3z=0},
L3={x=y+w§z=0},
Ly={t=y-z=0},
Ls={r=y+ws3z=0},

Le={t=y+wiz=0},
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where w3 is a primitive cube root of unity. In case (B), these lines are

Li={x=y-2z=0},
Ly ={x=y—-w3z=0},
L3={x=y—a)§z=0},
Liy={x+3(y-2)=y—-2z-9t=0},
Ls = {x +3w3(y — w32) =w3y—w§z—9t=0},
Le = {x +3w3(y — wiz) = w3y — w3z — 9t = O}
Notethat P=Li N L3N L3, P¢ Ly ULs U Lgand —Ka ~ 2Ly + Ly ~ 2Ly + Ls ~ 2L3 + Lg.

By Lemma 2.12, we may assume that Z = L.
Recall that Sx (A) = %; see the proof of Lemma 2.1. Using [3, Theorem 1.112], we get

4 Ax(E) . 1 1 . |16 1
- s Z2X 2 S min , =min{ —, —— ¢,
3 Sx(E) Sx(A)" S(W&,: Ly) 117 S(Wa Ly)

where S(W2,; L) is defined in [3, §1.7]. Therefore, we conclude that S(W2,; L) < . Let us compute
S(Wf,; Ly) using [3, Corollary 1.109].

To do this, we use notations introduced in the proof of Lemma 2.1 applied to O = P. Then using [3,
Corollary 1.109] and computations from the proof of Lemma 2.1, we get

1 00 2 o0
S(WaA; L) = %‘/ / vol(— K4 — vLi)dvdu + L—l‘/ / vol((2 = u)(=Ka) — vLi)dvdu
0o Jo 1 Jo

since L ¢ Supp(N(u)) since L ¢ E. Let us compute S(Wf,; Ly). Take v € Ryp. Then
—KA - le ~R (2 - V)Ll + L4.
Thus, the divisor —K4 — vL; is pseudoeffective <= v < 2 since Li = —1.Fix v € [0,2]. Let P(u, v)

be the positive part of the Zariski decomposition of the divisor —K4 —v L1, and let N (u, v) be its negative
part. Then

<

)

Plu.v) = 22-v)Li+LsifO<v <1
YT 0oL+ Ly ifl <v <2,

and

0if0<v <,

N(u,v) =
(,v) {(v—1)L4if1<v<2.

Thus, if 0 < v < 1, then vol(—K4 — vL|) = 3 — 2v because L% =0and L - Ly = 0. Similarly, if
1 < v <2, thenvol(=K4 — vL;) = (v — 2)%. This gives

1 1 ) 1 1 1 1 | 2 7
-/ / Vol(—KA—le)dvduz—/ / (3—2v)dvdu+—/ / (v -2)dvdu = —
4.Jo Jo 4Jo Jo 4Jo N1 12
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and
1 2 o 1 2 ) 3
- vol((2 — u)(—=Ka) = vLi)dvdu = — (2—=u)’vol((-Ka) — vL;)dvdu =
4J1 Jo 41 Jo
1 r2 ! 1 2 2 7
= Z/] /0 (2—u)3(3—2v)dvdu+Z/1 /1 (2-u)3(v-2)%dvdu = TR
Combining, we get S(Wf,; L)) = i—g < %. This is a contradiction. O

3. Family Ne2.2.

Let R be a smooth surface of degree (2,4) in P! x P?; let 7: X — P! x P? be a double cover ramified
over the surface R. Then X is a smooth Fano threefold in the family Ne 2.2. Moreover, all smooth Fano
threefolds in this family can be obtained this way.

Letpr;: P! x P2 — P! and pr,: P! x P2 — P? be the projections to the first and the second factors,
respectively. Set p; = pr; o 7 and p, = pr, o 7. We have the following commutative diagram:

X

/ - N
Pi1 P2
P! x p?
P! 22

where p; is a fibration into del Pezzo surfaces of degree 2, and p; is a conic bundle.
Lemma 3.1. Let S be a fiber of the morphism py. Then S is irreducible and normal.

Proof. Since p;: X — P! is a Mori fiber space, any fiber of p; is irreducible and reduced. Moreover,
any fiber of pr |r is reduced by local computations. Thus, the assertion follows. O

Lemma 3.2. Let S be a fiber of the morphism py, let C be a fiber of the morphism p, and let P be a
pointin SN C. Then S or C is smooth at P.

Proof. Local computations. O

Now, we are ready to prove that X is K-stable. Recall from [10] that Aut(X) is finite. Thus, the
threefold X is K-stable if and only if it is K-polystable [22].

Let 7 be the Galois involution of the double cover 7: X — P! x P2, and let G = (7). Suppose that
X is not K-polystable. Then it follows from [24, Corollary 4.14] that there exists a G-invariant prime
divisor F over X such that

B(F) = Ax(F) — Sx (F) <0.
Let Z be the center of this divisor on X. Then Z is not a surface by [3, Theorem 3.17]. Hence, we see

that either Z is a G-invariant irreducible curve, or Z is a G-fixed point. Let us seek for a contradiction.
Let P be a general point in Z, and let S be the fiber of p; that passes through P.

Lemma 3.3. The surface S is singular at P.
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Proof. Suppose that S is smooth at P. Let B be a general curve in | — K| that contains P. Then B is a
smooth curve in S. Applying [3, Theorem 1.112], we get

Ax (F) ! ! !
> > min ) ) :
Sx (F) Sx(5)" S(W3.:B)” S(WSE,; P)

Since Sx (S) < 1 by [3, Theorem 3.17], we see that S(W,S,,; B) > 1or S(W;g”.l?.; P) > 1. We refer the
reader to [3, §1.7] for definitions of Sx (S), S(W?,; B), S(Wf’f.; P).

Note that [3, Theorem 1.112] requires S to have Du Val singularities, but S may have non-Du Val
singularities. Nevertheless, we still can apply [3, Theorem 1.112] here since the proof of [3, Theorem

1.112] remains valid in our case because S is smooth along B.
Let us compute S(Wf,; B) and S(W.S”.Lf.; P). Take u € Ryp and v € Ryg. Then

—-Kx —uSisnef < —-Kx —uS is pseudoeffective < u <1,
Similarly, if u € [0, 1], then (-Kx — uS)|s — vB ~r (1 —v)(—Ks), so
(-Kx —uS)|s —vBisnef &= (—Kx —uS)|s — vB is pseudoeffective < v < 1.

Now, applying [3, Corollary 1.109], we get

3 1 1 1 1 1 1
S(Wf,.;B)=g/0 /0 ((l—v)(—Ks))zdvdu=§/0 /0 2(1—v)2dv=§< 1.

Similarly, using [3, Theorem 1.112], we get
S.B 30! 2 2
SWeees P) =~ (1 =v)(=Ks) - B) dvdu = = < 1.
o 6Jo Jo 3

But we already know that S(Wf ewB)=1lorS (W.S, ’.lf.; P) > 1. This is a contradiction. )

If Z is a curve, then S is smooth at P by Lemma 3.1 because P is a general point in Z. Hence, we
conclude that Z = P because S is singular at the point P by Lemma 3.3. Recall that Z is G-invariant.
This implies that 7(P) € R.

Let C be the fiber of p, that passes through P. Then C is smooth at P by Lemma 3.2 because S is
singular at P. Since 7(P) € R, we see that C is irreducible and smooth.

Let T be a sufficiently general surface in linear system |p3(Op2(1))| that contains C. Since C is
smooth, it follows from Bertini’s theorem that the surface T is smooth.

As in the proof of Lemma 3.3, it follows from [3, Theorem 1.112] that

Ax (F) . 1 1 1
> > min s T s TC .
Sx (F) Sx(T)" S(Wie;C) S(WLE.; P)
Moreover, it follows from [3, Theorem 3.17] that Sx (7)) < 1. Thus, we conclude that
max {S(W!,;C), S(W.SP)} > 1.
In fact, since P is the center of the divisor F on X, [3, Theorem 3.17] gives
max {S(W!,;C), S(WIS; Py} > 1. G.1)

Now, let us compute S (WZ ;C)and S (WZ ;’C.; P) using the results obtained in [3, §1.7].
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Take u € Ryp and v € Ry¢. Then
—Kx —uT isnef <= —Kx —uT is pseudoeffective < u <1,
Similarly, if u € [0, 1], then
(—=Kx —uT)|ly —vCisnef &= (-Kx —uT)|r —vC is pseudoeffective <= v<1-u

because (-Kx — uT)|7 —vC ~g S|t + (1 —u —v)C. So, using [3, Corollary 1.109], we get

3 1 1-u 2 1 1 1-u 1
S(W,T,;C)z—/ / (Slr + (1 —u—-v)C) dvduz—/ / 41 —u—v)dvdu = = < 1.
’ 6Jo Jo 2Jo Jo 3

Hence, it follows from Equation (3.1) that S (W-T, .C: P) > 1. Now, using [3, Theorem 1.112], we get

rc 3 1 1-u 2 3 1 1-u
SWIS.p) = —/ / (St + (1 =u=v)C) - ) dvdu = —/ / ddvdu = 1,
6.Jo Jo 6.Jo Jo

which is a contradiction. This shows that X is K-stable.

Corollary 3.4. All smooth Fano threefolds in the family No2.2 are K-stable.

4. Family Ne2 4.

Let & and &’ be smooth cubic surfaces in P? such that their intersection is a smooth curve of genus 10.
Set% =8NS, andlet 7: X — P3 be the blow up of the curve €. Then X is a smooth Fano threefold in
the family Ne2.4, and every smooth Fano threefold in this family can be obtained in this way. Moreover,

there exists a commutative diagram
2

P > P!,

where P? --> P! is a map that is given by the pencil generated by the surfaces & and §’, and ¢ is a
fibration into cubic surfaces. Note that —Ki = 10 and Aut(X) is finite [10].

Let H = 7°(Op3 (1)), and let E be the w-exceptional surface. Then —Kx ~ 4H — E, the morphism ¢
is given by the linear system |3H — E|, and E = & x P!,

The goal of this section is to prove that X is K-stable. Suppose that X is not K-stable. Let us seek
for a contradiction. First, using the valuative criterion for K-stability [15, 18], we see that there exists a
prime divisor F over X such that

BF) =Ax(F) - Sx(F) <0.

Let Z be the center of the divisor F on X. Then Z is not a surface by [3, Theorem 3.17]. Therefore, either
Z is an irreducible curve or Z is a point. Fix a point P € Z.

Let A be the surface in [3H — E| that contains P. Fix u € Ry¢. Let 9 (u) be the positive part of the
Zariski decomposition of —Kx — uA, and let // (u) be its negative part. Then

4 1
“Kx — uA ~p (4= 3u)H — (1 = u)E ~x (5 - u)A +E.
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This implies that —Kx — uA is pseudoeffective <= u < Moreover we have

4-3u)H-(1-uwEif0<u<l,
P(u) = 4
(4—3u)Hif1<v<§,

and
0Oifo<u<l,

N (u) = 4
(u—l)Eif1<u<§.

Integrating, we obtain Sy (A) = % < 1, which also follows from [3, Theorem 3.17].

23

Note that 7(A) is a normal cubic surface in P, and 7(A) is smooth along the curve %. In particular,

we see that A = m(A), and A is smooth along the intersection E N A.

Lemma 4.1. The surface A is singular at the point P.

Proof. Suppose that A is smooth at P. Let C be a general curve in | — K4| that passes through the point

P. Then C is a smooth irreducible elliptic curve. Take v € R. Then

(1-v)Cif0<u <1,

P(u)ls —vC ~
“la-3u—-wCifl <u<

Wl

Therefore, using [3, Corollary 1.109], we obtain

NU/ANe 10/ f 3(1-v) dvdu+—/ /4 3u3(4 3u—v)2dvdu——.

Similarly, using [3, Theorem 1.112], we obtain

4-3u
S(W&EP) < // (3(1-v)) dvdu+—/ / (3(4 - 3u —v)) dvdu+
10 Jo 0

4-3u 59
4 —3u — -1 .
/ / 3( 3u—-v)(u—-1)dvdu = 120 &0

if PeE

Therefore, it follows from [3, Theorem 1.112] that

AX(F) > min ! ! ! >m1n{@ @ @}>
) Sx(A)” S(Wi:C)” S(WAS; P) 67 13”59 ’
which is absurd.

Corollary 4.2. The point P is not contained in the surface E.

Since A = 7(A), we may consider A as a cubic surface in P3. Then

o either multp(A) = 2 and A has Du Val singularities.
o or multp(A) = 3 and A is a cone over a plane smooth cubic curve with vertex P.

Lemma 4.3. One has multp(A) # 3.
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Proof. Leto: X — X be a blow up of the point P, and let G be the o-exceptional surface. Denote by
A and E the proper transforms on X of the surfaces A and E, respectively. Suppose that multp(A) = 3.
Take u € Ry¢. Then

1~ 4~
U*(—KX)—VG ~R §E+§A+(4—M)G

Thus, the divisor o*(—Kx) — vG is pseudoeffective <= u € [0, 4]. Moreover, if u € [0, 4], then the
Zariski decomposition of the divisor o*(—Kx) — vG can be described as follows:

1~ —~
-E+ + @4 -uw)Gif0<u<l,
_J3
P(u) = | _y
§E+ A+ (4 -u)Gifl <u <4,
and
0if0<u <1,
Nu)=3u-1

Aifl <u<4,

where P(u) and N (u) are the positive and the negative parts of the Zariski decomposition, respectively.
Using this, we compute

3ty 3 4 93
SX(G)_F)/O u ,du+m‘/1 udu—%<3—Ax(G).

