A CHARACTERIZATION OF THE APPROXIMATELY CONTINUOUS DENJOY INTEGRAL

YÔTO KUBOTA

1. Introduction. The approximately continuous integral which includes the Lebesgue integral has been considered by Burkill [1] and Ridder [3; 4]. I [2] also defined the AD-integral of this kind which is more general than the AP-integral of Burkill [1] and the Denjoy integral in the wide sense. But this integral is equivalent to the β -integral of Ridder.

Our aim in this paper is to characterize the AD-integral in the following way: The AD-integral is the least general approximately continuous integral (Definition 1) which includes the Lebesgue integral and fulfils the Cauchy and Harnack conditions (Definition 2).

2. The AD-integral. A real-valued function F(x) defined on the closed interval [a, b] is said to be (ACG) on the interval if [a, b] is the sum of a countable number of *closed* sets E_n such that F(x) is absolutely continuous on each set E_n .

An extended real-valued function f(x) is said to be AD-integrable on [a, b] if there exists an approximately continuous function F(x) such that F(x) is (ACG) on [a, b] and

AD
$$F(x) = f(x)$$
 a.e.,

where AD F(x) is the approximate derivative of F(x).

The function F(x) is called an indefinite integral of f(x), and the definite integral on [a, b], denoted by $(AD)\int_{a}^{b} f(t) dt$, is defined as F(b) - F(a) [2: III].

LEMMA 1. Let E be a closed set contained in [a, b]. If f is a function which is absolutely continuous on E and is linear on each contiguous closed interval of E with respect to [a, b], then f is absolutely continuous on [a, b].

Proof. Let $\{I_k = [a_k, b_k]\}$ be the sequence of contiguous closed intervals of E with respect to [a, b]. Since f is absolutely continuous on E, for a given $\epsilon > 0$ we can find $\delta > 0$ such that

$$\sum_{k} |f(\beta_k) - f(\alpha_k)| < \epsilon/2$$

for all finite non-overlapping sequences of intervals $\{(\alpha_k, \beta_k)\}$ with end points on *E* and $\sum_k (\beta_k - \alpha_k) < \delta$. The function *f* is linear on each I_k and is therefore

Received October 31, 1968 and in revised form, January 31, 1969.

absolutely continuous, so that we can determine such a positive number δ_k for each $\epsilon/2^{k+1}$ (k = 1, 2, ...). Let N be a natural number such that $\sum_{k=N+1}^{\infty} (\dot{b}_k - a_k) < \delta.$

If we put $\delta_0 = \min(\delta, \delta_1, \ldots, \delta_N)$, then we see that for all finite sequences of non-overlapping intervals $\{(\gamma_k, \delta_k)\}$ contained in [a, b] and $\sum_k (\delta_k - \gamma_k) < \delta_0$, we have:

$$\sum_{k} |f(\boldsymbol{\delta}_{k}) - f(\boldsymbol{\gamma}_{k})| < \epsilon.$$

It follows from Lemma 1 that the AD-integral is equivalent to the β -integral [3, Definition 7].

We now establish some essential properties of the AD-integral. If $I = [\alpha, \beta]$, then I° is the open interval (α, β) .

THEOREM 1. If f(x) is AD-integrable on every interval $[a, \beta]$, where $a < \beta < b$, and

$$\operatorname{app}_{\beta \to b} \lim (\mathrm{AD}) \, \int_{a}^{\beta} f(t) \, dt = l,$$

then f(x) is AD-integrable on [a, b] and

(AD)
$$\int_a^b f(t) dt = l.$$

Proof. Let $\{b_n\}$ (n = 1, 2, ...) be an increasing sequence converging to b and put $b_1 = a$. Since f(x) is AD-integrable on each $I_n = [b_n, b_{n+1}]$, there exists a function $F_n(x)$ which is approximately continuous and (ACG) on I_n and AD F(x) = f(x) a.e. It may be assumed that $F_n(b_n) = 0$ (n = 1, 2, ...). Let F(x) be the function defined on [a, b] as follows:

$$F(x) = F_1(x) \qquad (x \in I_1),$$

= $F_n(x) + \sum_{k=1}^{n-1} F_k(b_{k+1}) \quad (x \in I_n, n \ge 2)$

Then F(x) is approximately continuous on [a, b] and (ACG) on $[a, \beta]$ for $a < \beta < b$ and AD F(x) = f(x) a.e., so that F(x) is an indefinite integral of f(x) on $[a, \beta]$. If we define F(b) = l, then by hypothesis, F(x) is approximately continuous on [a, b]. It is clear that F(x) is (ACG) on [a, b]. Hence f(x) is AD-integrable on [a, b] and

(AD)
$$\int_{a}^{b} f(t) dt = F(b) - F(a) = F(b) = l.$$

THEOREM 2. Let E be a closed set in $I_0 = [a, b]$ and $\{I_k = [a_k, b_k]\}$ the sequence of contiguous closed intervals of E with respect to I_0 , and let f(x) be a function which is Lebesgue integrable (L-integrable) on E and AD-integrable on each I_k . Suppose that the following conditions are satisfied:

220

(i) $\sum_{k=1}^{\infty} |(AD) \int_{I_k} f(t) dt| < \infty$;

(ii) if $x \in E$ is a limit point of $\{I_k\}$, then there exists a set E_x which has unit density at x and contains all the end points of $\{I_k\}$ in a sufficiently small neighbourhood of x, such that

$$\lim_{k\to\infty} O(AD, f, E_x \cap I_k) = 0,$$

where $O(AD, f, E_x \cap I_k)$ means the oscillation of the indefinite AD-integral of f on $E_x \cap I_k$.

Then f(x) is AD-integrable on I_0 and we have:

(AD)
$$\int_{I_0} f(t) dt = (L) \int_E f(t) dt + \sum_{k=1}^{\infty} (AD) \int_{I_k} f(t) dt.$$

Proof. Let I(x) denote the interval [a, x], where $a \leq x \leq b$, and let

$$F(x) = \sum_{k=1}^{\infty} (AD) \int_{I_k \cap I(x)} f(t) dt.$$

We shall show that the function F(x) is approximately continuous on [a, b]. If x is an interior point of some I_n , then we have:

$$F(x) = \sum_{I_k \subset [a,a_n]} (AD) \int_{I_k} f(t) dt + (AD) \int_{a_n}^x f(t) dt$$

for $a_n < x < b_n$, and thus F(x) is approximately continuous at x. If x is an isolated point of E, it is the common end point of some consecutive intervals. Hence, F(x) is approximately continuous at this point. Finally, we consider the case in which x is a limit point of $\{I_k\}$. By (i) and (ii), there exists a natural number K such that

(1)
$$\sum_{k>K} \left| (AD) \int_{I_k} f(t) dt \right| < \epsilon,$$

and

(2)
$$O(AD, f, E_x, \cap I_k) < \epsilon \quad (k > K).$$

Except for the case in which x is the end point of some I_k $(k \leq K)$, we can select $\delta > 0$ such that the interval $(x - \delta, x + \delta)$ does not contain the intervals I_k for $k \leq K$ and such that the set E_x contains the end points of I_k in $(x - \delta, x + \delta)$. If $t \in (x, x + \delta) \cap E_x$ and $t \in E$, then we have:

$$|F(t) - F(x)| \leq \sum_{I_k \subset [x, t]} \left| (AD) \int_{I_k} f(t) dt \right| \leq \sum_{k > K} \left| (AD) \int_{I_k} f(t) dt \right| < \epsilon.$$

If $t \in (x, x + \delta) \cap E_x$ and $t \in I_n^{o}$, then we obtain

$$F(t) - F(x) = \sum_{I_k \subset [x,a_n]} (AD) \int_{I_k} f(t) dt + (AD) \int_{a_n}^t f(t) dt.$$

Since the set E_x contains the point a_n , it follows from (2) that

$$\left| (\text{AD}) \int_{a_n}^{t} f(t) \, dt \right| < \epsilon,$$
$$|F(t) - F(x)| < 2\epsilon.$$

and hence

222

Similarly we obtain the above inequality for the case t < x. Therefore F is approximately continuous at x. Thus we have proved that F(x) is approximately continuous on I_0 .

