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Abstract Based on the identification of four-dimensional Möbius transformations

g(x) = (ax + b)(cx + d)−1

by the matrix group PS� L(2, H) of quaternionic 2×2 matrices with Dieudonné determinant equal to 1,
we give an explicit expression for the classification of g in terms of a, b, c and d.
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1. Introduction

It is well known that the orientation preserving isometries of n-dimensional hyperbolic
space, Hn, are the Möbius transformations M(Rn−1) � iso+(Hn). It is important to
classify Möbius transformations by their dynamics and their fixed points. It is also gen-
erally important that these classes should be conjugacy invariants. When n = 2 or n = 3
this is very well known and completely standard.

For arbitrary dimensions, Ahlfors [1] related Möbius transformations to 2 × 2 matri-
ces whose entries lie in a (suitably chosen part of a) Clifford algebra and discussed the
classification of elements in M(Rn−1) for n � 4. Wada [10], Waterman [11], Cao and
Waterman [2] and Kim and Parker [9] also had done some related research in this direc-
tion.

In the cases of n = 4 and n = 5 it is possible to relate Möbius transformations to 2× 2
quaternionic matrices. Kellerhals has recently used quaternionic Möbius transformations
to study isometries of hyperbolic 4-space [7] and hyperbolic 5-space [8] and the geometry
of the corresponding hyperbolic manifolds. In [3], Cao et al . considered quaternionic
Möbius transformations preserving the unit ball in H, which is identified with U(1, 1; H).
They gave an explicit expression for the classification of g in terms of a, b, c and d.
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One may regard these quaternionic Möbius transformations as three-dimensional Möbius
transformations.

In this paper we follow the choice of the hyperbolic 5-space model as in [8]. Take
the hyperbolic 5-space H5 with its canonical orientation and parametrize the space with
the aid of H by writing E5

+ = H × R+ so that ∂H5 = H̄. Let S�L(2; H) denote the
collection of all quaternionic 2 × 2 matrices with Dieudonné determinant det� = 1,
which is expressed as

det�(g) =+

√
|ad|2 + |bc|2 − 2 Re(ac̄db̄). (1.1)

Proposition 1.1 (see [8, 12]). Let

g =

(
a b

c d

)
∈ S�L(2; H).

Then

g−1 =

(
d∼ −b∼

−c∼ a∼

)
=

(
∼d −∼b

−∼c ∼a

)
,

where

d∼ = d(ad − bd−1cd)−1 := dr−1
11 , b∼ = b(db−1ab − cb)−1 := br−1

12 ;

c∼ = c(ac−1dc − bc)−1 := cr−1
21 , a∼ = a(da − ca−1ba)−1 := ar−1

22 ;
∼d = (da − dbd−1c)−1d := l−1

11 d, ∼b = (bdb−1a − bc)−1b := l−1
12 b;

∼c = (cac−1d − cb)−1c := l−1
21 c, ∼a = (ad − aca−1b)−1a := l−1

22 a.

By coefficient comparison of gg−1 = I = g−1g and the condition det� = 1, one obtains

a∼c = c∼a, |lij | = |rij | = 1. (1.2)

The group S�L(2; H) acts on H̄ by linear fractional transformations

g(x) = (ax + b)(cx + d)−1 (1.3)

with g(∞) = ∞ for c = 0, and with g(∞) = ac−1 and g(−c−1d) = ∞ for c �= 0.
The fixed point set of a transformation g ∈ PS� L(2; H) is defined by

fix(g) = {v ∈ H̄ : g(v) = v}.

By passing to the projectivized group PS� L(2; H) := S�L(2; H)�{±I}, one gets the
isomorphism

PS� L(2; H) � iso+(H5).

In the following, we will conceive an element of PS� L(2; H) as a four-dimensional
Möbius transformation by the correspondence (1.3).
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In this paper, we give a classification involving the norm of its right eigenvalues (cf. [5])
and its fixed point(s). We say that a non-trivial element g is

(i) parabolic if the norms of its right eigenvalues are 1 and it has exactly one fixed
point in H̄,

(ii) loxodromic if the norm of one of its right eigenvalues is bigger than 1,

(iii) elliptic if the norms of its right eigenvalues are 1 and it has at least two fixed points
in H̄.

For a non-trivial element g, since the cardinality of its fixed point(s) and the norms of
its right eigenvalues are conjugate invariant [5,6], the above classification is conjugate
invariant and complete.