As in the proof of Lemma 2.10, let us use results from [16, §4] to get a contradiction. Namely,
applying [16, Corollary 4.18], we get

SX(F) mm{ 52 (G)’ QnéfG(SQ(G’V”') = min 31,Q1r€1£; 60(G. V)1

where 60 (G, Vf’;.) is defined in [16, §4]. So, there is Q € G such that 6o (G, Vf?,) < ‘3‘—?
Let ¢ is a general line in G = P? that contains Q. Then [16, Corollary 4.18] gives

1 1
5 GVG , )
0(G-V2l) > “"“{ SWED S(Wff;,".;Q)}

Let us compute S(VC, oes 0) and S(W.G.[., Q). Take v € R5g. Then

)

p P (u-v)tifo<u<1
(lg = <u<é4

(1-v)Cif

Let € = Zlg. Then & is a smooth cubic curve in G = P2, Let
0if0<u<l,

N (u) =Nw)| . = 1 -
() =N@wlg Zgl%ﬁl<u<4
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Now, using [16, Theorem 4.8], we get
3 4 )
SWE;t) = E/o '/0 Vol(P(u)|G —vl)dvdu =

= — - — 1 - = —,
10/0 /0 (u —v)°dvdu + 10[ ‘/0 (1 =v)“dvdu 0

Similarly, it follows from [16, Theorem 4.17] that S (W.(?.’f.; Q) can be computes as follows:

1% /01 ‘/Ou ((P(u)iG —-vl) .f)zdvdu+ 13—0/14/01 ((P(”)|G - v{) -t’)zdvdu+FQ _

3 1 u ) 3 4 1 ) 13
=— —v)°dvdu + — 1 -v)dvdu+Fp = — + Fp,
12/0 ‘/o (u—v)“dv u+10/l /0( v)“dvdu + Fg 40+ 0

where Fp =0if Q ¢ ch, and

6 [*rta-vwu-1) 9
Fp = — ~ /N 7 -
0 10/1 /0 3 dvdu = 55

otherwise. This gives S (WS .’f’).; 0) < %. Combining the estimates, we get 6o (G, Vf,) > g—?, which is
a contradiction. This completes the proof of the lemma. O

Hence, we see that the surface A has Du Val singularities. Let S be a general surface in the linear
system |H| that contains P. Then S is smooth, and —Kx — uS ~gr (4 — u)H — E. Hence, the divisor
—Kx — uS is pseudoeffective &= itisnef <= u < 1. Then

s(S)—3/1(1< S)3d—3/1 (1-u)(7 )d—13<1
X —10 ) X u I/t—lo Ou u MM—4O .

Let C = Als. Then C is a reduced curve in | — K| that is singular at P, and C = n(C). Moreover, the
curve m(C) is a general hyperplane section of the cubic surface 7(A) c P? that passes through the point
7(P). Therefore, since 7(A) is not a cone by Lemma 4.3, we conclude that the curve C is irreducible.
Hence, one of the following two cases holds:

(1) the curve C has an ordinary node at P,
(2) the curve C has an ordinary cusp at P.

Let IT = 7(S). Then II is a plane in P? such that 7(P) € IT and IT N 7(A) = 7(C), and the
morphism n|g: § — II is a composition of blow ups of 9 intersection points I1 N €, which we denote
by Oy, ..., 09. Note that 7(C) is a reduced plane cubic curve that passes through these nine points, and
7(C) is smooth away from 7 (P).

Lemma 4.4. The curve C cannot have an ordinary double point at the point P.

Proof. Foreachi € {1,...,9}, let L; be the proper transform on S of the line in II that passes through
Pand O;. Then L; # L; for i # j since m(C) is irreducible. We have

1-u
6

L;.

i=1

(_KX - MS)‘S ~R
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Leto: S — S be the blow up of S at the point P, let f be the o--exceptional curve and let C, Li,.. Zg

be the proper transforms on S of the curves C, L 1> .., Lo, respectively. Then Li,...,Loare dlSJOlIlt
On the surface S, we have

C?=—42=1*=--.=12=-1,1, f=---=Ly-t=1,C-f =2,

and5-Z1 =-"=6-Z9=0
Fix u € [0, 1]. Let v be a nonnegative real number. Then

S+u~ 1-u LR 19 — 7u — 6v
Li+ —

(T*((—Kx—MS)|S) —vf ~p C+ 6

f. “.1)

So, the divisor o*((—Kx — uS)|s) — vf is pseudoeffective & itisnef & v < %. Let P(u,v)

and N (u,v) be the positive and the negative parts of its Zariski decomposition. Then, using Equation
(4.1), we compute

9

5+uf~ -~ 19 7u 6vff0<v<3—3u’
2
19-Tu—-6v~ 1-u ~ 19-Tu—-06v 3-3u
P s = i i < A —u,
(u,v) D C+ ZL+ G fif 5 v<3-u
19 — 7u — 6v 19— Tu
TC+22L +M) i3 -u<v< ——.
01f0<v<3_23”,
—3+3u+2vA_f3—3u
N(M,V)Z 4 1 2 <V<3—M,
2v+3u-—3 19-7
V++C+(v+u—3)ZLlf3—u v — “
3-3
(1= u)(T—u) = v if 0 < v < 2”,
. (1=u)(37-13u—12v) _3-3u
Vol(O' ((—KX—uS)|S)—vf)= 2 if 5 <v<3-u
19 — Tu — 6v)? 19-7
Vif0 <y < S
P(u,v)-f= 3(1_u)if3_3u<v<3 u,
2 2
3(19—;u—6v)]_f3_u<v<19;714.

Indeed, the divisor P(u, v) above is effective, and it has a nonnegative intersection with every irreducible

component of Supp(P(u, v)), which implies that it is nef in every case. Now, using [3, Corollary 1.109],
we get
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(W,S,,f

Vol “((-Kx —uS)|S —vf)dudv—

,/ AHM (1 =w) (7 —u) = v? dv+—/ /3u(1_“)(37—13u—12v)

6v)? 767

3 (19 -
= L7 MmOV van = 220 <0 = Ag(E
0/0 /3_u 4 YA =130 < s (D).

Moreover, if Q is a point in f, then [3, Remark 1.113] gives

s(wt.;0) =Fo+ 15 //
3/ /3—" 3(1—u) J +3/1/“"J“
0Jo Jup \ T2 ) VT 0N S

19-Tu 7u

Fo = ]0/ / (P(u,v) 'f)ordQ(N(u,v)|f)dvdu,

10

19— 7L( 3-3u

(P(u,v) ~f)2dvdu =Fp+— / /7 vidv+
3(19 = Tu — 6v)
2

14
dvdu = Fg +

where

which implies the following assertions:

o ieré\Ule'-'U29,thenFQ:0;
(¢} ifQEZ]U‘”UZg,thel’l

6v)(v+u—3)dd _

6 1 19-Tu _ ]
S iy
0Jo Jia 2 960

o ifQ € C and C intersects f transversally at P, then

/ /3 “3(1—u)(2v+3u—3)d dus

3u

6v)(2v +3u — 3) J 643

() — _
OA /3_u 8 Y= 1920

oifQ e C and C is tangent to f at the point P, then Fp = 8‘6‘(3)

Thus, if C has a node at P, then S(W.Si’.f,.; 0) < 3% 50 [3, Remark 1.113] gives

384°
S Ax®) 1 2 1| [384 960 40| 960
Sx (F) 0t g(wSt..0) S(VEuE) Sx(5) 305°767°13) 767~

which is a contradiction.

Lemma 4.5. The curve C cannot have an ordinary cusp at the point P.

27

Proof. Suppose C has a cusp. Let L be an irreducible curve in S such that 7(L) isaline and 7 (L)Nx(C) =

7T(P). Then (—KX - MS)|S ~R (1 - u)L +C.
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Now, we consider the following commutative diagram:

Si S>

S3
S,

where o7 is the blow up of P, o is the blow up of the point in the oj-exceptional curve contained in
the proper transform of C, o3 is the blow up of the point in the o»-exceptional curve contained in the
proper transform of C, v is the birational contraction of the proper transforms of ¢ o 0»-exceptional
curves and o is the birational contraction of the proper transform of the o3-exceptional curve. Then S
has two singular points:

(1) acyclic quotient singularity of type %(1, 1), which we denote by Q»;
(2) acyclic quotient singularity of type %(1, 1), which we denote by Q3.

Let f be the o-exceptional curve, let C be the proper transform on S of the curve C and let L be the
proper transform of the curve L. Then the curves f, C L are smooth. Moreover, it is not very difficult to
check that 0> € £ 03, 0> ¢ C $ 03,09 € L% Q3. Further, we have Ag(f) = 5, 0*(C) ~ C + 6f,
o (L) ~ L + 3f. On the surface S, we have

—~ 1 -~ = ~ 1 ~ 1
I2=--L-C=0,C-f==,C2=-6,C-f=1,2=——.
5 Cc=0,C 2,C 6,C , G
Note that @, = f N L, and C intersects f transversally by one point.
Fix u € [0, 1]. Let v be a nonnegative real number. Then
o ((-Kx - uS)\S) —vf~x (1—uw)L+C+(9-3u—0f. 4.2)

Thus, the divisor o ((-Kx — uS)|s) — vf is pseudoeffective = itisnef = v < 9 — 3u. Let
P(u,v) be the positive part of the Zariski decomposition of o* ((—Kx — uS)|s) — vf, and let N (u, v) be
the negative part. Then, using Equation (4.2), we compute

(1-u)L+C+(9-3u—-Fif0<v<3-3u,
9 3u—y~
Plu.v) = (1—u)L+%C+(9—3u—v)fif3—3u<v<8—2u,
H$(6Z+5+6f)if8—2u<v<9—3u,

and

0if0<v<3-3u,

3u -3~
N(M,V): ‘}-'-TMle3—31,{<v<8_2u7
v+3u-—-3

. C+(v+2u—8)Lif8—2u<v<9-3u.
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This gives

2
(1—u)(7—u)—%if0<v<3—3u,

) _ (I =u)(17 = 5u —2v)
2
(9 =3u—v)?
2

vol(O'*((—KX —uS)|S) —f if3-3u<v<8-2u,

if 8 —2u <v<9-3u,

and

gif0<v<3—3u,

— "3 - 3u < v <8-2u,

9-3u-—v
2

P(u,v)-f=

if 8 —2u <v <9-3u.

Now, we use [3, Corollary 1.109] to get

S(WS.:f) = 10/ /3 o (l—u)(7—u)——)dv+

//38 “2 (] - u)(172—5u—2v) //89 (9 - 3u—v)2dd

Similarly, if Q is a point in f, then [3, Remark 1.113] gives

~ 9-3u
S(Wflf,.; =Fo+— / / (P(u,v) - f) dvdu =

33u 82u _
=FQ+—// - dvdu+ // dvdu+
3
9-3u
9 3u—v 5
/‘/8 )dvdu—FQ+32

where Fg can be computes as follows:

o ifQ#Cnfand Q # LNf, then Fy = 0;

o if 0 = LNf, then
//93“(9 Bu-v)(v+2u-8) 1
8 2 - 80’

o if @ =CNf, then

//38: (1- u)(v;—3u—3)

//93”(9 3u—v)(v+3u—3)dd 193
uay = ——-—.
8

12 480
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Therefore, we conclude that

5 —~
— if CUL,
% 0¢

S(WSL..0) = g_g ifo=Tnt,
67

mlfQ:Cﬁf

Let Af = %Qz + %Q3. Then, using [3, Remark 1.113] and our computations, we get

Ax(F) _ | . 1-ordg(As) 5 1 (40 200 120) 200
1> > minq inf — , , >min{ —, —, — = — > 1,
Sx (F) Qef S(Ws’f :0) S(Vf.;f) Sx (S) 137173 67 173
which is a contradiction. O

Combining Lemmas 4.4 and 4.5, we obtain a contradiction.

Corollary 4.6. All smooth Fano threefolds in the family No2.4 are K-stable.

5. Family Ne2.6 (Verra threefolds)

Smooth Fano threefolds in the family Ne2.6 can be described as follows:

(a) smooth divisors of degree (2,2) in P2 x P2, which are known as Verra threefolds,
(b) double covers of the (unique) smooth divisor in P2 x P2 of degree (1, 1) branched over smooth
anticanonical K3 surfaces.

Note that every double cover of a smooth divisor in P? x P? of degree (1, 1) branched over a smooth
anticanonical surface is K-stable [ 14, Example 4.4]. In fact, this also implies that general Verra threefold
is K-stable [3, Example 3.14].

The goal of this section is to prove that all smooth Verra threefolds are K-stable.

Let X be a smooth divisor of degree (2,2) in P? x P2, let 1 : X — P? be the projection to the first
factor of P2 x P2, and let 75 : X — P2 be the projection to the second factor. Then 7y and 7, are conic
bundles [21]. Set Hy = n](Op2(1)) and Hy = 75(Op2(1)). Then

—Kx ~H| + H»,

and the group Pic(X) is generated by H, and H,. Note that Aut(X) is finite [10]. Thus, the threefold X
is K-stable <= it is K-polystable. See [22] for details.

Lemma 5.1. Fix a point P € X. Let C be the fiber of the conic bundle r\ that contains P, and let C;
be the fiber of my that contains P. Then Cy or C, is smooth at P.

