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SOLUTIONS TO EXTREMAL PROBLEMS IN Ep SPACE

VERNOR VINGE*

1. Introduction.

Let Ω be a bounded domain (in the complex plane) whose boundary,

C, consists of finitely many disjoint, rectifiable, closed Jordan curves.

By definition, F e EP(Ω) (p e (0, oo)) if F is holomorphic on Ω and if

there exists a sequence, {β^ }J=1, of domains such that fljCflj+1cfl,lJ Ωj

= Ωf dΩj consists of rectifiable curves homologous to C, and

sup ί \F(z)\*\dz\<oo.
j JdΩj

If F e EV{Ω), then F has boundary values for nontangential approach

at almost every point of C. We denote the boundary function of F by

F + , and the collection of all such boundary functions by E*(C). EV

+{C)

is a subspace of LV(C) (the pth Lebesgue space with respect to arc length).

(For proofs of the above assertions, see [9] and [2], Chapter 10.)

The following theorem is the basis of much of our work.

THEOREM 1.1. Let p e (1, oo), q = p/(p - 1), / e L*(O, g e L°°(C), — e

L~(C). Then:

i) There exists a unique HQ e El(C) for which

11/ - gHS \\p = inf {||/ - gF+ ||p : F
+ e E*(C)} = d .

ii) d = sup f Reff I®-G+(Qdζ) : G+ e ^ϊ(C) and - ^ - < l) .
I \Jc g(ζ) I g q J

iii) // d Φ 0, ίfee^ ίfeβrβ exists a unique G£ e £^(C) /or which

< 1 cmcϊ d = Re
g
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20 VERNOR VINGE

iv) There is a unique H+ e E*(C) and a unique R+ e E%(C) such that

9 \/ \ 9

(ζf denotes the derivative of any arc length parametrization of
C which leaves Ω to the left of C).

v) H+ = H+ and (if d Φ 0) [# + /ll#7#U = Go

+.

Proof. See Tumarkin and Havinson [8], pp. 209, 210. (The present
formulation of the result is taken from [7].)

In this paper we assume ζ' is Holder continuous in order to derive
an operator equation which the extremal difference / — gH+ satisfies.
For p = 2, the operator equation is used to obtain a sequence of L\C)
functions converging at a geometrical rate in the L\C) norm to H+.
(The Rayleigh-Ritz method may also be used to compute H+, but the
rate of convergence is not necessarily geometrical unless C is analytic,
[7].) For the case that p — 2 and g is Holder continuous, we transform
the operator equation into a Fredholm integral equation in order to
obtain a sequence of functions coverging uniformly to H+.

2. The Operator Equation.

We say φ e Lip (C, β) if φ is a (complex-valued) Holder continuous
function on C, whose exponent of Holder continuity is β (e (0,1]).
Similarly, -ψ e Lip (C x C) if ψ is Holder continuous on C x C. (When-
ever convenient, the exponent of Holder continuity will be suppressed.)

LEMMA 2.1. Let ζ'eLip(C), and p e ( l , oo). Then for k
(and xeC)

r
Jc
)o ζ — x

defines a bounded linear operator from LP(C) to LP(C). (The symbol

denotes the Cauchy-Lebesgue principal value integral.)

Proof. See [4], pp. 19-21.

THEOREM 2.1. Let the conditions and notation be as in Theorem 1.1
with the further assumption that ζ'eLip(C). Then for almost every
xeC
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fix) - gix)H+ix)

!_f'(j/(f)_-

(1) +1Γ
7C% *J 0

-g(ξ)H+iξ) I giO iζ-ξ)
I/O?) -
f(v) - g(Q (ζ -

Proof. From Theorem 1.1 (iv) it is clear that

g(χ) \dζ\
giO (ζ-

( 2 )

and

( 3 )

f-

H+ = x _ 1
g g

Since -B+ eEq

+(C) and g > 1, the values of JB may be recovered by ap-
plying the Cauchy integral formula to R+ (see [2], Chapter 10). Hence
it is clear from the Plemelj-Privalov formulas ([3], p. 431) that for
almost every x e C

( 4 )

Similarly,

(5)

= JL Γ fi+(0

ff+(aθ = - L Γ H+(

πi Jc ζ —

( 0 dζ

Formally Theorem 2.1 may be obtained as follows: Substitute the
right side of (2) for R+ in the right side of (4). Substitute the result-
ing expression for R+ in the right side of (3). Substitute this new
expression for H+ in the right side of (5). Routine manipulation then
produces the desired conclusion. The application of Lemma 2.1 makes
this argument rigorous.

