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A THEOREM ON THE SPECTRAL RADIUS OF THE SUM
OF TWO OPERATORS AND ITS APPLICATION

M. ZlMA

In the present paper a theorem on the spectral radius of the sum of linear operators
is established. The application of this theorem to a functional differential equation
of neutral type is also given.

1. INTRODUCTION

In the monograph [5] the following theorem on the spectral radius of the sum of
two operators is given:

THEOREM . (Equation 21 p.426 of [5].) Let A, B be linear and bounded operators
mapping a Banach space (X, \\-\\) into itself. If these operators are commutative, that
is, ABx — BAx for each x 6 X, then

r(A + B)4r(A)+r(B),

where r(A), r(B) and r(A + B) denote the spectral radii of A, B and A + B respec-
tively.

As the following example from the monograph [4] shows, the assumption of the
commutativity is important:

Let
'0 1 \ „ / 0 0'

It is easy to check, that r(A) = 0, r(B) = 0 while r(A + B) = 1. In this case
the operators A and B are not commutative. The aim of our paper is to give a
sufficient condition, different from the global commutativity, under which the inequality
r(A + B)^ r(A) + r(B) holds.
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2. A THEOREM ON THE SPECTRAL RADIUS OF THE SUM OF

TWO LINEAR OPERATORS

Let (X, ||'||, -<) denote a Banach space of elements x £ X, with a binary relation
-<. We shall assume that:

1 ° the relation -< is reflexive and transitive,
2° the norm ||-|| is monotonic, that is, if 0 -< x -< y, then ||x|| ^ \\y\\,
3° if x ~< y, then x + z -< y + z for x, y, z 6 X.

THEOREM 1 . In the space considered above, let the linear and bounded operators
A: X —* X, B: X —* X be given. We shall assume that the following conditions are
satisfied:

4° i f 0 - d , then 0 -< Ax and 0 -< Bx,
5 ° there exists an element XQ € X, 0 -< Xo such that:

(a) r(B)= lim \\Bnx0\\
1/n and r(A +B) = lim \\(A + B)nx0\\

1/n,

(b) BA'Bkx0 -< A'Bk+1x0 for j = 1, 2, . . . , k = 0, 1, . . . .

Under the assumptions 4° — 5° the inequality

(1) r(A + B) ^ r(A) + r(B)

holds.

PROOF: It is easy to see that, in view of our assumptions, we get for an arbitrary
neN:

n

0 X (A + B)nx0 X J2
i=0

Hence, from 2° and the property of a norm of a linear operator, we obtain:

(2) i=0 t = 0

The next step of our proof is, in principle, a repetition of a fragment from the
monograph [5, p.450]. Thus, in view of Gelfand formula (see for example [3, 5]), we
have:

(3) r(A)= lim ||A"||1/n ,
n—»oo

and from 5°:

(4) r(B)= Urn ||Bnas0||1/B and r{A + B)= Urn
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Let us take arbitrary numbers p and q such that

(5) P>r(A) and q > r(B).

There exists an integer number K > 0 such that for n ̂  K

\[A [I < p and \\B xo|| < 9>

hence
||.A || K. p and \\B zo|| <C q for n ̂  /v.

Moreover, there exist constants s and f such that for all n 6 JV:

| |4 n | | 1 / n S$ s and \\Bnx0\\
1/n ^t.

Thus, for n > 2K, we have:

n-if ^ >. n

i=0 ^ ' i=n-K+l

K-l

C V ( )
»=n-K+l

where M = max (s/p)* + 1 + max

Then ||(A + B)nx0\\
lln < (p + })°M and M does not depend on n .

Hence
Urn \\(A + B)nx0\\

1/n^
n—»oo

Since the numbers p and q were chosen arbitrary, in view of (3), (4) and (5), we get:

This completes the proof of Theorem 1. D
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REMARK 1. For the matrices A and B in Section 1 the conditions of Theorem 1 of
course do not apply. Indeed it is readily seen that 5°(b) only holds for xo — (0, 0), but
then 5° (a) is contradicted.

REMARK 2. Returning to our theorem, as x0 we may choose, for example, an interior
element of a normal cone in Banach spaces where such an element exists. In this case
the spectral radius of a linear bounded operator A can be calculated by the formula
[4]:

r(A)= Urn | |4nxo| |1 / n .
Tl—*OO

3. AN EXAMPLE ILLUSTRATING THEOREM 1 IN THE CASE OF THE SPACE

OF CONTINUOUS FUNCTIONS

In the space of continuous functions on the interval [0, T] with the norm ||u|| =
max|u(<)|, we shall say that x -< y if and only if x(t) ^ y(t) for each t 6 [0, T].
[o,T]

Obviously, this relation satisfies the conditions 1° - 3°.
Let us consider two linear operators

(A1u)(t)=L1 / u(s)ds
Jo

and
(A2u)(t) = L2u(H(t)).