Proof. Local computations. O

Let A and A, be the discriminant curves of the conic bundles 7 and 75, respectively. Then A and
A, are reduced curves of degree 6 that have at most ordinary double points as singularities. For basic
properties of the discriminant curves A; and A,, see [21, §3.8]. In particular, we know that no line in
P? can be an irreducible component of these curves.
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Lemma 5.2. Fix a point P € X. Let C, be the fiber of the conic bundle nty that contains P, let S be a
general surface in |H;| that contains C,. Then one of the following cases holds:

(1) G, is smooth, S is smooth, the divisor —Kg is ample;

(2) Cy is smooth, S is smooth, the divisor —Kg is nef, the surface S has exactly four irreducible curves
that have trivial intersection with the divisor —Ks, these curves are disjoint and none of them passes
through P, and C, C Sing(yrl’1 (A1)

(3) G, is singular and reduced, S is smooth, the divisor —Kg is ample;

(4) Cyisnotreduced, P ¢ Sing(S) C Supp(C»), and Sing(S) consists of two points, which are ordinary
double points of the surface S, and —Ks is ample.

Proof. The assertion about the singularities of the surface S are local and well known.
We have —Ks ~ Hi|s and Kg =2, so S is a weak del Pezzo surface of degree 2, and the restriction
mi|s: S — P? is the anticanonical morphism. Let £ be an irreducible curve in the surface S such that

—Ks-£=0.

Then ¢ is an irreducible component of the fiber 7r1_1 (m1(€)). But mp(£) is the line w5 (S), which implies
that the scheme fiber nf‘ (71 (€)) is singular, which implies that 7ty (£) € A;. Since £NC, # @ and 1, (S)
is a general line in P? that passes through the point 7, (P), we see that 711 (C;) € A;. This implies that
C, is irreducible and reduced.

LetR = 711’1 (1(C3)). Then the surface R is singular along a curve that is isomorphic to the conic
m(Cy) = Cy. Let f: R — R be the blow up of this curve. Then R is smooth, and the composition

morphism 7 o f induces a P'-bundle R — C~2, where 52 is double cover of the conic 71 (C>) that is
branched over the eight points 71 (C2) N (A} — 71(C2)). In particular, we see that C, is an irrational
curve, which implies that C; = Sing(R).

Vice versa, if the fiber C; is a smooth conic, and the conic 71 (C3) is an irreducible component of the
discriminant curve A1, then it follows from the Bertini theorem that

S'ﬂl_l(ﬂ'l(c2)):2C2+€1+f2+...+gk’

where €1, (>, . . ., {x are k distinct irreducible reduced curves in X that are irreducible components of the
fibers of the natural projection nl‘l (m1(Cy)) — 71 (Cy). Since

k

4=2H Hy=H, S 77 (11(Cy)) = Hy - (202 +36) =k,

i=1

we see that S contains exactly 4 irreducible curves that intersects trivially with —Kg. Now, the generality
in the choice of § implies that none of these curves contains P. O

Example 5.3. Actually, the case (2) in Lemma 5.2 can happen. Indeed, in the assumption and notations
of Lemma 5.2,let P = ([0:0: 1],[0:0: 1]), and suppose that X is given by

(u? + 2uw +v2 +2w2)x% + (uv — wHxy + (uw — 2uv + 3v* + w?)y? + (uw +v3)2% = 0,

where ([u : v : w], [x : y : z]) are coordinates on P> x P2. Then the threefold X is smooth. For instance,
this can be checked using the following Magma script:

Q:=RationalField();
PxP<x,y,z,u,v,w>:=ProductProjectiveSpace(Q, [2,2]);
X:=Scheme (PxP, [(UA2+2*U*W+VA2+2*WA2) *XA2+ (U*V-WA2) *X*y+

((-2%v+w) *u+3*vA2+wA2) *y A2+ (U w+vA2) *zA2]) ;
IsNonsingular(X);
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Observe that the fiber C; is a singular reduced curve given by u = v = 2x> — xy + y? = 0, the fiber C,
is a smooth curve that is given by x = y = uw + v> = 0, and the discriminant curve A is a union of the
conic 71 (C>) and the irreducible quartic plane curve given by

8y — 4w — 11u>v? + 161> vw — 120 w? + 8uv>—

—28uv?w + 1duvw? — 16uw® — 12v* = 28v2w? — Tw* = 0.

As in case (2) in Lemma 5.2, we have C; = Sing(ﬂl‘1 (m(C2))).

Let us prove that X is K-stable. Suppose it is not. Using the valuative criterion [15, 18], we see that
there exists a prime divisor F over X such that

B(F) = Ax(F) - Sx(F) < 0.

Let Z be the center of the divisor F on X. Then Z is not a surface by [3, Theorem 3.17].

Let P be any point in Z, let C; be the fiber of the conic bundle 7| that contains P and let C; be the
fiber of the conic bundle 7, that contains P. By Lemma 5.1, at least one curve among C; or C; is smooth
at P. We may assume that C; is smooth at P.

Let S be a general surface in |H;| that contains C,. Then S is smooth by Lemma 5.2. Moreover, one
of the following three cases holds:

(1) G, is smooth, the divisor —Kj is ample;

(2) Cyissmooth, 71 (C,) C Ay, the divisor —K is nef, the surface S has exactly four irreducible curves
that have trivial intersection with the divisor —Kg, these curves are disjoint and none of them passes
through P;

(3) C; is singular and reduced, the divisor —K is ample.

Let C be the curve in X that is defined as follows:

o if C, is smooth and irreducible, we let C = C;.
o if C; is reducible, we let C be its irreducible component that contains P.

Note that —Ks ~ H|s and K; = 2. Let n: § — P? be the restriction morphism 7{|s. Then 7 is
an anticanonical morphism of the surface S, which is generically two-to-one. Hence, the morphism 7
induces an involution 7 € Aut(S). We let C’ = 7(C).

Now, let u be a nonnegative real number. Then we have —Kx —uS ~gr Hi + (1 —u)H,, so —Kx —uS
isnef & —Kx — uS is pseudoeffective <= u < 1. Then Sx(S) = ]5—2 Now, let us use notations
introduced in [3, §1.7]. Using [3, Theorem 1.112], we get

Ax (F) 1 1 1
> > min , ) )
Sx (F) Sx(8)" S(W2.;C) S(WSE,; P)
where S(Wﬁ,; C) and S(W.Sf.; P) are defined in [3, §1.7]. Hence, since Sx (S) < 1, we get
max{S(W5.: 0), SWSS: P)) > 1. G.1)
Moreover, if Z = P, then it also follows from [3, Theorem 1.112] that
max{S(Wﬁ,;C),S(WE;?.;P)} > 1. (5.2)
Let us estimate S(WE,; C) and S(Wf’f.; P) using results obtained in [3, §1.7].
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Let P(u) = —Kx — uS. Then [3, Corollary 1.109] gives

W,S,; / / vol( P(u)|s —vC)dvdu.

Let P(u, v) be the positive part of the Zariski decomposition of the divisor P(u)|s — vC, and let N (u, v)
be its negative part, where u € [0, 1] and v € Ry(. Then

1 poo
S(W.S,’E.;P) =Fp+ %/ / (P(u,v) - C)2dvdu
o Jo

by [3, Theorem 1.112], where

l l 0
= 5/ / (P(u,v) - C)ordp(N(u,v)ic)dvdu.
o Jo
Lemma 5.4. Suppose that C, is smooth, and —Kg is ample. Then

SWS0) = oo,

SWoEsP) = 1.

Proof. Wehave C - C’ =4 and (C’)?> = C?=0.Fixu € [0,1] and v € Rs¢. Then

3 1
P(u)|s —vC ~q (E —u- v)C+ EC/’

which implies that P(u)|s — vC is pseudoeffective <= P(u)|s —vC is nef & v < % —u. If
O<u<land0O<v< % — u, then P(u,v) = (% —u—v)C+%C’andN(u,v) =0, so

2
13
S ,,, // (——u—v)C+2C)dvdu // 6 —4u—4vdvdu = a

Similarly, we see that Fp = 0 and P(u,v) - C = 2, which gives S(Wﬁ’f.; P)=1. ]

Lemma 5.5. Suppose that C, is smooth, —Kg is not ample. Then

wS ; = —
W0 = =

5
S(W25iP) = 5

Proof. In this case, we have the following commutative diagram:

7N

§— P2,

where ¢ is a birational map that contracts four disjoint (-2)-curves, and S is a del Pezzo surface of
degree 2 that has 4 isolated ordinary double points, and 7 is a double cover that is ramified in a reducible
quartic curve that is a union of two irreducible conics such that n(C) is one of these two conics. In
particular, we have C = 7(C).
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Let E|, E», E3, E4 be the ¢-exceptional curves. Fix u € [0, 1] and v € Rq. Then
1
P(u)|s -vC ~Q (2—1/{ —V)C+ E(El + E>+ Ej +E4)
so the divisor P(u)|s — vC is pseudoeffective <= v < 2 — u. Moreover, we have

1
(2—M—V)C+—(E1+E2+E3+E4)if0<V<]—M,
P(u,v) = 21
(2—u—v)(C+§(E1+E2+E3+E4))ifl—u<v<2—u,

0if0<v<1l—u,
Nu,v) =§u+v-1

2 (E1+E2+E3+E4)if1—u<v<2—u,

(6—4u)-4if0<v<1—-u,

vol(P(u)|s —vC) =
(Pwls =vC) {2(2—u—v)2if1—u<v<2—u.
Now, integrating vol(P(u)|s — vC), we obtain S(Wﬁ,; C) = 17—2

To compute S(Wi’f.; P), we first observe that Fp = 0 because P ¢ E; U E, U E3 U E4 since S is a
general surface in |H>| that contains C. On the other hand, we have

2if0<v <1 —u,
P(u,v)-C = .
4 -2u-vifl-u<v<2-u.
Hence, integrating (P(u,v) - C)?, we get S(W;g”f.; P) = % as required. O

Lemma 5.6. Suppose that C, is singular. Then

SWS,;0) =

b}

1

—_ W

S(W5iP) <

1

[\

Proof. The curve C; consists of two irreducible components: the curve C and another curve, which
we denote by L. The curves C and L are smooth and intersects transversally at one point. Note that
P # C n L since C, is smooth at the point P by assumption.

The intersections of the curves C, L and C’ = 7(C) on S are given in the table below.

Fix u € [0, 1] and v € Ry. Since C + C’ ~ —K, we have

P(u)ls —vC ~g 2-u-v)C+ (1 -u)L+C’,
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80 P(u)|s — vC is pseudoeffective &= v < 2 — u. Moreover, if 0 < u < %, then

Q2Q-u-v)C+(1-u)L+C"if0<v <1,

NI W

P(u,v) = Q-u-v)(C+L)+C'if1 <v <

- u,

3
(2—u—v)(C+L+C')if§—u<v<2—u,

0if0<v <,

N(u,v) =4 =DLif 1 <v <5 —u,

N W

3
(v—l)L+(2v+2u—3)C’if§—u<v<2—u,

6—v2—4u—2vif0<v<1,

i 3
Vol(P(u)ls—vC)z 7—4u—4v1f1<v<§—u,
3
4(u+v—2)2if§—u<v<2—u.
Similarly, if % < u <1, then
s 3
Q2-u-v)C+(1-u)L+C 1f0<v<5—u,
- 3
Pu,v) = (2=u=(C+20)+ (1 =wLif S —u<v <1,
Q2-u-v)(C+L+C")ifl1<v<2-u,
Oif0<v<%—u,
N(u,v) =

3
(2v+2u—3)C'if§—u<v<1,

(v=1DL+2v+2u-3)C'ifl <v<2—-u,

6-v:—4du-2vif0<v<=—u,

3
2
o0 = 3
vol(P(u)ls = vC) = (5-2u-3)(G-2u-)it3—usv<l,
4u+v-2)%ifl1 <v<2-u.

Hence, integrating vol(P(u)|s — vC), we get S(Wf,; C)= %.
Now, let us compute S (W.S, ’f.; P).IfO<u < %, then

1+vifO<v <1,
: 3
P(u,v)-C= 2lf1<"<§—u,

8—4u—4vif§—u<v<2—u.
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Similarly, if % < u < 1, then

1+vifO<v <

N W

- u,

- 3
P(u,v)-C= T-du-3vif S -u<v<l,

8—4du-4vifl<v<2-u
Then integrating, we get S (Wf ’.(;.; P) = 11‘9‘3 + Fp. To compute Fp, let us recall that P ¢ L. Hence, if
P ¢ C’, then Fp = 0, which implies that S(W.S,f., P) =18 1% as required.

192
We may assume that P € C N C’. If C’ intersects C transversally at P, then

Oif0<v<§—u,
ordp(N(u,v)lc) = 23
2u+2v—3if§—u<v<2—u,

which gives
1 % 2-u
= —/ / (8 —4u —4v)(2u +2v — 3)dvdu+
2 0 %—u
1 1 %—u

+ 5/ / (7=4u-3v)Q2u+2v —3)dvdu
+J1
2

+l‘/l/2_11(8—4u—4v)(2u+2v—3)dvdu—3—1
2Js Jiu 3847

SO S(Wf,c., P) = % % = % }—2 If C’ is tangent to C at the point P, then

0if0<Kv< = —u,
ordp(N(u,v)ic): 3
2(2u+2v—3)if§—u<v<2—u,

which gives Fp = 35, 50 S(WaE3P) = A= O

92 2
Now, using Equation (5.2) and Lemmas 5.4, 5.5, 5.6, we see that Z is a curve.