3. The Solution when p = 2.

DEFINITION 3.1. Let ζ' e Lip (C) and let both g and 1/g be in L°°(C).

We then say that:

i) /: L2(O-»L2(O is the identity operator.
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ii) T: L\C)-+L\Q is defined for each h e L\C) by

row*) = Λ- Γ mo gff '*', -
^ Jcr #(ζ) ( ζ - a?)

(From Lemma 2.1, we see that Γ is a bounded linear operator.)
iii) f:L\C)-*L\C) is defined for each heL\C) by

(x-ζ)

(T is also a bounded linear operator.)
If p = 2, then (1) is a linear operator equation, from which we

obtain

( 6 ) (/

where u(x) = g(x)— Γ - ^ ^ ^ — + TT(f)(x), a known L2(C) function.
7rΐ J c flr(ζ) ( ζ - a;)( ζ -

Finding £Γ+ (when p = 2) is now reduced to the problem of inverting
the bounded linear operator / + TT.

LEMMA 3.1. Let CeLip(C), p e (1, oo), q = p/(p-l), heL*(C),
keLq(C). Then

L (L »«*«> c?r)«=Jillr l l
/. See [4], p. 27.

LEMMA 3.2. Γ and f are adjoint operators.

Proof. Let h and fc be L\C) functions. Formally then:

Jc\πl Jc g(ζ) ( ζ - ξ)J

= f jk(θ(-lΓ*(f)M.J«L)|(ίc| = <Λ,
JC7 \ πl JC7 flr(ζ) (ζ-ξ) /

Lemma 3.1 justifies this formal manipulation.

T H E O R E M 3.1. Let the conditions and notation be as in Theorem

1.1 with the further assumptions that p~2 and ζ ^ L i p ί C ) . " Let
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i) ||7 - c(I + Tf)\\ < 1 - c < 1.
OO ΛW Λ»

ii) c 2 (7 — c(I + TT))j = (/ + TΓ)"1 {convergence in the operator

norm.)
1 / m \

iii) —(c Y\ (I — c(I + ΪΎ))%) is a sequence of L\C) functions con-
g\ j-o I

verging to H+ in the L\C) norm as m->oo.
Proof. Since T is adjoint to f we have that I + TT is a self-

adjoint operator. Thus, if ||fe||2 = 1,

( 7 ) <(/ - c(I + Tf))h, h} = l- c<(/ + Tf)h, h} > 1 - c\\I + TT\\>0 .

Furthermore,

<(/ - c(I + Tf))h, h) = 1 - c<(7 f

= 1 — c(l

Since / — c(I + TT) is also self-ad joint, assertion (i) follows from (7)
and (8). Assertion (ii) is an immediate consequence of (i), while (iii)
may be obtained by applying (ii) to equation (6).

4. The Solution when p = 2 and g e Lip (C).

LEMMA 4.1. Let ζ; be continuous and ̂ >eLip(C x C,/3). Then

)c ζ - x

is in Lip(C X C, δ), where δ is any number on (0,β).

Proof. See [5], pp. 45-51.

Throughout the rest of this section we take the conditions and
notation to be as in Theorem 1.1, with the further assumptions that
p = 2, ζ' e Lip (C, β), and g e Lip (C, β).

LEMMA 4.2. For heL\C)

= f (_L- Γ
Jc \ 2ττ2 Jc , ί 5 f f ^

determines a bounded linear operator, K, from L\C) to L2(C).
ii) K = i(7 - TΓ). (See Definition 3.1.)