Suppose that the functions h, H: [0, T) -> [0, T] are continuous, h(H(t)) ^ h(t) for
each t e [0, T] and L\, L2 are positive constants. In the space mentioned above we
choose a cone K of non-negative functions. Such a cone is normal and int iif ^ 0. As
an element XQ £ intK we take xo(t) E 1 on [0, T\. We shall show that the operators
A\ and A2 satisfy the assumption 5c(b) of Theorem 1, that is

, j = l,2,..., Jfc = 0 ,

Let us notice that:

and
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In view of the inequality h(H(t)) < h(t) for t G [0, T] we have:

(«i) /•K'i-i) \

/ /•h(ll) /-K'i-O \

which means that A2A
}
xA^xo -< A1

1

It is easy to verify that the assumptions 4° and 5° (a) are also satisfied. Hence we
obtain r(Ax + A2) ^ r ^ ) + r(A2).

4. AN APPLICATION OF THEOREM 1

In this part of our paper we shall show an apphcation of Theorem 1 to an initial
value problem for a differential equation of neutral type.

Let us consider the following Cauchy problem:

x'(t) = f(t,x(h(t)),x'(H(t))), te[0,T]
V ' s(0) = 0.

Suppose that:

6° / : [0, T] x R2 —> R is a continuous function and satisfies the Lipschitz

condition, that is, for all (t, sci, Z2), (*, J/i, Ift) e [0, T] x R2

\f(t, xu x2) - f{t, ylt y2)\ ^ Li(t) \xi -yi\ + L2(t) \x2 -y2\,

where the functions Li, i = 1,2 are continuous and positive on the
interval [0, T] ,

7° max.L2(t) < 1,
[o.n

8° h, H: [0, T] -» [0, T] are continuous,
9° for each t £ [0, T] the inequality h(H(t)) ^ h(t) ^ t holds.

THEOREM 2 . 1/ the assumptions 6° - 9° are satisfied, then the problem (6) has
exactly one solution in the space of continuous functions on the interval [0, T).

PROOF: In the sequel we need the following fixed point theorem from [7]:
Let (X, \\-\\, -<, m) denote a Banach space of elements x G X, with a binary

relation -< and a mapping m: X —* X. We shall assume that the conditions 1° and
2° are satisfied and moreover

3' 0 -; m(x) and ||m(z)|| = ||as|| for each x 6 X.
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THEOREM 3 . [7] In the Banach space considered above, let the operators A: X —»
X, A: X —> X be given with the following properties:

(i) A is a linear bounded operator with the spectral radius r(A) less than

1,

(ii) i£ 0 -< x ~< y, then Ax -< Ay,

(iii) m(Ax — Ay) -< Am(x — y) for all x, y € X.

Then the equation Ax = x has a unique solution in the space (X, \\-\\, -<, m).

Let us return to the proof of Theorem 2. It is easy to see that the problem (6) is
equivalent to the functional integral equation:

where x(f) = /„* z(s)da for t £ [0, T].
Let us consider the following operator:

(7) (Az)(t) = fU £W z(s)ds, z(H(t))j , t e [0, T].

To prove our theorem it is sufficient to show that under the assumptions 6° - 9°
the operator (7) has a unique fixed point in the space of continuous functions on the
interval [0, T]. In view of 6° we have:

\(Az)(t)-(Aw)(t)\ =
h{t)

z(s)ds,z(H(t))

-f(t, £Ww(s)ds,w(H(t))j\

/•MO
^t) / \z(s) - w(s)\ds + L2(t) \z(H(t)) - w(H(t))\.

Jo

Let Li = maxLi(t), t = 1, 2. Then

(8) \(Az)(i) - (Aw)(t)\ ^ L, I ' \z(s) - w(s)\ ds + L2 \z(H(t)) - w(H(t))\
Jo

= ((A1+A2)\z-w\)(t),

where

= L, f u(s)da, (A2u)(t) = L2u(H(t)).
Jo
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We want to show now that the operators A\ + A2 and A satisfy the assumptions

of Theorem 3. At first we prove that the spectral radius of the operator A\ + A2 is less

than 1. As we showed in Section 3, the following inequality holds:

r(Al+A7)^r{A1)+r(Aa).

Since the operator Ai - in view of the inequality h(t) ̂  t - is of Volterra type, then

r(Ai) = 0. It is easy to verify that r(A2) = L^. By condition 7° £2 < 1, so

which means that the assumption (i) of Theorem 3 is satisfied.

Finally, let (m(x))(t) = \x(t)\ for t E [0, T]. It is easy to see that the condition

3' and the assumptions (ii) and (iii) are satisfied (particularly the assumption (iii) is

satisfied in view of (8)). Hence, in virtue of Theorem 3, the operator (7) has exactly

one fixed point in the space of continuous functions on the interval [0, T]. This ends

the proof of Theorem 2. 0

REMARK. The problem (6) is similar to the initial value problems considered in the

papers [1, 2] and [6]. Banas in [2] proved the theorem on the existence of a solution to

problem (6) in terms of measures of noncompactness. In [1] and [6] the authors proved

the theorems on the uniqueness of solution of problems similar to (6) under stronger

assumptions than those given in our paper.
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