Lemma 5.7. One has Hy - Z > land Hy - Z > 1.

Proof. If Hy - Z = 0, then Z = C, which is impossible by Equation (5.1) and Lemmas 5.4, 5.5, 5.6.
Hence, we see that H, - Z > 1 and m,(Z) is a curve. Let us show that H, - Z > 1.

Suppose that H; - Z = 0. Then Z must be an irreducible component of the curve C;. If C is reduced,
then arguing exactly as in the proofs of Lemmas 5.4, 5.5, 5.6, we obtain a contradiction with [3, Corollary
1.109]. Thus, we see that C; is not reduced.

So far, the point P was a point in Z. Let us choose P € Z such that m,(P) € m(Z) N A;. Then C; is
singular. But it is smooth at P by Lemma 5.1, which fits our assumption above. Then § (W,S’ eC) =

3

i

and S (Wﬁ ’f.; P) < % by Lemma 5.6, which contradicts Equation (5.1). ]

Both 71(Z) and m5(Z) are curves. Similar to what we did in the proof of Lemma 5.7, let us choose

the point P € Z such that 7;(P) € Ay. Then Cj is singular at P, which implies that C, is smooth at P

by Lemma 5.1. Now, using Equation (5.1) and Lemmas 5.5 and 5.6, we see that C = C», the curve C;
is smooth, the divisor —K is ample.
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We see that S is a del Pezzo surface, and : § — P? is a double cover ramified in a smooth quartic
curve, so we are almost in the same position as in the proof of Lemma 5.4. But now, we have one small
advantage: the point n(P) is contained in the ramification divisor of the double cover 1 because C; is
singular at P. Then | — K| contains a unique curve that is singular at P. Denote this curve by R. We
have the following possibilities:

(a) Ris an irreducible curve that has a nodal singularity at P;

(b) R is an irreducible curve that has a cuspidal singularity at P;

(¢) R=R|+ R, fortwo (—1)-curves in S that intersect transversally at P;
(d) R =R+ R, for two (—1)-curves in S that are tangent at P.

_ Letf: S — S be the blow up of the point P. Denote by R and C the proper transforms on the surface
S of the curves R and C, respectively. Fix u € [0, 1] and v € Ry(. Then

F*(P(u)ls) = vE ~g R+ (1 =u)C + (3 —u - v)E.

Let P(u,v) be the positive part of the Zariski decomposition of R+(1- u)5+ (3-u—-v)E, and let
N (u,v) its negative part. Then it follows from [3, Remark 1.113] that

S Ax®) il ] 2 ! (5.3)
Sx (F) Sx(S) S(WE.;E) O€E S(WSE 0)

e, 0 0>

where S(WE,; E) and S(W.Si’.’::.; 0) are defined in [3] similar to S(Wf,; C) and S(W.Sf.; P). These two
numbers can be computed using [3, Remark 1.113]. Namely, we have

(WS, E) // (P(u,v))*dvdu

SWSE0) = 3—1/01/Ow((ﬁ(u,v)-E))zdvdwFo,

and

where O is a point in E and

= %/01 /0oo (ﬁ(u,v)-E)ordo(ﬁ(u, v)|E)dvdu.

Let us use these formulas to estimate S (W;P§ o E)and S (W.§ .E., 0).

If the curve_ R is irreducible, the intersections of the curves C, R, E can be computed as follows:
C?=-1,C-R=0,C-E=1,R*=-2,R-E =2,E*= —1. If R is reducible, then R = R, + R, for
two smooth 1rredu01ble curves R, 1+ R2 such that the intersection form of the curves C, R, 1s R 1 and E is
given in the following table:

clclr[m]E]

Cc
Ri|o|-=2|11]1
~]
E
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Then R + (1- u)5+ (3 —u —v)E is pseudoeffective <= v < 3 — u. Moreover, we have

R+(1-u)C+(B-u-vEif0<v<2-u,
Pu,v)={(1-u)C+B-u—-v)(E+R)if2-u<v<2,
GB-u-v(E+R+C)if2<v<3—-u,

0if0<v<2—-u,
N(u,v) = (v+u—-2)Rif2-u<v<2,
(v+u—2)ﬁ+(v—2)5if2<v<3—u,

6 -V —4uif0<v<2-u,

(P(u,v))” = {14+ 26> + 4uv +v> = 12u — 8v if 2 —u < v < 2,
23 -u-v)2if2<v<3—-u,

7

Now, integrating, we obtain S (Wft wE)= }—2

Fix a point O € E. To estimate S (W;g, ’f.; 0), first we observe that

vifO<v<2-u,
Pu,v)-E={4-2u—vif2—u<

v <2,
6—-2u—-2vif2<v<3

—U.

Therefore, integrating (P (u,v) - E)2, we obtain S(Wfi’.‘i; 0) = 5 + Fo.
IfO ¢ Cu E, then Fp = 0. Similarly, if O € 5, then O ¢ ﬁ, which gives

1

1 1 3—u
Fo=- —2u-2 -2 = —.
o 2‘/0 ‘/2 (6 —2u—2v)(v —2)dvdu 7

Finally, if O € E, then O ¢ 5, which gives

7

1l or2 1 [l p3-u
Fo < —/ / 2(4—2u—v)(v+u—2)dvdu+—/ / 2(6 —2u—2v)(v+u—2)dvdu = —.
2Jo Joru 2Jo J2 24

Summarizing, we get S(WE ’."5.; 0) < % for every point O € E, which contradicts Equation (5.3) because
Sx(8) = & and S(WS,; E) = 41 < 2. This shows that X is K-stable.

Corollary 5.8. All smooth Fano threefolds in the family Ne2.6 are K-stable.

6. Family Ne2.7

Now, let us fix three smooth quadric hypersurfaces @, @’ and @” in P* such that their intersection is a
smooth curve of degree 8 and genus 5. Weset € =@ N Q@' NQ". Let 7: X — @ be the blow up of the
smooth curve €. Then X is a smooth Fano threefold, which is contained in the family No2.7. Moreover,
all smooth Fano threefolds in this family can be obtained in this way. Note that —K; = 14 and Aut(X)
is finite [10].
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The pencil generated by the surfaces @’|q and @”|4 gives a rational map @ --» P!, which fits the
following commutative diagram:

where ¢ is a fibration into quartic del Pezzo surfaces. Let E be the m-exceptional surface, and let
H = 71" (Ops(1)]g). Then —Kx ~ 3H — E, the morphism ¢ is given by the linear system |2H — E|, and
E =% xP.

Lemma 6.1. Let S be a fiber of the morphism ¢. Then S has at most Du Val singularities.

Proof. Since E|s is a smooth curve, the surface S is smooth along E|s, which implies that it has at most
isolated singularities. Hence, we conclude that S is normal and irreducible.

Note that S = 7(S). Suppose that the singularities of the surface (.S) are not Du Val. Then it follows
from [5, Theorem 1] that 7(S) is a cone in P* over a quartic elliptic curve. Let P be the vertex of the
cone 7(S), and let Tp be the hyperplane section of the quadric hypersurface @ that is singular at P. Then
Tp contains all lines in @ that pass through P, which implies that Tp contains 7 (S). This is impossible
since Tp is a quadric cone. O

The goal of this section is to prove that X is K-stable. To do this, we fix a point P € X. By [15, 18],
to prove that X is K-stable, it is enough to show that 6p(X) > 1.

Let S be the fiber of the morphism ¢ containing P. Then S is a quartic del Pezzo surface, and S has
at most Du Val singularity at P by Lemma 6.1. Moreover, if S is singular at P, then P is a singular point
of the surface S of type A, Ay, Az, Ay, Dg or Ds, see [12].

Lemma 6.2. If 6p(S) > orP € Sing(S) and 6p(S) > 28, then 6p(X) > 1.

Proof. Take u € Ryg. Since S ~ 2H — E, we have

3 1
—Kx—us~R@—2mH—(u—UE~R(5—@5+§E

Using this, we conclude that the divisor —Kx — uS is pseudoeftective if and only if u < % For u < %
let P(u) be the positive part of Zariski decomposition of the divisor —Kx — uS, and let N(u) be the
negative part of Zariski decomposition of the divisor —Kx — uS. Then

-Kx —uSifO<u<l,

P(u) =
B3-2u)Hif1 SMS%,
and
0if0<u<l,
N(u) = 3
(u—l)Eif1<u<§.
This gives
3
1 3 33
Sx(S) = ﬁ (P(u) (14 — 12u)du + — 2(3 2u)’du = _6 < 1.
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Now, using [1, Theorem 3.3] and [3, Corollary 1.102], we get

) 1 As(F)
op(X) > ming ——, in [ > 2
p(X) Sx(S)" F/s  S(W3.F) e
PeCs(F) ’

where the infimum is taken by all prime divisors F over the surface S such that P € Cs(F), and

S(WE,; F) can be computed using [3, Corollary 1.108] as follows:

SWewiF) =17

14

3 [ 3 3
[ el orar (vwlg)aus 3 [

/00 V01(P(u)|s —vF)dvdu.
0

Let Es = E|s. Then Eg € |-2Kg| and Eg = €. Moreover, the surface S is smooth in a neighborhood

of the curve Eg. Furthermore, we have

- KgifO<u<l,

Pls = (3 -2u)(—-Ks) if 1 <u

and
0if0<u<l,

N(u)|g =
s (u—1)Esifl <u<

Let F be any prime divisor over S such that P € Cs(F). Then

3

14 J;

3 l (]
+—/ / vol( - Ks — vF)dvdu+

303 e
+ﬁ/1 /0 vol((3 - 2u)(=Ks) — vF)dvdu =

3
S(WS . F) " 4(u - 1)(3 - 2u)?ordp (Es)du+

3
<_
2

s

| W

= % 13—4 /Ocovol( - Ks—vF)dv + 13—4 /13(3 - 2u)® /Omvol( - Ks —vF)dvdu =
= % 13—4/000V01(—K5—\)F)dv+1% Omvol(—KS—vF)dv =
because log pair (S, Eg) is log canonical. Therefore, if §p(S) > %, Equation (6.1) gives 6p(X) > 1.

Similarly, if P € Sing(S), P ¢ Es, so ordr (Es) = 0, which implies that

S(WS,F) = %SS(F) < %ﬁig.
Hence, in this case, it follows from Equation (6.1) that §p(X) > 1 provided that §p(S) > %—;. O
Corollary 6.3. If S is smooth, then §p(X) > 1.
Proof. 1f § is smooth, then §(S) = ;—‘ by [3, Lemma 2.12]. Now, apply Lemma 6.2. m]
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Corollary 6.4. If P is not contained in a line in S, then §p(X) > 1.

Proof. If Pis not contained in a line in S, then P is a smooth point of the surface S, and the blow up of the
surface S at this point is a (possibly singular) cubic surface in P3. Thus, arguing exactly as in the end of
the proof of [3, Lemma 2.12], we obtain §p(S) > % which implies that §p(X) > 1 by Lemma 6.2. O

Now, let T be a surface in the linear system |H| such that P € T, and let Q@ = 7(T). Then Q is a
hyperplane section of the hypersurface @, so both Q and T are irreducible. In the following, we will
choose T such that the surface Q is smooth so that Q = P! x PL.

Lemma 6.5. Suppose that T is a general surface in the linear system |H| such that P € T. Then the
(scheme) intersection S N T is an irreducible reduced curve.

Proof. Let p: S — S be a blow up of the quartic del Pezzo surface S at the point P, and let Z be the
proper transform of the curve T'|s on the surface S. Then |Z| has no base points and gives the morphism
n: S — P3 that fits the following commutative diagram:

7

S———--- > P3,

where S --> P3isa projection from P. Moreover, if P is a smooth point of the surface S, then 7% =13, and
the image of the morphism 7 is an irreducible cubic surface in P3. Similarly, if P is a singular point of
the surface S, then we have Z? = 4 — multp(S) = 2, and the image of the morphism 7 is an irreducible
quadric surface. Therefore, we conclude that the curve Z must be irreducible and reduced (by Bertini
theorem), which implies that the intersection S N T is also irreducible and reduced. O

Remark 6.6. Suppose that S is singular at P, and 7 is a general surface in |H| that passes through
the point P. Then, choosing appropriate coordinates [x : y : z : ¢ : w] on P* we may assume that
a(P)=[0:0:0:0: 1], and the surface 7(S) is given in P* by

ar* + bix + fr(x,y,2) =0,
wt = g2(x,,2),

where a and b are complex numbers, f>(x,y,z) and g»(x,y, z) are nonzero quadratic homogeneous
polynomials. In the chart w # 0, the surface 7(S) is given by

at® + btx + fr(x,y,z) =0,
t:gZ(x’y’Z)’

where now we consider x, y, z, t as affine coordinates on C*. Then 7(S) N Q is cut out on the surface
7(S) by cix+cry+c3z+cqt =0, where ¢y, ¢, ¢3, ¢4 are general numbers. The affine part of the surface
7(S) is isomorphic to the hypersurface in C* given by

agi(x,y,2) +bxga(x,y,2) + f(x,y,2) =0,

and the affine part of the curve 7(S) N Q is cut out by ¢1x + coy + ¢32 + c482(x,y,z) = 0. If P is a
singular point of the surface S of type D4 or Ds, then S N T has an ordinary cusp at the point P, which
easily implies that the intersection S N T is reduced and irreducible. Similarly, if P is a Du Val singular
point of the surface S of type A, Ay, A3 or A4, then the intersection S N T has an isolated ordinary
double singularity at P.
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Observe that the morphism 77: X — @ induces a birational morphism @ : T — Q, and the morphism
¢: X — P! induces a fibration ¢: T — P! that both fit the following commutative diagram:

where Q --» P! is a map given by the pencil generated by the curves @’|g and @”|o. In the following,
we will always choose T' € |H| such that the quadric surface Q is smooth, and 7 is either smooth or
has one isolated ordinary singularity, which would imply that a general fiber of the induced fibration
¢: T — P! is a smooth elliptic curve. Let C = S|. Then C is the fiber of the (elliptic) fibration ¢ that
contains the point P.