Proof. From [5], p. 19, it may be seen that ί i ~~ _ j is in
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Lip(C x C,β) (if the ratio is defined to be (ζ')2 when ξ = ζ). Thus, as

a function of ξ and ζ,

( 9 )

is in Lip (C xC,β). If we define

routine manipulation shows that

where ω is as in Lemma 4.1, and φ is defined by (9). Clearly,

ω e Lip (C x C, β) (for every δ e (0,0)) so that for x Φ ξ, tc is continuous

and

(Mδ a positive constant independent of x and ξ). Thus A; is a Fredholm

kernel with a weak singularity, and since

X(Λ)(a)= f κ(x,ξMξ)\dξ\,
Jc

K must be a bounded linear operator from U(C) to L\C) (see, for

example, [41, pp. 13-14). This proves (i).

If h e Lip (C), then Kh = \(I - TT)h follows from the Poincare-

Bertrand formula ([5], p. 57). But Lip (C) is dense in U(C), and K and

| ( / — TT) are bounded linear operators, so that assertion (ii) must be

true.

From Lemma 4.2 and (6) we have that

(10) (/ - K)(gH+) = uλ

where ux — — eL2(C). (An integral equation similar to (10) was pre-
Li

sented without proof and without solution in the paper of Rosenbloom

and Warschawski [7].) Hence

(11) (I - KN){gH+) ~ uN
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where

(12) uN = ( Σ X ' V (tf = 1,2,3, • • •) .

LEMMA 4.3. Let v be continuous on C. Let W be a Fredholm

integral operator (on L\C)) with a continuous kernel. Suppose there is

a number c such that for every eigenvalue, λ, of W, a - c) + 4.< 1

and |1 - c\ < 1. Then:

The integral equation (/ — W)φ = v has exactly one solution in L\C),

and

m

c jr; (/ _ C(j _ W)Vv

is α sequence of continuous functions converging uniformly to that

solution as m-> oo.

Proof. See Bΐickner [1], pp. 63-65. (Biickner states his result in

terms of an iteration scheme, from which the above sequence may be

easily obtained.)

THEOREM 4.1. Let uN be defined by (12). Let N be an odd integer

1 / 2 \
greater than — and let c e l O , j . Then:

c m

i) — Σ (I — c(I — KN))j(KNuN) is a sequence of continuous func-
g i-o

tions converging uniformly to H+ — (uN/g) as m—> oo.

c m

ii) If f e Lip (C), — Ύ] (I — c(I — KN))j(uN) is a sequence of con-
g /-o

tinuous functions converging uniformly to H+ as m-> oo.

Proof. We know tc(x, ζ) is continuous except when x = £, and has

a weak singularity of order 1 — 3, where δ is any number on (0,̂ 3).

Thus if N > —, ί P has a continuous kernel (see, for example, [6], pp. 29-
β

38). Since K = J(/ — ΓT) is self-ad joint, any eigenvalue of K must be

real. Furthermore, K has no eigenvalues on [0,2). ί If λ is an eigenvalue

with eigenfunction h, then
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± _ <Kh,h> _ <£(! - Tf)h,K) = 1_ _ 1 <TTh,hy
λ <h,K) <h,K) 2 2 <h,K)

= — - — ^Th" TK> < —. Thus when λ is positive, λ > 2.)
2 2. (h,hy 2 I

Hence, the eigenvalues of KN are real, and since N is odd, no eigenvalue
of KN lies on [0,2*).

If λ is a negative eigenvalue of KN, 1 > (1 - c) + — > 1 - c(l + \\KN\\)
A

> — 1. If λ is a positive eigenvalue of KN, —1<(1 — c) + — < 1 — c
A,

+ — < 1. Hence for every eigenvalue, λ, of K
N
, (1 - c) + 4

λ
From our choice of c, it is obvious that |1 — c\ < 1.

Suppose /eLip(C). Then Lemma 4.1 may be used to show that
^ e Lip (C). Hence assertion (ii) follows from Lemma 4.3 and (11) if
we take W to be KN and v to be uN.

Lemma 4.3 also yields (i), if we take W to be KN and v to be KNuN.
(KNuN is continuous since uN e L\C) and KN has a continuous kernel.)

Given the conditions in §3 and §4 it is clear that the results of
these sections may be used to find the extremal function R+ (which is
expressed in terms of H+,f,g in Theorem 1.1 (iv) and (v)).
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