In order to state our result conveniently, we give here a brief background of the real
quaternion division ring H, whose elements are of the form z = z1 + z2i + z3j + z4k ∈ H,
where zi ∈ R and i2 = j2 = k2 = ijk = −1. Let z̄ = z1 − z2i − z3j − z4k be the conjugate
of z, and

|z| =
√

z̄z =
√

z2
1 + z2

2 + z2
3 + z2

4

be the modulus of z. We define Re(z) = 1
2 (z + z̄) to be the real part of z, and Im(z) =

1
2 (z − z̄) to be the imaginary part of z. Also z−1 = z̄|z|−2 is the inverse of z. Two
quaternions z and w are similar, which is denoted by z ∼ w, if there exists non-zero
q ∈ H such that z = qwq−1. For a unit quaternion q, we can write

q = exp(αJ) := cos α + J sin α for some α ∈ [0, 2π),

where J = Im(q)/|Im(q)| is a pure unit quaternion and J2 = −1.
As in [4], by identifying a quaternion a = a1 + a2i + a3j + a4k with a real vector

a = (a1, a2, a3, a4)T ∈ R4, the addition in H becomes the componentwise addition of
vectors in R4 and multiplication can be expressed as ab = Lab and ba = Rab, where

La =

⎛
⎜⎜⎜⎝

a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

⎞
⎟⎟⎟⎠ , Ra = CLT

a C =

⎛
⎜⎜⎜⎝

a1 −a2 −a3 −a4

a2 a1 a4 −a3

a3 −a4 a1 a2

a4 a3 −a2 a1

⎞
⎟⎟⎟⎠ ,

C = diag(1,−1,−1,−1) and MT denotes the transpose of matrix M .
The inner product of p and q is

p · q := (p, q) = 1
2 (pq̄ + qp̄). (1.4)

When c �= 0,

g(x) = (ax + b)(cx + d)−1 = ac−1 +
|c|−2(|c|−2(−c∼))(x + c−1d)c̄

|x + c−1d|2 . (1.5)
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Thus,

g(x) = ac−1 + |c|−2A(g)
(x + c−1d)
|x + c−1d|2 , (1.6)

where A(g) = |c|−2L(−c̄∼)Rc̄C is a real orthogonal matrix with determinant −1.
For

g =

(
a b

c d

)
∈ PS� L(2; H)

with c �= 0, let

σ := 1
2 (ac−1 + c−1d), p :=

Im(σc)
|Im(σc)| , q :=

Im(σ̄r21c̄)
|Im(σc)| . (1.7)

For the case σc ∼ σ̄r21c̄ /∈ R, we define

cos φ =
|σp|
|σ| ,

where

σp =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2 (σ̄ + pσ̄p) provided p = q̄,[

1 +
((p − q̄)σ̄)2 + ((1 + pq̄)σ̄)2

2|σ|2|p − q̄|2

]
σ provided p �= q̄.

(1.8)

For the case σc = σ̄r21c̄ ∈ R, we define cos φ = 1.
We will show in § 3 that the following lemma holds.

Lemma 1.2. If g ∈ PS� L(2, H) with c �= 0 and σc = σ̄r21c̄ ∈ R, then rank(I−A(g)) =
rank(I − A(g),σ).

Our main theorem is as follows.

Theorem 1.3. Let

g =

(
a b

c d

)
∈ PS� L(2, H) with c �= 0.

(a) If σc ∼ σ̄r21c̄,

(I) and if rank(I − A(g)) = rank(I − A(g),σ),

(i) and if |σc| < cos φ, then g is elliptic,
(ii) and if |σc| = cos φ, then g is parabolic,
(iii) and if |σc| > cos φ, then g is loxodromic;

(II) and if rank(I − A(g)) �= rank(I − A(g),σ), then g is loxodromic.

(b) If σc � σ̄r21c̄, then g is loxodromic.

It is immediate from Theorems 1.3 and 2.1 (cf. § 2) that we can state the following
corollaries.
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Corollary 1.4. A non-trivial element g is elliptic if and only if one of the following
holds:

(a) c = 0,

(i) d � a and |a| = |d| or

(ii) d ∼ a /∈ R and bd̄ = ab;

(b) c �= 0, σc ∼ σ̄r21c̄, rank(I − A(g)) = rank(I − A(g),σ) and |σc| < cos φ.

