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Abstract
A semiclassical analysis based on spin-coherent states is used to establish a classification and novel simple formulae
for the spectral gap of mean-field spin Hamiltonians. For gapped systems, we provide a full description of the low-
energy spectra based on a second-order approximation to the semiclassical Hamiltonian, hence justifying fluctuation
theory at zero temperature for this case. We also point out a shift caused by the spherical geometry in these second-
order approximations.
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1. Introduction

Mean-field quantum spin systems are ubiquitous in effective descriptions of a variety of phenomena. A
popular example is the family of Lipkin–Meshkov–Glick Hamiltonians, which were originally conceived
in [34, 36, 21] to explain shape transitions in nuclei but also feature in descriptions of bosons in a double
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well and quantum-spin tunnelling in molecular magnets [15, 5]. This family includes the quantum
Curie–Weiss Hamiltonian, whose simplicity continues to draw the attention of many communities [11,
46, 14, 31, 52, 9, 12]. In particular, in [4] such models were used to test conjectures related to quantum
annealing for which information about the spectral gap is crucial.

Most mean-field spin Hamiltonians in the literature are defined in terms of a noncommuting self-
adjoint polynomial of the three components of the total spin-vector S =

∑𝑁
𝑛=1 S(𝑛). For a system of 𝑁

interacting qubits, the Hilbert space on which these operators act is the tensor product H𝑁 =
⊗𝑁

𝑛=1 C
2.

The vectors S(𝑛) = 1 ⊗ · · · ⊗ s ⊗ · · · ⊗ 1 stand for the natural lift of the spin vectors s = (𝑠𝑥 , 𝑠𝑦 , 𝑠𝑦) to
the 𝑛-th component of the tensor product. On each copy of C2, the spin vector coincides with the three
generators of 𝑆𝑈 (2):

𝑠𝑥 =
1
2

(
0 1
1 0

)
, 𝑠𝑦 =

1
2

(
0 −𝑖
𝑖 0

)
, 𝑠𝑧 =

1
2

(
1 0
0 −1

)
.

By definition, a noncommuting self-adjoint polynomial P
(

2
𝑁 S

)
is a finite linear combination of products

of the three rescaled components of the total spin-vector in which each product is averaged (correspond-
ing to Weyl ordering) under the three components so that it becomes a self-adjoint operator. This renders
the associated mean-field Hamiltonian

𝐻 = 𝑁 P
(

2
𝑁 S

)
(1.1)

self-adjoint on H𝑁 . The dependence on the particle number is twofold and quintessential for the mean-
field nature. The scaling of the spin ensures that the operator is norm-bounded by one,

�� 2
𝑁 𝑆𝜉

�� ≤ 1 for
all 𝜉 = 𝑥, 𝑦, 𝑧. Moreover, the prefactor 𝑁 forces the energy 𝐻 to be extensive.

For example, the Lipkin–Meshkov–Glick model is given by 𝑃(m) = −𝛼𝑚2
𝑦 − 𝛽𝑚2

𝑧 − 𝛾𝑚𝑥 with
𝛼, 𝛽, 𝛾 ∈ R. The special case 𝛼 = 0, 𝛽 = 1 corresponds to the quantum Curie–Weiss model with 𝛾
playing the role of the transversal, external magnetic field. In [4], the p-spin generalization of the Curie–
Weiss model has been considered, for which 𝑃(m) = −𝛽𝑚𝑝𝑧 − 𝛾𝑚𝑥 with 𝑝 ∈ N. In these examples, the
monomials do not involve mixed products, which makes the Weyl-ordering obsolete. To illustrate this
issue, consider 𝑃(m) = 𝑚𝑥𝑚𝑦 , which then results in P

(
2S/𝑁

)
= 2

(
S𝑥S𝑦 + S𝑦S𝑥

)
/𝑁2.

Since 𝐻 in Equation (1.1) is a function of the total spin S, it is block diagonal with respect to the
decomposition of the tensor-product Hilbert space according to the irreducible representations of the
total spin corresponding to the eigenspaces of S2 with eigenvalues 𝐽 (𝐽 + 1), that is,

H𝑁 ≡
𝑁 /2⊕

𝐽= 𝑁2 −� 𝑁2 �

𝑀𝑁,𝐽⊕
𝛼=1

C
2𝐽+1, 𝑀𝑁 ,𝐽 =

2𝐽 + 1
𝑁 + 1

(
𝑁 + 1

𝑁
2 + 𝐽 + 1

)
. (1.2)

The total spin 𝐽 of 𝑁 qubits can take any value from 𝑁/2 down in integers to either 1/2 if 𝑁 is odd
or 0 if 𝑁 is even. The degeneracy of the representation of spin 𝐽 in this decomposition is 𝑀𝑁 ,𝐽 [39].
On each block (𝐽, 𝛼), the Hamiltonian (1.1) then acts as the given polynomial of the generators of the
irreducible representation of 𝑆𝑈 (2) on C2𝐽+1.