Let u be a nonnegative real number. Then —Ky — uT ~r (3 —u)H — E ~g (1 —u)H + S, which
implies that —Kx —uT is nef &< —Kx —uT is pseudoeffective <= u € [0, 1]. Integrating, we get
Sx(T) = % < 1. For simplicity, we let P(u) = —Kx — uT.

Lemma 6.7. Suppose that S is singular at P. Then 6p(X) > 1.

Proof. Now, let us choose T € |H| such that T is a general surface in |H| that contains P. Then 7" and
Q are smooth, and @ is a blow up of the eight intersection points € N Q. Moreover, by Lemma 6.5, the
curve C is an irreducible singular curve of arithmetic genus 1. Thus, we have P = Sing(C). Furthermore,
using Remark 6.6, we see that

o either C has an isolated ordinary double singularity at P,
o or the curve C has an ordinary cusp at the point P.

Recall that Q is a smooth quadric surface, so that it contains exactly two lines that pass though 7 (P).
Since T is chosen to be general, these lines are disjoint from & N Q. Denote by L; and L, the proper
transforms of these lines on 7. Then

P(w), ~r (1 =w)H+5S)|, ~ (1 —u)(Li +Ly) +C.

Now, we let o : T — T be the blow up of the point P, we let e be the o-exceptional curve, and we
denote by C,Ly, Ly the proper transforms on T of the curves C, L, L, respectively. Take a nonnegative
real number v. Then

o (P(w)|,) —ve~p C+ (1 —u)(Ly +Lo) + (4 = 2u — v)e. (6.2)

Note that the curves C~ Zl R Zz are disjoint. Moreover, we have ZZ I2=-1andC? = —4. Thus, using
Equation (6.2), we see that o (P (u)|r) — ve is pseudoeffective (:) v 4 - 2u.

Let P(u,v) be the positive part of Zariski decomposition of the divisor o*(P(u)|r) — ve, and let
N(u,v) be its negative part. Then it follows from [3, Remark 1.113] that

1 2 1
dp(X) > min , — , inf — s 6.3)
Sx(1) (Wl e) O sWle,;0)

where S (Wf .;e)and S (W;T: f,; 0) are defined in [3, §1.7], and these two numbers can be computed
using formulas described in [3, Remark 1.113]. Namely, we have

4-2u
S W,T.; 14/ / (P(u,v)) dvdu
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and

S(W.f;e., 14/ /4 " P(u V) - e)) dvdu + = / /4 - (P(u,v) - e)ordO(N(u v)| )dvdu

where O is a point in e. Moreover, using Equation (6.2), we compute F(u v) and N (u,v) as follows:

C+(1—=u)(Li+Ly)+(4—2u—-v)eif0<v <2-2u,

Plu.v) = H%ﬁ+(l—u)(z]+Z2)+(4—2u—v)eif2—2u<v<3—u,
A F oL+ Ta)+20) if 3—u < v < 4—2u,
and
0if0<v<2-2u,
ﬁ(u,v)z #leZ 2u<v<3-u,
- 2+42u ~

2 C+(v=3+u)(L1+Ly)if3—u<v<4-2u.

Thus, we have

2(1—u)(5—u) —v2if0 < v <2-2u,
(P(u,v))> = 12(1 —u)(7=3u—-2v) if2-2u < v <3 -u,
204 -2u—v)?if3-u<v<4-2u,

and

vift0 <v <2-2u,
P(u,v)-e=132(1 —u)if2-2u<v

3-
2(4-2u—-v)if3 - v

<
<<42u

Now, integrating, we get S(W,T,,e) = ﬂ < 2.
Let O be an arbitrary pointin e. If O ¢ L, ULy UC, then we compute S (WZ S0 0) = ‘7—‘. Similarly, if
0 € L, ULy, then S(W.T’f.; 0) = % Finally, if O € C, then

= 4
S(W.Tée., = 7 / / 2(1 - u) 2+ ordo ( 5| dvdu+
2-2

4- 2u —2+42 4 17
/ / 2(4—2u—v)u0rd0(5’ )dvdu = —+_0rd0(é] )
s 2 e 7 56 ¢

Hence, if C intersects e transversally, then S (W.T: f,; 0) < 1 sothat 6p(X) > 1 by Equation (6.3).

Therefore, to complete the proof of the lemma, we may assume that Cis tangent to e. This means
that C has a cusp at P, and the intersection C N e consists of a single point.
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Now, as in the proof of Lemma 4.5, we consider the following commutative diagram:

where y is a composition of the blow up of the point C N e with the blow up of the unique intersection
point of the proper transforms of the curves C and e, v is the birational contraction of all (o o y)-
exceptional curves that are not (—1)-curve, and ¢ is the birational contraction of the proper transform
of the unique y-exceptional curve that is (—1)-curve. Then T has two singular points:

(1) acyclic quotient singularity of type %(1, 1), which we denote by O»;
(2) acyclic quotient singularity of type %(1, 1), which we denote by O3.

Let f be the ¢- exceptlonal curve, let C be the proper transform on T of the curve C and let Ll and L,
be the proper transforms on T of the curves Ly and L,, respectively. Then the curves f, C L1, L2 are
smooth, and the curve f contains both points O, and O3, which are not contained in C. Moreover, we have

Z10222210f2220f203.

Furthermore, we have Ar(f) = 5, ¢*(C) ~ C + 6f, s*(Ly) ~ L +2f, ¢ (L) ~ L> + 2f, and the
intersection form of the curves f, C, L 1 and Ly is given in the following table:

_Jrfefn L]
IR
cll1]-6/01]0
ARDEIE
L slols]=

For a nonnegative real number v, we have
g‘*(P(u)|T) —vf ~x C+ (1= u)(Ly + Lo) + (10 — 4u — v)f,

which implies that the divisor ¢ (P(u) |7) — vf is pseudoeffective if and only if v < 10 — 4u because the
intersection form of the curves C Ll, Lz is negative definite.

Let P(u, v) be the positive part of Zariski decomposition of the divisor ¢*(P(u)|r) — vf, and let
]V(u, v) be its negative part. Set Ay = %02 + %03. By [3, Remark 1.113], we get

6.4)

5p(X) > min{ S i OrdO(Af)}

, — ,in =
Sx() swl.if) o swif o)

where S(Wf,; f) and S(Wf;f.; 0) are defined as S(Wf,; e) and S(Wff,; 0) used earlier. Moreover, it
follows from [3, Remark 1.113] that

_ 3 1 10—-4u . 5
S(WI,;f) = ﬁ/o /0 (P(u,v)) dvdu
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and

S(w. ...; 14/ /]0 B P(u V) - f)) dvdu + = //10 4u(P(u,v)-f)ordo(l/\f\(u,v)‘f)dvdu.

Moreover, we compute P (u,v) and N (u,v) as follows:

C+(1—u)(Li+Ly)+ (10— 4u—Fif0 < v < 4—4u,

10— 4u—v ~ I
Plu.y) = %C+(l—u)(L1+L2)+(10—4u—v)fif4—4u<v<9—3u,
0-du—v,~  ~ =
%(C+6(L1+L2)+6f)if9—3u<v<10—4u,
and
0if0 < v <4—4u,
_ 4+4u ~
N(u,v): Tle4 du < v<9—3u,
444
%C+(V—9+3u)(L1+L2)1f9 3u < v < 10— 4u.
This gives
V2
21— u)(5-w) — <0< v <4-du,
_ 2(1 - u)(19 = Tu -2
(Plu,v))? =12 ”)(3 429 4 dy < v <9-3u,
2(10 — 4u — v)?
%if9—3u<v<10—4u,
and
v
gif0<v<d—du,
_ 2(1 -
P(u,v)-f= (3 u) if4-4u <v<9-3u,
2(10 —4u —v)

3 if9-3u <v<10-4u.

Now, integrating, we get S(W, , of) = 135 < Ar(f) =
Let O be apointinf. If O ¢ L1 UL2 UC then

_ 1 4-4u 2 9-3u —
S(W-T,Zf,.;O) = i/ / X dvdu + — / / (2(1 ) dvdu+
14 s
10-4u (510 — 4u — 1
/ / 2010 4u =)\’ dvdu = 3.
9 63
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Similarly, if O =f N C~, then

9-3u
2(1 - — 444
SWIt.0)= // ( ”‘)xv M dvdut
A 6
10—-4u
2(10 - 4u—v) y—4+4u 13 193 33
dvdu = — + —> = 2.
//9 T M T 5B T5m 56

Likewise, if O = O3, we compute S(W.T,;f.; 0) = 13—4. So, using Equation (6.4), we get 5p(X) > 1. O

Thus, to prove that §p(X) > 1, we may assume that S is singular, but P ¢ Sing(S).
Lemma 6.8. Suppose that P ¢ E. Then 6p(X) > 1.

Proof. Recall that E is the mr-exceptional surface. Using Corollary 6.4, we may assume that S contains
a line L that passes through P. Then (L) is a line in @, 7(L) N € # &, and one of the following cases
holds:

Case 1: the line n (L) intersects the curve € transversally at two points,
Case 2: the line (L) is tangent to the curve & at their single intersection point.

Now, let us choose 7T to be a sufficiently general surface in | H| that passes through L. If the intersection
(L) N'E consists of two points, then w: T — Q is a blow up of eight distinct points of the transversal
intersection @ N &, which implies that 7 is smooth. On the other hand, if L N & consists of one point,
then T has one ordinary double point, which is not contained in the curve L. We have C = S|y = L + Z,
where Z is a smooth rational irreducible curve such that 7(Z) is a smooth twisted cubic in @. The
twisted cubic curve 7(Z) in @ intersects the curve & transversally by six distinct points, which we
denote by 03,04, 05,06, O7, Qs. Moreover, if 7(L) N € consists of two distinct points, we denote
these points by Q| and Q». Likewise, if 7(L) N & consists of one point, we let 01 = 0, =71(Z) N 6.
Then

Case 1: the morphism @w: T — Q is the blow up of the points Q1, Q», ..., Os,
Case 2: the morphism @w: T — @ is a composition of the blow up of the points Q3, ..., Qg with a
weighted blow up with weights (1,2) of the point Q| = Q.

Since T is a general surface in |H| that contains the line L, we may assume that P ¢ Z. Likewise,
we may assume further that Z is contained in the smooth locus of the surface 7. Moreover, we may
also assume that the quadric surface Q does not contain lines that pass through one point in the set
{01, 02, 7(P)} and one point in {Q3, Q4, Os, Q¢, 07, Og}. Indeed, let Q’, Q”, Q" be the hyperplane
sections of the quadric @ that are singular at the points Q1, Q,, n(P), respectively. Then Q’, Q”, Q"'
are cones, 7(L) c Q"N Q" N Q’”, and every line in @ containing a point in {Q1, Q», 7(P)} is a ruling
of one of these cones. On the other hand, we have € ¢ O’ U Q” U Q" because € is not contained in
a hyperplane. This implies that the quadric threefold @ contains at most finitely many lines that pass
through a point in {Q, Q»>, 7(P)} and a point in € \ {Q1, O»}. Therefore, we can choose the surface
T € |H| suchthat L c T, but Q = n(T) does not contain any of these lines.

Let us identify Q = P' x P! such that the line 7(L) is a curve in Q of degree (0, 1). Denote by

e, ..., eg the w-exceptional curves such that w(e;) = Qy,...,w(eg) = Os. Let g3, ..., g be the strict
transforms on T of the curves in Q of degree (1, 0) that pass through the points O3, . . ., Qg, respectively.
Then L,Z,eq,...,e3,83,...,8s are smooth irreducible rational curves. In Case 1, their intersections

are given in the following table:
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L | Z | e | e | e | e |e | e | €e | e | g | 8 | 8 | 8 | 8 | &8
L -2 2 1 0 0 0 0 0 0 1 1 1 1 1 1
V4 2 |20 1 1 1 1 1 0 0 0 0 0 0
e 1 0| -110 0 0 0 0 0 0 0 0 0 0 0
€ 1 0 0O |-110 0 0 0 0 0 0 0 0 0 0 0
e3 0 1 0 0 |-1]0 0 0 0 0 1 0 0 0 0 0
ey 0 1 0 0 0O |-110 0 0 0 0 1 0 0 0 0
es 0 1 0 0 0 0O |-1]0 0 0 0 0 1 0 0 0
€ 0 1 0 0 0 0 0 |-1]0 0 0 0 0 1 0 0
e7 0 1 0 0 0 0 0 0O |-110 0 0 0 0 1 0
eg 0 1 0 0 0 0 0 0 0 |-1]0 0 0 0 0 1
23 1 0 0 0 1 0 0 0 0 0 |-11]0 0 0 0 0
g 1 0 0 0 0 1 0 0 0 0 0O |-110 0 0 0
g5 1 0 0 0 0 0 1 0 0 0 0 0 |-1]0 0 0
26 1 0 0 0 0 0 0 1 0 0 0 0 0O |-11]0 0
g7 1 0 0 0 0 0 0 0 1 0 0 0 0O |-1]0
g3 1 0 0 0 0 0 0 0 0 1 0 0 0| -1

In Case 2, we have e; = e,, and e; contains the singular point of 7" so that e% = —%. The remaining

intersection numbers are exactly the same as in Case 1.