Corollary 1.5. A non-trivial element g is parabolic if and only if one of the following
holds:

(a) c = 0,

(i) d ∼ a /∈ R and bd̄ �= ab or

(ii) d = a ∈ R and b �= 0;

(b) c �= 0, σc ∼ σ̄r21c̄, rank(I − A(g)) = rank(I − A(g),σ) and |σc| = cos φ.

Corollary 1.6. A non-trivial element g is loxodromic if and only if one of the following
holds:

(a) c = 0, d � a and |a| �= |d|;

(b) c �= 0,

(i) σc ∼ σ̄r21c̄, rank(I − A(g)) = rank(I − A(g),σ) and |σc| > cos φ, or

(ii) rank(I − A(g)) �= rank(I − A(g),σ), or

(iii) σc � σ̄r21c̄.

We now outline the layout of the paper. In § 2, we discuss the classification of Möbius
transformation g with c = 0. By showing that transformation g with c �= 0 can be
PS� L(2, H) conjugate to an upper triangular matrix, we also obtain the standard forms
of elements in PS� L(2, H). With the aid of the isometric sphere, we prove our main
theorem in § 3 by a similar method to that employed by Ahlfors in [1]. In § 4, we point
out that some earlier results in dimensions 2 and 3 can be deduced from the results in
this paper and thus show that all the classes we indicated are non-empty.

2. The case c = 0 and the standard forms

By our trichotomy classification and the application of [4, Theorem 3] to xd − ax = b,
we have the following theorem.

Theorem 2.1. Let v be the finite fixed point of the non-trivial four-dimensional
Möbius transformation g(x) = (ax + b)d−1.
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(a) If d � a, then

v = q−1(bd̄ − ab), q = 2(Re(a) − Re(d))a + |d|2 − |a|2,

(i) if |a| = |d|, then g is elliptic with two fixed points;

(ii) if |a| �= |d|, then g is loxodromic.

(b) If d ∼ a /∈ R,

(i) and if bd̄ = ab, then

v =
1

4|Im(d)|2 (ab − bd) + h − 1
|Im(d)|2 Im(a)h Im(d), ∀h ∈ H,

and in this case g is elliptic with fixed points forming a two-dimensional affine
subspace of R4;

(ii) and if bd̄ �= ab, then g is parabolic.

(c) If d = a ∈ R, then g is parabolic provided b �= 0.

Point v ∈ fix(g) if and only if

v = g(v) = (av + b)(cv + d)−1. (2.1)

Multiplying both sides from the right by cv + d, we see that v satisfies the equation

vcv + vd − av − b = 0. (2.2)

If c �= 0, then the above equation is

t2 − (cac−1 + d)t + cac−1d − cb = 0, t = cv + d,

that is,
t2 − 2cσt + l21 = 0, t = cv + d. (2.3)

By (2.2), we have
(

a b

c d

) (
v

1

)
=

(
av + b

cv + d

)
=

(
vcv + vd

cv + d

)
=

(
v

1

)
(cv + d). (2.4)

Lemma 2.2. Let

g =

(
a b

c d

)
∈ PS� L(2, H).

Then g is PS� L(2, H) conjugate to an upper triangular matrix.
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Proof. The case c = 0 or b = 0 is obvious. For the cases b �= 0 and c �= 0, letting v be
a fixed point of g, we have

(a − vc)|v|2 = vdv̄ − bv̄ (2.5)

and

(−v̄a + dv̄)|v|2 = v̄bv̄ − |v|4c. (2.6)

Let

U =
1√

1 + |v|2

(
v −1
1 v̄

)
.

Then det�(U) = 1 and

U−1gU =

⎛
⎜⎜⎜⎝

cv + d + v̄av + v̄b

1 + |v|2
−v̄a + dv̄ + v̄bv̄ − c

1 + |v|2

0
(a − vc) + vdv̄ − bv̄

1 + |v|2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝cv + d

v̄bv̄

|v|2 − c

0 a − vc

⎞
⎟⎠ . (2.7)

The proof is completed. �

If g with c = 0 has a finite fixed point v, then conjugation by f(x) = x − v sends the
fixed point of g to ∞ and results in

fgf−1(x) = axd−1. (2.8)

The above observation, together with the fact that any quaternion is conjugate to a
complex number and using Theorem 2.1 and Lemma 2.2, implies that the standard
forms of four-dimensional Möbius transformation are as follows.

Theorem 2.3. Let

g =

(
a b

c d

)
∈ PS� L(2; H)

and let α, β, θ ∈ [0, π).

(a) g is loxodromic if g is conjugate to(
teiα 0
0 t−1e−iβ

)
,

where t > 0, t �= 1.