The analysis of such systems in the limit of large spin quantum number 𝐽 is known [33, 27, 37, 38,
7] to be facilitated by Bloch coherent states on the Hilbert space C2𝐽+1. They are parametrized by an
angle Ω = (𝜃, 𝜑) on the unit sphere 𝑆2 with 0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜑 ≤ 2𝜋. In bra-ket-notation, which we will
use in this paper, the Bloch-coherent states are given by��Ω, 𝐽〉 := 𝑈 (𝜃, 𝜑)

��𝐽〉, 𝑈 (𝜑, 𝜃) := exp
(
𝜃

2
(
𝑒𝑖𝜑𝑆− − 𝑒−𝑖𝜑𝑆+

) )
. (1.3)

The reference vector
��𝐽〉 ∈ C2𝐽+1 is the normalized eigenstate of the 𝑧-component of the spin corre-

sponding to (maximal) eigenvalue 𝐽 on the Hilbert space C2𝐽+1. The operators 𝑆± = 𝑆𝑥 ± 𝑖𝑆𝑦 are the
spin raising and lowering operators of the irreducible representation of 𝑆𝑈 (2) on C2𝐽+1.
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Bloch coherent states have many remarkable features. First and foremost, they form an overcomplete
set of vectors as expressed through the resolution of unity on C2𝐽+1:

2𝐽 + 1
4𝜋

∫ ��Ω, 𝐽〉〈Ω, 𝐽�� 𝑑Ω = 1C2𝐽+1 . (1.4)

Every linear operator 𝐺 on C2𝐽+1 is associated with a lower and upper symbol. The lower symbol is
𝐺 (Ω, 𝐽) := 〈Ω, 𝐽

��𝐺��Ω, 𝐽〉, and the upper symbol is characterized through the property

𝐺 =
2𝐽 + 1

4𝜋

∫
𝑔(Ω, 𝐽)

��Ω, 𝐽〉〈Ω, 𝐽�� 𝑑Ω. (1.5)

The choice of 𝑔 is not unique. For example, through an explicit expression [30], one sees that there is
always an arbitrarily often differentiable choice, 𝑔(·, 𝐽) ∈ 𝐶∞(𝑆2). More properties of coherent states
are collected in Appendix A; see also [3, 42, 20, 16].

1.1. Semiclassics for the free energy

The lower and upper symbol feature prominently in Berezin and Lieb’s semiclassical bounds [6, 33, 47]
on the partition function associated with a self-adjoint Hamiltonian 𝐺 on C2𝐽+1:

2𝐽 + 1
4𝜋

∫
𝑒−𝛽𝐺 (Ω,𝐽 )𝑑Ω ≤ Tr C2𝐽+1𝑒−𝛽𝐺 ≤ 2𝐽 + 1

4𝜋

∫
𝑒−𝛽𝑔 (Ω,𝐽 )𝑑Ω. (1.6)

In the semiclassical limit of large spin quantum number 𝐽, these bounds are known to asymptotically
coincide [33, 47, 17]. In the same spirit, for any polynomial of the spin operator as in Equation
(1.1) restricted to C2𝐽+1 both the upper and lower symbols agree to leading order in 𝑁 with the
corresponding classical polynomial function on the unit ball 𝐵1, which parametrises the Hilbert space
(1.2) semiclassically. Using spherical coordinates e(Ω) = (sin 𝜃 cos 𝜑, sin 𝜃 sin 𝜑, cos 𝜃) ∈ 𝑆2, one has

sup
0≤𝐽 ≤𝑁 /2

����P
(

2
𝑁 S

)���
C2𝐽+1

− 2𝐽 + 1
4𝜋

∫
P
(

2𝐽
𝑁 e(Ω)

)��Ω, 𝐽〉〈Ω, 𝐽�� 𝑑Ω���� ≤ O(𝑁−1) (1.7)

for the operator norm ‖ · ‖ on C2𝐽+1. We use the Landau O-notation, that is, the error on the right
is bounded by 𝐶𝑁−1 with a constant 𝐶 which only depends on the coefficients of the polynomial.
This statement is a quantitative version of Duffield’s theorem [17]. Since it is hard to locate general
quantitative error estimates, we include a proof as Proposition A.4 in the appendix. As is recalled in
Proposition A.3, the lower symbol then shares the same classical asymptotics

sup
0≤𝐽 ≤𝑁 /2

sup
Ω

���〈Ω, 𝐽��P( 2
𝑁 S

) ���
C2𝐽+1

��Ω, 𝐽〉 − P
(

2𝐽
𝑁 e(Ω)

)��� ≤ O(𝑁−1).