Observe that P ¢ ZU g3 U gy Ugs UgeUgsUggUe  Ue;since P ¢ E by assumption.

Recall that P(u) = —Kx — uT is nef &= P(u) is pseudoeffective <= u € [0,1]. Let v be a
nonnegative real number. Then, in both Cases 1 and 2, we have

8
9—5u—-4v 3+u 5-5u 1-u
L Z Zgh (6.5)

P(u)|, —vL ~z 1 e (e +e2) +

which implies that the divisor P(u)|r — vL is pseudoeffective <= v < 254,
Let P(u, v) be the positive part of Zariski decomposition of the divisor P(u)|r — vL, and let N (u, v)
be its negative part. Then it follows from [3, Theorem 1.112] that

1 1 1
6p(X) = min{SX(T), SV D) S(W.T,;,L.;P) } (6.6)
where
=5
SWIL) 14£ / (P(u,v)) dvdu
and

9-5u

1 4
/0 (P(u,v) - L)ordp (N(u,v)|L)dvdu,

S(WEL: 14//
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Let us compute S(WI,; L) and S(W.T’;’L,; P). IfO<u< % then, using Equation (6.5), we get

8
9—5u—4v 3+u 5-5u 1—u
2 L+ 1 7+ ) (e1 +e) + ;

8

9—5u—-4v 3+u 1-u . 3-3u
T(L+el+(32)+ 1 Z+T‘_Eggilf1<v<
P(u,v) = =

8

9—Su—4 1- 3-3

JTou—v 4“Zgiif L <v<2-u
i=3

2 (L+Z+e +e)+ > ,

8
9 —5u—4v . 9 —Su
T(L+Z+e1+ez+§gi)1f2—u<v< 1

0if0<v <,
3—-3u

2 9
2v+3u-3_ .. 3-3u

(v=1)(e1 +e) + 5 Zif ——<v<2-u

20 +3u—3 8
TZ+(V—2+M)Zg,-if2—u<v<

=3
2u+ (2v = 12u—2v* —2v+10if0< v < 1,
3—-3u
5
(P(u,v))” = 1 130 + 16uv + 402 — 425 — 24v +33 3 — 3y
2 it

(9 — 5u — 4v)? 9—5u

2 if2—u<vg 1

(v=1(er+e)if1 <v<

N(u,v) =

9—5u
4 b

(v—1)(e; +e) +

2+ (v - 12u—6v+12if 1 <v <

<v<2-u,

and

1-u+2vifO<v <1,

3 uifl <v< M

P(u,v)-L= -

(. v) 6—4u—2vif3 3u<v<2—u,
9—5u
4

)

209-5u—-4v)if2-u<v <

Similarly, if % < u < 1, then, using Equation (6.5), we get

8
9—5u—4v 3+u 5-5u 1-u 3-3u
i <
2 L+ 1 7+ 2 (e1 +e) + ;

9—-5u—-4 1- 3-3
#(L+Z)+ (e1 +e) + ngiif Tevgl,
P(u,v) = i=

9—-5u-4v 1—u
——(L+Z +e + +
2 ( e +e) 2

5-5u

M
©

=

N

<

N

[\

[

S

i=3

8

9-5u-4 9-5

#(L+Z+e1+e2+2gi)if2—u<v< !
4 i=3
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Oif0<v<3_23u,
2v+3u-3 3-3u
i <v<l,
> Z if 5 vl
N(u,v) = 2 3u-3
(.v) (v—l)(e1+e2)+v++Zif1<v<2—u,
8
2v+3u -3 . 9 —5u
(v—1)(e1+e2)+TZ+(v—2+u);gilf2—u<v< YR
3-3
22+ (20 = 12)u 2% =20 +10if 0 < v < 2”,
(1—u)(29—13u—16v)if3—3u<v<1’
(P(uv))2= 2 2
’ 13u2 + 16uv + 4v2 — 42u — 24v + 33
5 ifl<v<2-u,
9 — 5u — 4v)? 9-5
%ifz—uévé 4”,
and
1—u+2vif0<v<3_23u,
A-auit i <y <,
P(u,v)-L=

6—4du—-2vifl<v<2-u,
9 —5u

29-5u—-4v)if2—-u<v < 1

Therefore, we have P ¢ Supp(N(u,v)) because P ¢ ZU gz Ugs U gs U gs UgyUggUe Ue;. So,
integrating (P(u,v))? and (P(u,v) - L)%, we get S(W!,; L) = 42 and S(W!.,; P) = B, which implies
that 6p(X) > 1 by Equation (6.6). O

By Lemma 6.8, to show that §p(X) > 1, we may assume that P € E. Then n(P) € €. Now, let us
choose T to be a sufficiently general surface in |H| that contains the point P so that Q is a sufficiently
general hyperplane section of the quadric @ that contains 7 (P). Then T is smooth, and w: T — Qisa
blow up of eight points of the intersection Q N €.

Let Q; = n(P), let Q,..., Qs be the remaining seven points of the intersection Q N % and let
e, ..., eg be the w-exceptional curves such that w(e;) = Qy,...,w(eg) = Qs. Forevery u € [0, 1], set

t(u) = inf {v € Ryg | the divisor P(u)|T —vep is pseudoeffective},

and fix a real number v € [0, (u)]. Let P(u, v) and N (u, v) be the positive and the negative parts of the
Zariski decomposition of the R-divisor P(u)|r — vej, respectively. Then

1 1 1
op(X) > mi , , 6.7
4 )>m1“{SX(T> S(WT:er) S(wz;f:;p)} ©7

by [3, Theorem 1.112], where

T 3 1 t(u) 2
S(W, . e1) = — (P(u,v)) dvdu
’ 14 0 0
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and

1 t(u) 2
S(Wlsp) = i/ / ((P(u,v) -el)) dvdu+
140, Jo

3 P dp(N dvd
+35 L (P(u,v) - ;)or p( (u,v)|e1) vdu.

Let us compute S(WZ,;e;) and NN D)
Recall that ¢: T — P! is an elliptic fibration, which is given by the linear system | — K7|. As in the
proof of Lemma 6.8, let us identify Q = P! x P!,

Lemma 6.9. Let F be a curve in | — K |. Then F is irreducible and reduced.

Proof. Suppose that F is reducible or nonreduced. Then the curve 7 (F) is also reducible or nonreduced,
and every irreducible component of the curve F is a smooth (—2)-curve. But 7(F) is a curve in Q of
degree (2,2) that passes through the points Q1, O, ..., Qg. Therefore, we have one of the following
possibilities:

(1) Q contains a line that passes through Q; and one point among Q», . .., Qs,
(2) Q contains a line that passes through two points among Q», . .., Os,
(3) Q contains a conic that passes through Q| and three points among Q», . . ., Os.

Recall that Q is a general hyperplane section of the quadric @ that contains Q1 = 7w (P). As we already
mentioned in the proof of Lemma 6.8, the quadric @ contains finitely many lines that pass through Q
and a point in € \ Q;. Thus, since Q is assumed to be general, the quadric Q does not contain any of
these lines so that Q does not contain a line that passes through Q and a point among Q», . .., Os.

Similarly, a parameter count implies that Q does not contain secant lines of the curve € so that Q
does not contain a line that passes through two points among Q», . .., Os,

Finally, we suppose that Q contains an irreducible conic C that passes through Q and three points
among Q»,...,Qs. Let p: @ --> P3 be a linear projection from the point Q. Then p(&) is a curve
of degree 7, and the induced map € --»> p(%) is an isomorphism because ¥ is an intersection of
quadrics. Similarly, all points p(Q5>), ..., p(Qs) are distinct. Then p(C) is a three-secant line of the
curve p(%). Note that p(€) contains one-parameter family of three-secants [11, Appendix A]. But
p(Q) is a general plane in P?, which implies that p(Q) does not contain three-secant lines of the curve
p(®) — a contradiction. O

Corollary 6.10. Let y be a class in the group Pic(T) such that —K7 -y = 1 and y* = —1. Then the
linear system |y| consists of a unique (—1)-curve.

Proof. Apply the Riemann—Roch theorem, Serre duality and Lemma 6.9. m|

Let us use Corollary 6.10 to describe infinitely many (—1)-curves in the surface 7. Namely, let
1 and ¢, be any curves in Q@ = P' x P! of degrees (1,0) and (0, 1), respectively. For n € Z( and
i€{2,3,4,5,6,7,8},1let By 1.1, Bn,1,2, Bn2,i» Bun.3, Bna,; be the classes

8
w*(alfl + a2€2) - Z b;e; € Pic(T),
i=1

where ay, a», b1, . .., bg are nonnegative integers given in the following table:
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’ H ai as b b2, b3,b4,b5,b6,b7,bs
B 14n% +Tn + 1 14n% +7n T +Tn+ 1 Vj bj=7n*+3n
Buin 14n* +Tn 14n> +Tn + 1 T +Tn+1 Vjbj=7n*+3n
B ) ) , b; =Tn’> +6n+2
n,2,i 14n° +13n+3 14n° +13n+3 Tn” +10n +3 Vj;éibj:7n2+6n+1
Bus 1402 +21n+7 | 1402 +21n+7 | Tn® +14n+6 Vjb;=7n*+10n+3
Buai || 14n* +29n+ 15 | 14n> +29n+ 15 | Tn® +18n+11 | y; b 7’12+§4n+6
j#ib;=Tn"+14n+7
By Corollary 6.10, each linear system |By, 11|, |Bn.1.2]s |Bn.2.il, |Bn.3ls |Bn.a.i| contains a unique (—1)-

curve. Hence, we can identify the classes By 1.1, Bn.1.2s Bn.2.i» Bn.3, Bn.a,i with (—1)-curves in | B, 1.1/,
|Bn.12ls |Bn2.ils |Bn3ls |Bn.a.il, respectively. Set

By =Bu1,1 + By,
Byo2=Bu22+Bu23+Bno4a+Bupos+Buo6+Bu27+B,os,
Bua=Bna4p+Bna3+Bnas+Bunas+Buact+Bna7+Buag.

Note that irreducible components of each curve B, 1, By 2, By are disjoint (—1)-curves, and B, 1 N
Buy2=@2,Bp2NBy3=0,B,3NBya=0,B,4N0Bpi1,1 =@ foreachn > 0.
Now, we let I(’) = [0, %] and I(’)’l = [%, %]. For every n € Z, we also let

o —1 +4n+ 14n? 1+13n+21n2]
nl ] 6n+14n2 3+ 16n+2102 )
, |1+ 13n+21n% 3+35n+49n?

n1 = 3+16n+21n2’8+42n+49n2]‘

For every n € Z¢, we let

o= 3 +35n +49n? 3+22n+28n2]
m2 | 8 +42n +49n2” 6+ 26n + 28n2 |’
I [3+22n+28n> 2+7n

2| 6+26n+28n2" 3+ Tn |
o2+ 21+50n+28n2}

n3 7 34+7n° 26 + 54n +28n2 |

"o 21 +50n +28n? 39 +91n + 49n? |
n3 7] 26 + 54n +28n2” 48 + 98n + 4902 |’
o= 39 +91n +49n% 19 +41n+21n?|
n4 | 48 + 980 + 4902 23 + 44n + 2102 |
o (19 +41n+21n% 17+ 32n + 14n? |
n4 T 23 +44n + 21027 20 + 34n + 1402 |

Set I, = Ir’l’1 U Ir’lil, Iy = Ir'l’2 ur’ Then

n,2’

p— ’ " —_ ’ 144
I"’3 - In,3 U In,3’ I"’4 - In,4 U In,4'

0.0 = [ (It Uln2ULisUla),

neZsg
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the intervals I, 1, 1,2, 1,3, I, 4 have positive volumes, and all their interiors are disjoint. Let us analyze
P(u,v) and N(u,v) when u is contained in one of these intervals.

2_ 2
First, we deal withu € I,,1. Ifu € I’ and v € |0, Zldn+28n_u(l+1ant28n7) | ihep
’ n, 1+7n+7n

19+ 70n + 84n* — u(16 + 70n + 84n%) — v(8 + 28n + 21n?)

P(u,v) = e+
(.v) 8+ 281+ 2112 !
3+ 351 +49n% — u(8 + 42n + 49n?) 5 1 —4n — 14n% + u(6n + 14n?) 5
+ n,1t+ n
8 + 281 + 21n2 ! 8 +28n + 21n? 2
and N(u,v) = 0. The same holds if u € I”’, and v € [O 7+26"+283" ”(6+226"+28"2)] Then
n, +10n+7n
(P(u,v))? =10 = 12u + 2u® — 2v =12,
P(u,v)-e;=1+v.
. . , 2+14n+28n%—u (1+14n+28n%)  7+26n+28n>-u (6+26n+28n%)
Similarly, if u € In, 1 andv € [ T s T ], then
Plu,v) = 19 + 70n + 84n? —u(16+70n+84n2)—v(8+28n+21n2)
u,v
8+28n+21n?
(19+70n + 84n% — u(16 + 70n + 84n%) — v(8 + 28n + 21n2))(1 +7Tn +7n2)B
+ +
8 +28n +21n2 !
1 — 4n — 140 + u(6n + 14n2)
+ n,2
8+28n+21n? ’
and
u,v) =(ull+14n+28n"|+v(1+7n+7n") -2 —14n - 28n“ | B,
N 1+ 14n +28n> 1+7n+7n%) =2 - 14n — 28n*|B
Then

(P(u,v))* =10 = 12u + 2u® = 2v — 2+
2
+ 2(u(1 + 14n + 28n2) + v(l +7n+ 7n2) -2-14n - 28n2)
and

P(u,v) -e; =5+ 56n + 280n* + 588n° + 392n*—
—2u(1+7n+7n*)(1 + 14n +28n%) — v(1 + 28n + 126n> + 196n° + 98n*).