(b) g is elliptic if g is conjugate to (
eiα 0
0 e−iβ

)
.
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(c) g is parabolic if g is conjugate to(
eiα exp(θJ)
0 e−iα

)
or

(
1 1
0 1

)
,

where exp(θJ)eiα �= eiα exp(θJ).

3. The proof of Theorem 1.3

We define the isometric sphere I(g) of Möbius transformation g(x) = (ax + b)(cx + d)−1

with c �= 0 by

I(g) = {x ∈ H : |x + c−1d| = |c|−1}.

By Proposition 1.1, the isometric sphere of g−1 is

I(g−1) = {x ∈ H : |x − ac−1| = |c|−1}.

Let ext(I(g)) and int(I(g)) be the exterior and interior of isometric sphere I(g), respec-
tively. By exploiting (2.7) and Theorem 2.1, the location of its fixed point can be stated
as follows.

Theorem 3.1. Let v be a fixed point of g(x) = (ax + b)(cx + d)−1 with c �= 0. Then

(a) v ∈ I(g) ∩ I(g−1) provided that g is elliptic or parabolic,

(b) v ∈ ext(I(g)) ∩ int(I(g−1)) or v ∈ int(I(g)) ∩ ext(I(g−1)) provided that g is loxo-
dromic.

The normalized form of

g =

(
a b

c d

)
with c �= 0

is the transformation

g0 = fgf−1 =

(
σc σcσ + b − ac−1d

c cσ

)
, (3.1)

where

f =

(
1 β

0 1

)
and β = 1

2 (c−1d − ac−1).

If g0 has a fixed point v0, then the original form has the fixed point v0+ 1
2 (ac−1−c−1d).

As far as the fixed points or type criterion are concerned it is therefore sufficient to
consider the normalized form. Recall that g and its normalized form g0 share the same
values of c, σ, l21, r21 and A(g). Thus, it suffices to prove Theorem 1.3 in its normalized
form. We divide our proof into several lemmas.

Lemma 3.2. If σ = 0, then g is elliptic.
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Proof. By (2.3), the fixed point v of g is a solution to the equation (cv)2 = −l21.
By [6, Theorem 2.3], g has at least two fixed points in H. It follows from (2.4) and
|l21| = 1 that all the right eigenvalues of g have norm 1. Thus, g is elliptic. The proof is
completed. �

In what follows we assume that σ �= 0.
We denote by V (g) all the solutions to the following equation

σcx = xσ̄r21c̄.

More explicitly,

V (g) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{0} if σc � σ̄r21c̄,{
h − Im(σc)h Im(σ̄r21c̄)

|Im (σc)|2 , ∀h ∈ H

}
if σc ∼ σ̄r21c̄ /∈ R,

H if σc = σ̄r21c̄ ∈ R.

(3.2)

By the above expression, dim V (g) = 0, 2 or 4.
Let φ be the angle between σ and its orthogonal projection σp on V (g) if dimV (g) � 2.

Lemma 3.3. If σc ∼ σ̄r21c̄ /∈ R, letting p and q be as in (1.7), then

cos φ =
|σp|
|σ| , (3.3)

where σp is as in (1.8).

Proof. By (1.7), the element of V (g) can be expressed as

x = h − phq, ∀h ∈ H. (3.4)

For the first case, p = q̄, (3.4) can be viewed as

x = (I − LpRp̄)h, ∀h ∈ H. (3.5)

Since I − LpRp̄ is a real symmetric matrix and 1 and p are two orthogonal vectors in
the null space of I − LpRp̄, 1 and p are thus two orthogonal basis in the orthogonal
complement V (g)⊥ = span{1, p}. Hence, the orthogonal projection σ⊥

p on V (g)⊥ is

σ⊥
p = (σ · 1)1 + (σ · p)p = σ + 1

2 (σ̄ + pσ̄p).

Thus,
σp = σ − σ⊥

p = − 1
2 (σ̄ + pσ̄p).

For the second case p �= q̄, since p − q̄ and 1 + pq̄ are two orthogonal vectors of V (g),

x1 =
p − q̄

|p − q̄| and x2 =
1 + pq̄

|1 + pq̄| =
1 + pq̄

|p − q̄|
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are the standard orthogonal basis of V (g). Hence, the orthogonal projection σp of σ on
V (g) is

σp = (σ · x1)x1 + (σ · x2)x2 = σ +
1

2|p − q̄|2 [(p − q̄)σ̄(p − q̄) + (1 + pq̄)σ̄(1 + pq̄)].