Next we can prove (as in [5, p. 257]) that F(x) is also (ACG) on I_0 and that

AD
$$F(x) = 0$$
 a.e. for $x \in E$,
= $f(x)$ a.e. for $x \in I_0 - E$

Let

$$H(x) = F(x) + (L) \int_{E \cap I(x)} f(t) dt$$

Then we see that H(x) is approximately continuous and (ACG) on I_0 and AD H(x) = f(x) a.e. Hence f(x) is AD-integrable on I_0 and we obtain

(AD)
$$\int_{I_0} f(t) dt = H(b) - H(a)$$

= (L) $\int_E f(t) dt + \sum_{k=1}^{\infty} (AD) \int_{I_k} f(t) dt$.

THEOREM 3. If f(x) is AD-integrable on $I_0 = [a, b]$, then for any closed set $E \subset I_0$, there exists a portion $J^o \cap E$ which satisfies the following three conditions: (i) f(x) is L-integrable on $J \cap E$;

(ii) Let $\{I_k\}$ be the sequence of contiguous closed intervals of $J \cap E$ with respect to J. Then

$$\sum_{k=1}^{\infty} \left| (\text{AD}) \int_{I_k} f(t) \, dt \right| < \infty;$$

(iii) If x is a limit point of $\{I_k\}$, then there exists a set E_x which has unit density at x and contains all the end points of I_k in a sufficiently small neighbourhood of x, such that

 $\lim O(AD, f, E_x \cap I_k) = 0.$

Proof. Let $F(x) = (AD) \int_a^x f(t) dt$. Then F(x) is (ACG) on I_0 , so that I_0 is represented as the sum of a countable number of closed sets E_k on each of which F(x) is absolutely continuous. Since $E = \bigcup_{k=1}^{\infty} (E \cap E_k)$, by Baire's category theorem, there exist an interval J with $J^0 \cap E \neq \emptyset$ and a natural number n such that $J^0 \cap E \subset E \cap E_n$. Hence F is absolutely continuous on $J \cap E$. Since F is also of bounded variation on $J \cap E$, we have:

$$\sum_{k=1}^{\infty} \left| (\mathrm{AD}) \int_{I_k} f(t) \, dt \right| = \sum_{k=1}^{\infty} \left| F(b_k) - F(a_k) \right| < \infty,$$

where $I_k = [a_k, b_k]$. Hence we have proved (ii).

To prove condition (i), we denote by G(x) the function which coincides with F(x) on $J \cap E$ and is linear on each I_k . Then the function G(x) is absolutely continuous on J by Lemma 1 and hence G'(x) is L-integrable. Since G'(x) = F'(x) = f(x) at almost all points of $J \cap E$, f(x) is L-integrable on $J \cap E$.

Next we shall show condition (iii). Suppose that there exists no such E_x . Since F(x) is approximately continuous at x, there exists a measurable set A_x having unit density at x, on which F(x) is continuous. The set A_x may contain all the end points of I_k in a sufficiently small neighbourhood of x, because F is absolutely continuous on $J \cap E$ and all the end points of I_k are in $J \cap E$. Given $\epsilon > 0$, we can find $\delta > 0$ such that $t \in A_x \cap (x, x + \delta)$ implies

$$(3) |F(t) - F(x)| < \epsilon.$$

By assumption, $O(F, A_x \cap I_k)$ does not tend to 0 as $k \to \infty$, so that there exist a positive constant c and a natural number K such that

(4)
$$O(F, A_x \cap I_k) > c > 0 \qquad (k > K).$$

We may assume that the interval $(x, x + \delta)$ does not contain the intervals I_k for $k \leq K$. We have from (4)

(5)
$$c/2 < \sup_{t \in A_x \cap I_k} |F(t) - F(a_k)|,$$

and hence there exists a point $t_0 \in A_x \cap I_k$ such that

(6)
$$c/2 - \epsilon < |F(t_0) - F(a_k)|.$$

It follows from (5), (6), and the relation $|F(a_k) - F(x)| < \epsilon$ that

$$|F(t_0) - F(x)| > c/2 - 2\epsilon.$$

Taking $c > 6\epsilon$, the above inequality contradicts (3), and the theorem is proved.