7+26n+28n —u(6+26n+28n2) 2+14n+28n%—u (1+14n+28n
3+10n+7n? 1+7n+7n?

Likewise, if u € Ir’l”l andv € [ ) ], then
(19 + 70n + 84n> —u(16+70n+84n2)—v(8+28n+21n2)
8 +28n+21n2
(19 + 70n + 84n% — u(16 + 70n + 84n*) — v(8 + 28n + 21n2))(1 +n)(3+ 7n)
* 8+ 28n+21n2 Buzt
. 3+35n+49n% — u(8 +42n + 49n?)

8 +28n+21n?

P(u,v) =

n,l
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and
N(u,v) = (u(6 +26n + 28n2) + v(3 +10n + 7n2) —7-26n- 28n2)3n,2.
Then
(P(u,v))? = 10 = 12u + 2u® — 2v — v+
+7(u(6+26n+28n2) +v(3 +10n+ 7] =7 - 26n - 28n2)2
and

P(u,v) - e = 148 + 1036n + 2751n® + 3234n> + 1372n"* -
~14u(1+n)(1+2n)(3 +Tn)% — v(62 + 4201 + 994n% + 9801° + 343n4).

7+26n+28n%-u (6+26n+28n2)  19+70n+84n>—u (16+70n+84n
3+10n+7n2 ’ 8+28n+21n2

2
Ifuelr’l’1 andv € [ )],then

19+ 70n + 84n* — u(16 + 70n + 84n*) — v(8 + 28n + 21n?)

P(u,v) = e+
8 +28n +21n?
(19 +70n + 84n* — u(16 + 70n + 84n?) — v(8 + 28n + 21n?)) (1 + Tn + Tn?)
" 8 + 281 + 212 Bn1t
(19 +70n + 84n*> — u(16 + 70n + 84n%) — v(8 + 28n + 21n%)) (1 +n)(3 +7n)B
" 8 +28n + 21n2 "2

and
N(u,v) = u(l +14n + 28n2) + v(l +7n +7n2) —2—l4n- 28n2)Bn,1+

+ (u(6 +26n + 28n2) + v(3 +10n + 7n2) —7—26n- 28n2)3n,2.

2+14n+28n%—u (1+14n+28n%)  19+70n+84n>-u (16+70n+84n>)
1+7n+7n? ’ 8+28n+21n2

The same holds if u € I;l’l andv € [ ] . Inboth cases,

we have

P(u,v))? = (19 +70n + 84n2 — u(16 + 70n + 84n) — v(8 + 28n + 21n2 2,
(P’ = ( ( J-( )

Pu,v) e = (8 +28n + 21n2)(19 +70n + 84n® — u(16 +70n + 84n2) - v(s +28n +21n2)).

Hence, if u € I, 1, then

19 +70n + 84n> — u(16 + 70n + 84n?)
8 +28n + 21n?

t(u) =

7+26n+28n”—u (6+26n+28n
3+10n+7n2

2
Now, we deal withu € I, 5. If u € Ir’l ,andv € [O, )], then

17 +56n + 56n* — u(15 + 56n + 56n2) — 7v(1 +n)(1 +2n)
7(1+n)(1+2n) et
(1+n)2+7n) —u(1 +n)(3+7n) u(8 +42n +49n2) — 3 — 351 — 49n?
7(1+n)(1 +2n) 2 7(1+n)(1 +2n)

P(u,v) =

n,3
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15+42n+28n%—u (14+42n+28n?)

GHan+in? - Then

and N(u,v) = 0. The same holds if u € I,’l’2 andv € [0,

(P(u,v))* =10 — 12u + 2u® = 2v —1?,
P(u,v)-e =v+1.

7+26n+28n> u(6+26n+28n2) 15+42n+28n%—u (14+42n+28n2)

3 10n+712 6+14ns7n? » then

Ifuel’zandve[
n,

17 + 56n + 56n% — u(15 + 56n + 56n) — 7v(1 +n)(1 +2n)
7(1+n)(1+2n)
(1 +n)(3+7n) (17 + 56n + 56n* — u(15 + 56n + 56n2) — 7v(1 +n)(1 +2n))B
7(1+n)(1+2n)
u(8+42n +49n%) — 3 — 350 — 49n°

+ B
7(1+n)(1 +2n) 3

P(u,v) =

n,2t

NG, v) = (u(6+26n +28n%) +v(3+ 100 +7n%) = 7 = 261 - 284%) By,

(P(u, v))2 =10 — 12u + 2u® = 2v — v+

7(u(6 +26n + 28n2) + v(3 +10n + 7n2) —7-26n- 28n2)2,

P(u,v) - e = 148 + 1036n + 2751n* + 3234n> + 1372n"* -
—14u(1 +n)(1 +2n)(3 +Tn)>-

- v(62 +420n + 994> + 9801 + 343n4).

15+42n+28n% —u (14+42n+28n%)  7+26n+28n°—u (6+26n+28n2)
6+14n+7n2 ’ 3+10n+7n2

Similarly, if u € I"l’2 andv € [ ], then
17 + 56 + 56n% — u(15 + 56n + 56n2) — 7v(1 +n)(1 +2n)
+
7(1+n)(1 +2n) ¢
(6+ 14n +7n2) (17 + 56 + 56n% — u(15 + 56n + 56n2) — Tv(1 +n)(1 +2n))B

7(1+n)(1+2n)
(1+n)2+7n) —u(l+n)(3+7n)
7(1+n)(1+2n)

P(u,v) =

n,3

Bn,Z,
NG v) = (144 420 +280%) 4 v(6.+ 14 + 70| = 15 = 420 = 28%) By, 3,

(P(u,v))* =10 — 12u + 2u® = 2v — 2+

2
+(u(14 +42n + 28n2) + v(6 +14n+ 7n2) — 15— 42 - 28n2) ,

P(u,v) - e =7(1 +n)(13 + 53n + 701> + 28n%) -
— 14u(1+n)(1 +2n)(6+ 14n +7n2) ~7v(1 +n)2(5 + 14n+7n2).
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15+42n+28n%—u (14+42n+28n%)  17+56n+56n2—u (15+56n+56n
6+14n+7n? 7(1+n) (142n)

2
Likewise, if u € Ir’l ,andv € [ )], then

17 +56n + 56n% — u(15 + 56n + 56n2) — v(7(1 +n)(1 + 2n))
T(1+n)(1+2n) e
. (1+n)(3+7n) (17 + 56n + 56n — u(15 + 56n + 56n2) — 7v(1 +n)(1 +2n))B
7(1+n)(1+2n)
(6 + 14n + Tn?) (17 + 56n + 56n* — u(15 + 56n + 56n%) — 7v(1 + n)(1 + 2n))

+ n
71 +n)(1 +2n) N

P(u,v) =

n,2

and

N(u,v) = (u(6+26n +28n%) +v(3 + 10n + Tn*) — 7 — 26n — 28n*) B, o+
+ ((14+ 420+ 280%) +v(6.+ 14n +7n%) — 15 = 420 — 28n%) By 5.

7+26n+28n%—u (6+26n+28n2)  17+56n+56n>—1u (15+56n+56n>)
3+10n+7n? > 7(1+n) (1+2n)

The same holds ifu € ', and v € [
both cases, we have

]. Moreover, in

P(u,v) - e = 14(1 +n)(1 +2n)(17+56n+56n2 - u(15+56n+56n2) (1 +n)(1 +2n))
and

2 2 2 2

(P(u,v)) =2(17+56n+56n —u(15+56n+56n )—7v(1+n)(1+2n)) .

Thus, if u € I, », then

17 + 56n + 56n* — u(15 + 56n + 56n%)

t =
() 7(1+n)(1 +2n)

2_ 2

Now, we deal withu € I,,3. Ifu € Ir’l 3 andv € [O, 15+42n+28:+1 41(:71242"”8" )] then

59 + 1120 + 56n% — u(57 + 112n + 56n%) — 7v(1 +n)(3 + 2n)
P(u,v) = e+
7(1+n)(3+2n)
39 +91n +49n” — u(48+98n + 49n2) u(l+n)(3+7n) — (1 +n)(2+7n)

+ B3+

7(1+n)(3 +2n) A

7(14+n)(3 +2n)

31+58n+28n%—u (30+58n+28n
11+18n+7n?

2
and N(u,v) = 0. The same holds if u € 1/ and v € [0, )]. Then

(P(u,v))? =10 — 12u + 2u® — 20 =12,
P(u,v)-ep=1+v.
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15+42n+28n>—u (14+42n+28n%)  31+58n+28n>—u (30+58n+28n
Ifue[r’l3andv€[ ( ) (

)
G+1an+7n’ ’ TT+18n+7n2 ] » then

59+ 112n +56n% — u(57 + 112n + 56n%) — 7v(1 + n) (3 +2n)
e

P =
(,v) 7(1+n)(3 +2n)
(6 + 14n +7n?) (59 + 112n + 56n% — u(57 + 112n + 56n°) — 7v(1 +n)(3 +2n))B
+ +
7(1+n)(3 +2n) 3
u(l+n)(3+7n) — (1+n)(2+7n)
Bn4
7(1+n)(3 +2n) ’
NGu,v) = (u(14+ 420 +280%) +v(6.+ 14n +7n%) = 15 = 420 = 28%) By, 3,
(P(u,v))* =10 — 12u + 2u® = 2v — v+
2
+ (u(l4 + 4o+ 28n2) + v(6 +14n+ 7n2) 15420 28n2) ,
P(u,v) - e =7(1 +n)(13 +53n +70n* + 28n°) -
—14u(1+n)(1 +2n)(6+ 14n+7n2) — (1 +n)2(5 + 14n+7n2).
o . ’ 31+58n+28n% -1 (30+58n+28n%)  15+42n+28n>—u (14+42n+28n7)
Similarly, if u € In’3 andv € [ o l8ns T , AT P ] then
Plu.y) = 59 + 112n + 561 — u(57 + 112n + 56n%) — 7v(1 +n)(3+2n)
’ 7(1 +n)(3 +2n)
(1 +n) (11 +7n)(59 + 1121 + 56n* — u(57 + 112n + 56n%) = Tv(1 +n)(3 + 2n))
n,4

7(1+n)(3 +2n)
39 +91n +49n — u(48 + 98n + 49n )B
7(1+n)(3 +2n) 3

NG, v) = (u(30+58n +28n%) + v(11+ 18n +7n%) = 31 = 58n — 284%) B4,

(P(u,v))* =10 — 12u + 2u® = 2v — 2+

2
+7(u(30+58n+28n2) +v(11 + 18n+7n2) —31-58n— 28n2) ,

P(u,v) - e; = 2388 + 8372n + 10983n> + 6370n° + 1372n"* -
— 14u(1 +n)>(11 + 7n)(15 + 14n) — v(846 +2772n + 3346n° + 1764n° + 343n4).

31+58n+28n> u(30+58n+28n2) 59+112n+56n%-u (57+112n+56n>)
11+18n+7n2 T(1+n) (3+2n)

Ifuel’zandve[ ]then
n,3

59 + 1120 + 56n% — u(57 + 112n + 56n%) — 7v(1 +n)(3 + 2n)
7(1+n)(3 + 2n) e
(6 + 14n +7n?) (59 + 112n + 56n% — u(57 + 112n + 56n°) — 7v(1 +n)(3 + 2n))
* T(1+n)(3+2n) Bns*
(1 +n)(11+7n)(59 + 112n + 561> — u(57+112n +56n ) Tv(1 +n)(3 +2n))

7(1+n)(3 +2n)

P(u,v) =

n,4

https://doi.org/10.1017/fms.2024.5 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.5

Forum of Mathematics, Sigma 57

and
N(u,v) = u(14 +42n+ 28n2) + v(6 +14n+ 7n2) 15— 420 - 28n2)3n,3+

+ (u(30 +58n + 28n2) + v(ll +18n+ 7n2) ~31-58n - 28n2)3,,,4.

15+42n+28n%—u (14+42n+28n%)  59+112n+56n>—u(57+112n+56n>)

6+14n+7n2 ’ 7(1+n) (3+2n) ] In both

The same holds if u € I’;’3 and v € [

cases, we have
P(u,v) - e = 14(1 +n)(3+2n)(59+ 1120 + 5602 — u(57+ 112n+56n2) —Tv(1+n)(3 +2n))

and
(P(u,v)) =2(59+112n+56n —u(57+112n+56n )—7v(1+n)(3+2n)) .