The proof is completed. �

By (1.6), the equation

ac−1 − |c|−2c∼(x + c−1d)c̄ = x (3.6)

is solvable if and only if

rank(I − A(g)) = rank(I − A(g),σ). (3.7)

Let v be a fixed point of g. Then

σcv + σcσ + b − ac−1d = v(cv + cσ). (3.8)

Multiplying both sides from the right by c, we have

(v − σ)c(v + σ)c = bc − ac−1dc = −r21. (3.9)

Hence,
|(v − σ)| |(v + σ)| = |c|−2. (3.10)

The following lemma is strongly motivated by the method of Ahlfors [1].

Lemma 3.4. If σc ∼ σ̄r21c̄ /∈ R, then

(a) g is elliptic if and only if |σc| < cos φ and rank(I − A(g)) = rank(I − A(g),σ),

(b) g is parabolic if and only if |σc| = cos φ and rank(I − A(g)) = rank(I − A(g),σ),

(c) g is loxodromic if and only if one of the following holds:

(i) |σc| > cos φ and rank(I − A(g)) = rank(I − A(g),σ);

(ii) rank(I − A(g)) �= rank(I − A(g),σ).

Proof. We begin with the elliptic case. Let v be a fixed point of a elliptic element g.
By Theorem 3.1 and (1.6), we have

(I − A(g))(v + c−1d) = 2σ. (3.11)

Thus, if g is elliptic then rank(I − A(g)) = rank(I − A(g),σ).
As g is elliptic, the intersection isometric spheres of g and its inverse is a two-

dimensional sphere S2(g), situated in the hyperplane through the origin perpendicular
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to σ with centre 0 and radius r =
√

|c|−2 − |σ|2. The fact that v is perpendicular to σ

implies that v̄ = −σ−1vσ̄, which leads to

|c|−2(v − σ)−1 = |v − σ|2(v − σ)−1 = v − σ = −σ−1(v + σ)σ̄.

Substituting this into (3.9), we get

σc(v + σ) = (v + σ)σ̄r21c̄. (3.12)

By [4, Theorem 3], we get the expression for V (g) as in (3.2). Since g has at least two
fixed points, −σ+V (g) intersects S2(g), which implies that |σ| tanφ < r, i.e. |σc| < cos φ.

For the converse, the conditions dimV (g) � 2 and |σc| < cos φ guarantee the existence
of two points u and v that lie on S2(g) and satisfy (3.12). It follows from the locations
of u, v and (3.12) that u and v are two solutions to (3.9), which implies that u and v are
two fixed points of g. By Lemma 2.2, we can conjugate g to the upper triangular matrix⎛

⎜⎝cv + cσ
v̄(σcσ + b − ac−1d)v̄

|v|2 − c

0 σc − vc

⎞
⎟⎠ .

By the definition of S2(g), we know that |v ± σ| = |c|−1, which implies that the norm of
its right eigenvalues is 1. By Theorem 2.1, g is elliptic. This completes the proof of (a).

If g is parabolic, as in the proof of (a), we have rank(I − A(g)) = rank(I − A(g),σ).
Exactly as in the proof of (a), a point v ∈ S2(g) is a fixed point if and only if v ∈
−σ +V (g). Therefore, if g is parabolic, then S2(g) and −σ +V (g) meet in a single point,
which implies that |σc| = cos φ.

For the converse, the conditions dimV (g) � 2 and |σc| = cos φ guarantee the existence
of a single point v that lies on S2(g) and satisfies (3.12). It follows that v is a fixed point
of g. It follows from the proof of Lemma 2.2 that any other fixed point u would satisfy
|cu + d| = 1 and hence would also lie on S2(g) and on −σ + V (g). This contradiction
implies that g is parabolic. This completes the proof of (b).

The proof of (c) follows from the trichotomy classification and the proof of (a) and (b).
The proof is completed. �

Proof of Lemma 1.2. If σ = 0, our result follows automatically. For the case σ �= 0,
we have r21 = 1 and c∼ = cr−1

21 = c. It is easy to check that x = 1
2 (ac−1 − c−1d) is a

solution to (3.6). The proof is completed. �

By Lemma 1.2 and the proof of Lemma 3.4, we have the following.

Lemma 3.5. If σc = σ̄r21c̄ ∈ R, then

(a) g is elliptic if and only if |σc| < 1,

(b) g is parabolic if and only if |σc| = 1,

(c) g is loxodromic if and only if |σc| > 1.
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Lemma 3.6. If σc � σ̄r21c̄, then g is loxodromic.