Remark. The property of closedness in (ACG) is used explicitly in the above proof but not in Theorems 1 and 2. However, it is essential in defining the AD-integral.

3. An approximately continuous integral. Throughout this section we let I and J be closed intervals.

Let T = T(f, I) be a bilinear functional on a subset of $M \times N$, where $M = \{f\}$ is the space of functions defined on I_0 , $N = \{I\}$ the collection of subintervals of I_0 , and I_0 fixed. The set $\{f: (f, I) \in \text{domain of } T\}$ will be denoted by K(T, I). We also use the notation $T_{\alpha}{}^{\beta}(f)$ in place of T(f, I) when $I = [\alpha, \beta]$.

Definition 1. A functional T is termed an approximately continuous integral if the following conditions are fulfilled:

ΥΌΤΟ ΚUBOTA

(i) If $f \in K(T, I)$, then $f \in K(T, J)$ for all $J \subset I$;

(ii) If I_1 and I_2 are abutting intervals and if $f \in K(T, I_1) \cap K(T, I_2)$, then $f \in K(T, I_1 \cup I_2)$ and

$$T(f, I_1 \cup I_2) = T(f, I_1) + T(f, I_2);$$

(iii) The function $F(x) = T_{\alpha}^{x}(f)$ ($\alpha \leq x \leq \beta$) is approximately continuous on $I = [\alpha, \beta]$.

The AD-integral is an approximately continuous integral.

If T is an approximately continuous integral, any function belonging to K(T, I) is termed T-integrable on I, and the number T(f, I) is called the definite T-integral of f on I.

Given two integrals T_1 and T_2 , we shall say that the integral T_1 includes the integral T_2 , written $T_2 \subset T_1$, if $f \in K(T_2, I_0)$ implies $f \in K(T_1, I_0)$ and $T_1(f, I) = T_2(f, I)$ for every $I \subset I_0$.

4. A characterization of the AD-integral.

Definition 2. The Cauchy (C) and Harnack (H) properties of an approximately continuous integral T are given by the following conditions:

(C) If *f* is T-integrable on every interval $[\gamma, \delta] \subset [\alpha, \beta]$ and

$$\underset{\substack{\gamma \to \alpha + ;\\ \delta \to \beta -}}{\operatorname{app \ lim} \ T_{\gamma}} T_{\gamma}^{\delta}(f)$$

is finite, then f is T-integrable on $[\alpha, \beta]$ and

$$T_{\alpha}^{\ \beta}(f) = \underset{\substack{\gamma \to \alpha+;\\ \delta \to \beta-}}{\operatorname{app lim}} T_{\gamma}^{\ \delta}(f).$$

(H) Let Q be a closed set in I and let $\{I_k = [a_k, b_k]\}$ be the sequence of intervals contiguous to Q with respect to I. Let f be L-integrable on Q and T-integrable on each I_k . Suppose that the following conditions are satisfied:

(i) $\sum_{k=1}^{\infty} |T(f, I_k)| < \infty$;

(ii) if $x \in E$ is a limit point of $\{I_k\}$, then there exists a set E_x which has unit density at x such that

$$\lim_{k\to\infty} O(\mathbf{T}, f, E_x \cap I_k) = \mathbf{0},$$

where the set E_x contains all the end points of I_k in a sufficiently small neighbourhood of x. Then f is T-integrable on I and we have:

$$T(f, I) = (L) \int_{Q} f(t) dt + \sum_{k=1}^{\infty} T(f, I_k).$$

We have proved in Theorems 1 and 2 that the AD-integral has the properties (C) and (H).