Therefore, if u € I, 3, then

59 + 112n + 56n* — u(57 + 112n + 56n?)

t =
(@) 7(1+1)(3 +2n)
2 2
Finally, we deal with u € I, 4. If u € I,'1 4 andv € [0, 31+58n+281r1l+1;$358n+28n )], then
103 + 1827 + 84n* — u(100 + 182n + 84n%) — v(36 + 56n + 21n?)
P(u,v) = e+
36 + 56n + 21n2
17 +32n + 14n* — u(20 + 34n + 14n?) u(48 +98n +49n?) — 39 — 91n — 491>

+ Bpa+ Bpi1,1
36+ 56n +21n2 ’ 36 + 56n + 21n? ’

44+70n+28n% —u (43+70n+28n2)
15+21n+7n?

and N (u,v) = 0. The same holds when u € 1;1'4 and v € [0, ] In both cases,

we compute
(P(u,v))* =10 = 12u + 2u® = 2v =12,
P(u,v)-ep=1+v.

31+58n+28n% -1 (30+58n+28n%)  44+70n+28n%—u (43+70n+28n%)

TT+18n+7n2 ’ 152 1n+7n? > then

IfueI’4andve[
n,

103 + 1827 + 84n> — u(100 + 1821 + 84n%) — v(36 + 56n + 21n?)
36+ 56m + 2172 e
(1+n)(11+ 7n)(103 + 1821 + 84n> — u(100 + 182n + 84n>) — v(36 + 56n + 21n?))
" 36+ 56m + 2172
. 1 (48 + 98n + 49n2) — 39 — 91n — 491
36+ 56n +21n?

P(u,v) =

n,at

n+l,1s
N(u,v) = (u(30 + 580+ 28n2) + v(ll + 180+ 7n2) ~31-58n— 28n2)Bn,4,

(P(u,v))” =10 = 12u + 2u® = 2v — 2+

2
+7(u(30+58n+28n2) +v(11 + 18n+7n2) —31-58n— 28n2) ,
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P(u,v) - e = 2388 + 8372n + 10983n> + 6370n* + 1372n"*—
— 14u(1 +n)>(11 + 7n) (15 + 14n)—

- v(846 +2772n + 334602 + 1764n° + 343n4).

44+70n+28n% u(43+70n+28n2) 31+58n+28n%—u (30+58n+28n
15+21n+7n2 11+18n+7n2

2
IfueI,’l’Aandve[ )],then

103 + 1827 + 84n> — u(100 + 1821 + 84n%) — v(36 + 56n + 21n2)

P(u,v) =
36+ 56n +21n?
(15 +21n+7n%) (103 + 182n + 84n% — u(100 + 182n + 84n%) — v(36 + 56n + 21n?))
+
36 + 561 + 2112 b
17 +32n + 14n% — u(20 + 34n + 14n?)
+ Bn 4
36+ 56n + 21n? ’
and
N(u,v) = (u(43 +70n + 28n2) + v(lS +21n+ 7n2) — 44 —70n - 28n2)B,,+1,1.
Moreover, in this case, we have
(P(u, v))2 =10 — 12u +2u® = 2v — v+
2
2(u(43 +70n +28n2) +v(15 +21n+ 7n2) — 44700 - 28n2)
and
P(u,v) - e; = 1321 +3948n + 4396n° + 2156n° + 392n"* -
- 2u(15 +20n+ 7n2) (43 +70n + 28n2)—
- v(449 +1260n + 130212 + 58813 + 98n4).
, 44+70n+28n> u(43+70n+28n2) 103+182n+84n%—1u (100+182n+84n>)
Ifuel ,andv e [ 5+21n+7n2 36+56n+21n2 ] then
103 + 1821 + 84n% — u(100 + 1821 + 84n?) — v(36 + 56n + 21n?)
P(u,v) = e+
36+ 56n +21n?
(1 +n)(11+ 7n)(103 + 182n + 84n? — u(100 + 182n + 84n%) — v(36 + 56n + 21n?)) 5
+
36+ 56m + 2112 4
(15 +21n+7n%) (103 + 182n + 84n — u(100 + 182n + 84n%) — v(36 + 56n + 21n?))
36 + 56n + 2112 m
and

N(u,v) = (u(30 + 581 +28n%) + v(11 + 18n + 7n?) — 31 — 58n — 28n°) B, 4+
+ (u(43 +70n + 28n%) + v(15 + 21n + Tn?) — 44 — 701 — 28n%) B,y 1.

31+58n+28n —u(30+53n+28n2) 103+1827-+84n%—u (100+182n+84n?)

144
The same holds when u € In, gand v € T 18ns7m2 36562122

Moreover, in both cases, we have
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P(u,v) - e = (36 + 561 +21n%) (103 + 1821 + 84n° — u(100 + 1821 + 84n%) — v(36 + 56n + 21n%))
and
(P(u,v))? = (103 + 1821 + 84n> — u(100 + 182n + 84n”) — v(36 + 56n +21n?))”
Thus, if u € I, 4, then

103 + 1821 + 84n> — u(100 + 1821 + 841?)
36 4+ 56n +21n?

t(u) =

Now, we are ready to compute S(WZ_; e;). Namely, for every i € {1,2, 3,4}, we set

3 t(u) 5
Sni= —/ / (P(u,v)) dvdu.
14 J5,. Jo

Then

SWEier) = D" (Sn + Sn2 + Suz + Sn).
n=0

On the other hand, integrating, we get

84365
114688

ml = (8 +28n+21n?) A, .
448n* (1 +n)(2+7n)*(3 + Tn)*(4 + Tn)*(1 + Tn + Tn?) if

ifn=0,

nzl,

where

A1 = 1536 +109312n + 29355520 + 42681728n> + 386407488n" + 2335296292n° +
+97896480991° + 290383647611 + 61312905318n® + 91454579804n° +
+94035837280n'" + 633177506081 + 2508841395212 + 4427367168n"3.

Similarly, we get

(1+2n)Anz

Spn = ,
2T 41+ )2+ Tn)*(3 + Tn)* (4 + Tn)*(6 + 1dn + Tn?)

where

Ay = 1618654 + 31459234n + 2710692530 + 1362423916n° + 4419070194n* + 9654348284n° +
+14368501182n1° + 143620520961 + 920932842218 + 34127621921° + 5534208961 '°.

Likewise, we get

_ (3 + 2n)An,3
T 4(1+n) 3+ )46+ Tn)* (8 + Tn)*(11 + Tn) (6 + 14n + Tn?)’

Sn,3
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where

Anz = 1167997914 + 154549233360 + 91492878645n> + 3199341335750+
+734395997090n* + 11622031053781° + 1294197714054n° + 1014406754242n" +
+548632346402n° + 195059453722n° + 4104538312010 + 3873946272n'!.

Finally, we get

B (36 +56n +21n*) A4
© 448(1 +n)* (6 + Tn)*(8 + Tn)* (10 + Tn)*(11 + 7n) (15 + 21n + Tn2)’

Sn,4

where

Apa = 365613573312 +4021500121920n + 20341847967024n° +
+6265007128302471° + 131072047236004n* + 196698030664492n° + 217823761840153n°+
+180219167765455n" + 111395400841326n° + 50802960251820n° + 16615457209344n'0+
+3690223711216n"" + 498816700928n'2 + 3099157017613

Then, adding, we get

SWler)= > (sn,1 +Spa+Sns+ s,,,4) ~0.976712233 ... < 1.
n=0

Finally, let us compute S(WZ;?‘.; P).Foreveryi € {1,2,3,4}, we set

3 t(u) 2
M= 17 /1 ./o ((P(u,v) -el)) dvdu,
3 . t(u) 2
M, = ﬁ/%/o ((P(u,v)-el)) dvdu.

Then
T o 4 3 1 t(u)
e 4 4
S(W.. 0 P) = nZ:(:) ; (M,” + Mn’l-) +5 ‘/0 ‘/0 (P(u,v) - el)ordp(N(u, v)|el)dvdu.
On the other hand, integrating, we get
1403
iy =
| 22268 =0
nl = (I+n)A;

n>1,

, "
4484 (1+ 30 B+ I (1 + In+Tn2) |
where

Al | = 1+81n+2535n% +372097° + 301046n" + 14597360+
+4420190n° + 8425410n" +9821448n% + 6392736n° + 177811217,
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Similarly, we get

4

(1+7n+7nH)A"
M = . ,
LT 28(1+n) (1 +3n)4(2+ Tn)*(3 + Tn)* (4 + Tn)*

where

Al | = 480574 + 129068661 + 157271760n> + 1149521334n + 5612285145n"+
+ 192789345351 + 47770884833n° + 8601648115917 + 111679016743n+
+1019395139071° + 62077730148n'° + 226359028981 + 37355910481 2.

Likewise, we have

(6+14n+ 7n2)A;l 2
M, = : ,
m2 7 224(1 4+ n) (1 +2n)3(2 + Tn)*(3 + Tn)*(4 + Tn)*

and

11780 + 1111425 + 43095112 + 87563703 + 9786560 + 566832n° + 131712n°
224(1 +2n)3(3 + Tn)* (6 + 14n + Tn?)

’

"o
Mn,2 -

where

A, = 1561176 +35176776n + 356105548n” + 2137950448n° +
+8458603286n* + 23158717414n° + 44778314889n° + 61151030584n" +
+ 5780728993918 + 36026947376n° + 1332163156810 + 2213683584n!".

Similarly, we have

(11+7n)A;
M= ’ ,
37 2041+ n)3(3 + Tn)*(13 + 14n)4(6 + 14n + 7n2)

where
Al 5 = 13726028 + 1645411900 + 859036123n> + 25640024551 + 48233235190+
+5933644367n° + 4776917782n° +2428774768n" + 708314208n® + 90354432n°.

. . (6+14n+7n?)A”
Likewise, we have M’ = n.3

= AT (GrTm (ST (1 1r7n) (T3eiama > Where

A7 5 = 67760261208 + 703706084640n + 3313300067388n> + 9335574166156n+
+ 17489294547578n* + 22873117200584n° + 213085622097251° + 14139587568253n" +
+ 6548997703738n% +20162836210721° + 371345421216n'° + 30991570176n"".

Similarly, we see that

(15+21n+7n")A! ,
M, = : ,
w4 28(1+m)*(6+ Tn)* (8 + Tn)* (11 +Tn) (23 + 21n)*
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where

Al , = 88135013250 + 967134809574n + 4853884596732n"+
+ 14732868828434n° + 30120687035243n* + 43697011451345n° + 46124583653603n°+
+35692827118809n" + 200960521003977% + 8028312817917n°+
+2160120347280n'° + 351456857766n'" + 26149137336n'2.

Finally, we have

(11+7n)A”,
MII - 5 ,
4T A48(1+n)* (10 + Tn)* (23 + 21n)* (15 + 21n + Tn?)

where

A, = 7582266167 + 59702225967n + 2109738849250 + 440580768679+
+6020907434221* + 5625729985121° + 363945674554n° + 1609551818700+
+46566357768n% + 7957643904n° + 60989241617,

Now, adding terms together, we see that

1 t(u)
S(WEL: P) < 0.974 + ; / / (PG v) - er)ordp (N, v, )dvau 6.8)
0 0

Now, for every i € {1,2,3,4} and any irreducible component ¢ of the curve B, ;, we let

t(u)
F,i= ;/ / (P(u,v) - er)orde(N(u,v)) (¢ er)dvdu =
t(u)
:2/1,“1/ (P, v) - e1)orde (N (e, v)) (€ - e1)dvdu+
t(u)
7‘/1;”‘/0' (P(M,V) ~el)ord((N(u,v))(f.el)dVdLH_

t(u)
+ % ‘/I;'M /0 (P(u,v) . el)OI'dg(N(u, v))(f . el)dvdu,

where we set Ip.0 = @, I,,5 = I41,1 forn > 0 and I,, o = I,,—1 4 for n > 1. Since irreducible components
of the curve B, ; are disjoint, we get

;‘/01‘/0’(“) (P(u,v)'el)ordp(N(u,v)‘e])dvdu iiﬂ”

n=0 i=1
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On the other hand, each F,, ; is not difficult to compute. For instance, we have

T-6u 6u
Fo1 = / / (v+u-2)(5-2u—-v)dvdu+
2-u
19-16u 16u

/ / 8(u+v—-2)(19 — 16u — 8v)dvdu+

19 161

281
8 —-2)(19 — 16u — 8v)dvdu =
/ /2u (u+v-2)(19 u — 8v)dvdu = 32256

Similarly, we see that

P 3(1 + 7n + Tn?)?
wl = 2n2(1+3n) (=1 +7n)(1 +Tn) (2 + Tn) (3 + Tn)2(4 + Tn) (2 + 21n)

for n > 1. Likewise, we get

Fna= 1+n

112n(1 +2n) (1 + 3n) (2 + Tn) (3 + Tn)2(4 +7n)

Likewise, for every n > 0, we have

P 15(6 + 14n + 7n?)?
w3 4(1+n)2(1 +2n)(2+7Tn)(3+Tn)2(4 +Tn) (6 + Tn) (8 + 7n) (13 + 14n)

and

(11 +7n)?
112(1 +n)2(3 + 7n) (6 + Tn) (8 + 7n) (10 + 7n) (13 + 14n) (23 + 21n)

Fn,4=

Now, one can easily check that the total sum of all F,, 1, Fy, 2, Fpn 3, Fu4 is at most 0.014. This and
Equation (6.8) give S(W.T,f‘.; P) £ 0.974 + 0.014 = 0.988. Using Equation (6.7), we get dp(X) > 1.

Corollary 6.11. All smooth Fano threefolds in the family Ne2.7 are K-stable.
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