Proof. Suppose that g is elliptic or parabolic. Then, by Theorem 3.1, the fixed point
v of g satisfies equation (3.12). Thus, σc � σ̄r21c̄ implies that v = −σ. Conjugating by

h =

(
0 1

−1 v

)
∈ PS� L(2, H),

we have

hgh−1 =

(
c(v + σ) −c

0 (σ − v)c

)
=

(
0 −c

0 (σ − v)c

)
. (3.13)

This is a contradiction, which implies that g is loxodromic.
The proof is completed. �

Proof of Theorem 1.3. This follows from the proofs of Lemmas 1.2, 3.2–3.6. �

4. Examples

It is evident that PSL(2, C) and U(1, 1; H) are subgroups of PS� L(2; H). In this section,
we indicate that the classifications obtained of these groups can be derived by the result
in this paper and thus show that all the classes we indicated are non-empty.

For the case of PSL(2, C), Proposition 4.1 and Theorems 1.3 and 2.1 imply that our
classification is compatible with the classical complex case.

Proposition 4.1. Let

g =

(
a b

c d

)
∈ PSL(2, C).

Then

(i) rank(I − A(g)) = rank(I − A(g),σ) provided a + d ∈ R,

(ii) rank(I − A(g)) �= rank(I − A(g),σ) provided a + d /∈ R.

Proof. Let y = x+c−1d. In the complex case r21 = 1 and 2σc = a+d. Equation (3.6)
has a solution if and only if

2σc = yc + yc

has a solution. The proof is completed. �

For the case of U(1, 1; H), we recall that the basic relations of the entries of

g =

(
a b

c d

)

are as follows:

|a| = |d|, |b| = |c|, |a|2 − |c|2 = 1, āb = c̄d, ac̄ = bd̄. (4.1)
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For g ∈ U(1, 1; H), it is easy to check that x = 0 is a solution to (3.6), which implies
that the condition rank(I − A(g)) = rank(I − A(g),σ) always holds.

For g ∈ U(1, 1; H), we have

l21 = c̄−1b, σc = Re(a) + 1
2 ā(r21 − 1), σ̄r21c̄ = σ̄b = Re(d) + 1

2 d̄(l21 − 1). (4.2)

Hence,
σc ∼ σ̄r21c̄, |Im(σc)| = |Im(σ̄r21c̄)| = 1

2 |Im((l21 − 1)d̄)|. (4.3)

If b = c̄ �= 0, then r21 = l21 = 1 and σc = σ̄b = Re(a) = Re(d). This observation shows
that the case (b) of Theorem 1.3 in [3] is the same as case σc = σ̄r21c̄ of Theorem 1.3
applied in U(1, 1; H).

For g ∈ U(1, 1; H) with b �= c̄ �= 0, we define

∆ = |Im((l21 − 1)d̄)|2 − |l21 − 1|2 = 4|Im(σc)|2 − |l21 − 1|2, (4.4)

which is the same as in [3, Theorem 1.3] by (4.3).
If σ = 0, then ∆ = −|l21 − 1|2 < 0 for l21 �= 1. By Lemma 3.2, g is elliptic, which is

the same as the classification of [3, Theorem 1.3].
For the remaining case σ �= 0, we have the following Proposition 4.2, whose proof can

be achieved by the relations of (4.2)–(4.4), (1.7) and (1.8).

Proposition 4.2. Let

g =

(
a b

c d

)
∈ U(1, 1; H).

Then

|σc| > cos φ, if and only if ∆ > 0,

|σc| = cos φ, if and only if ∆ = 0,

|σc| < cos φ if and only if ∆ < 0.

The above observations indicates our classification restricted in U(1, 1; H) is equivalent
to the main result in [3].

We remark that the classes we indicated are non-empty. The examples of (I) of case (a)
in Theorem 1.3 have been given in [3, § 4]. Here we give some other examples for the
remaining cases.

Example 4.3.

g =

(
1
2 i 1

− 5
4

1
2 i

)
∈ SL(2, C),

which is an element of (II) in case (a) in Theorem 1.3.

Example 4.4. Let

g =

(
0 −k
1 1

)
.

Then σc � σ̄r21c̄. Thus, g is loxodromic, which also can be seen by (2.3) and [6, Exam-
ple 2.11]. This transformation is an element of Theorem 1.3 (b).
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