224

LEMMA 2. Let T be an approximately continuous integral which has the properties (C) and (H), and I fixed. If for every $x \in I^{\circ}$ we can find an interval J_x containing x in its interior such that $T \supset AD$ on J_x , then $T \supset AD$ on I.

Proof. First we show that $T \supset AD$ for any $J \subset I^{\circ}$. Since for every point $x \in J$, there corresponds an interval J_x , it follows from the Heine-Borel covering theorem that there exists a finite sequence of intervals J_{x_1}, \ldots, J_{x_n} such that $J \subset \bigcup_{k=1}^n J_{x_k}$ and $T \supset AD$ on each J_{x_k} . Hence, by Definition 1(ii), we obtain: $T \supset AD$ on J.

Next we show that $T \supset AD$ on *I*. Let *J* be any interval contained in *I*^o. Then we have, for any $f \in K(AD, J)$,

(AD)
$$\int_{J} f(t) dt = T(f, J).$$

It follows from (C)-property of T and AD-integrals that $f \in K(T, I)$ and T(f, I) = AD(f, I). However, if I' is any subinterval of I, then similarly $f \in K(T, I')$ and T(f, I') = AD(f, I'). Hence the lemma is proved.

THEOREM 4. Let T_0 be the AD-integral. If T is an approximately continuous integral which includes the L-integral and satisfies the conditions (C) and (H), then $T \supset T_0$.

Proof. Let Q be the set of points in I_0 such that for $x \in Q$, $T \not\supseteq T_0$ on every interval containing x. Then Q is clearly closed. It follows from Theorem 3 that there exist a T_0 -integrable function f and an interval J with $J^0 \cap Q \neq \emptyset$ such that the following conditions are satisfied:

(i) f is L-integrable on $J \cap Q$;

(ii) if $\{I_k\}$ is the sequence of contiguous closed intervals of $J \cap Q$ with respect to J, then

$$\sum_{k=1}^{\infty} \left| (\mathbf{T}_{0}) \int_{I_{k}} f(t) dt \right| < \infty ;$$

(iii) if $x \in Q$ is a limit point of $\{I_k\}$, then there exists a set E_x which has unit density at x such that

$$\lim_{k\to\infty} O(T_0, f, E_x \cap I_k) = 0,$$

where the set E_x contains all the end points of I_k in a sufficiently small neighbourhood of x.

Hence, by (H)-property of the T_0 -integral, f is T_0 -integrable on J and

$$T_0(f, J) = (L) \int_{J \cap Q} f(t) dt + \sum_{k=1}^{\infty} T(f, I_k).$$

Since $I_k^{\circ} \cap Q = \emptyset$, it follows from Lemma 2 that

$$T_0(f, I_k) = T(f, I_k).$$

ΥΌΤΟ ΚUBOTA

We have, by (H)-property of the T-integral, $f \in K(T, J)$ and

$$T(f, J) = (L) \int_{J \cap Q} f(t) dt + \sum_{k=1}^{\infty} T(f, I_k).$$

Hence

 $T_0(f, J) = T(f, J).$

The above identity also holds with J' replaced by any interval $J' \subset J$. But this contradicts the relation $J^{\circ} \cap O \neq \emptyset$. Hence the theorem is proved.

References

- 1. J. C. Burkill, The approximately continuous Perron integral, Math. Z. 34 (1931), 270-278.
- 2. Y. Kubota, An integral of the Denjoy type, I; II; III, Proc. Japan Acad. 40 (1964), 713-717; 42 (1966), 737-742; 43 (1967), 441-444.
- 3. J. Ridder, Ueber die gegenseitigen Beziehungen vershiedener approximativ stetiger Denjoy-Perron Integrale, Fund. Math. 22 (1934), 136-162. 4. — Ueber approximativ stetige Denjoy-Integrale, Fund. Math. 21 (1933), 1-10.
- 5. S. Saks, Theory of the integral (Z. Subwencji Funduszu Kultury Narodowej, Warsaw; G. E. Stechert, New York, 1937).

Ibaraki University, Mito, Japan

226