The Berezin–Lieb inequalities (1.6) immediately imply that the free energy of the Hamiltonian (1.1) is
determined by minimizing a variational functional involving the classical energy P on the unit ball and
the (shifted) binary entropy

𝐼 (𝑟) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1+𝑟

2 ln 1+𝑟
2 − 1−𝑟

2 ln 1−𝑟
2 , 𝑟 ∈ (0, 1).

0, 𝑟 = 1,
ln 2, 𝑟 = 0.

A straightforward, rigorous saddle-point evaluation, which we spell out in the proof of Proposition A.7
– a generalisation to mean-field models with regular symbols – yields the pressure as a min-max
variational principle on 𝐵1.
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Proposition 1.1. For a mean-field Hamiltonian 𝐻 = 𝑁 P
(

2
𝑁 S

)
with a noncommuting self-adjoint

polynomial P, the pressure for any 𝛽 > 0 is given by

𝑝(𝛽) := lim
𝑁→∞

𝑁−1 ln Tr exp
(
−𝛽𝑁P

(
2
𝑁 S

))
= max
𝑟 ∈[0,1]

{
𝐼 (𝑟) − 𝛽 min

Ω∈𝑆2
P(𝑟e(Ω))

}
. (1.8)

As a special case with constant field 𝑃(m) = −𝜆𝑚𝑧 , 𝜆 ≥ 0, one obtains the Legendre relation

ln 2 cosh(𝛽𝜆) = max
𝑟 ∈[0,1]

[𝐼 (𝑟) + 𝛽𝜆𝑟] .

By inverting this Legendre transform, 𝐼 (𝑟) = min𝜆≥0 [ln 2 cosh(𝛽𝜆) − 𝛽𝜆𝑟], one may rewrite Equation
(1.8) in the slightly more familiar form

𝑝(𝛽) = max
𝑟 ∈[0,1]

min
𝜆≥0

{
ln 2 cosh(𝛽𝜆) − 𝛽

(
min
Ω∈𝑆2

P(𝑟e(Ω)) + 𝜆𝑟
)}
.

Investigations of the free energy have been of great interests over many decades [11, 33, 18, 13, 44,
17, 14, 51]. They are, however, not the main focus of this paper. We therefore conclude this topic with
only one brief comment on the literature.

Among the numerous results, it is worth mentioning that alternatively to the sketched approach via
the Berezin–Lieb inequalities, the formula (1.8) may be derived exploiting the exchange symmetry of
the mean-field Hamiltonian using a version of the quantum de Finetti theorem. This road was taken by
Fannes, Spohn and Verbeure [18]. Their result essentially covers all Hamiltonians 𝐻 =

∑𝑚
𝑝=1 𝐴

(𝑝) on
H𝑁 with exchange-symmetric 𝑝-spin interactions 𝐴(𝑝) and yields

𝑝(𝛽) = sup
𝜚

⎡⎢⎢⎢⎢⎣𝐸 (𝜚) − 𝛽
𝑚∑
𝑝=1

Tr 𝐴(𝑝) 𝜚⊗𝑝
⎤⎥⎥⎥⎥⎦ .

For a mean-field system of 𝑁 spin-1/2, the supremum is over states which are parametrized by the Bloch
sphere, 𝜚 = 1

21C2 − 𝑟e(Ω) · S, and whose entropy is 𝐸 (𝜚) = −Tr 𝜚 ln 𝜚 = 𝐼 (𝑟). As an aside, we note that
this powerful de Finetti approach generalizes from spin-1/2 to spin-𝑠 [18], and then covers the results
on the free energy obtained in [8, 10]. For example, for the exchange Hamiltonian 𝑇 (𝜓 ⊗ 𝜙) � 𝜙 ⊗ 𝜓
on C𝑑 for which Tr𝑇 𝜚 ⊗ 𝜚 =

∑𝑑
𝑖, 𝑗=1 𝜆𝑖𝜆 𝑗Tr𝑇 |𝑢𝑖〉〈𝑢𝑖 | ⊗ |𝑢 𝑗〉〈𝑢 𝑗 | =

∑𝑑
𝑖=1 𝜆

2
𝑖 , one immediately gets

𝑝(𝛽) = sup𝜆∈Δ𝑑
∑𝑑
𝑖=1(−𝜆𝑖 ln𝜆𝑖 − 𝛽𝜆2

𝑖 ), where 𝜆 = (𝜆1, . . . , 𝜆𝑑) ∈ Δ𝑑 is the vector of eigenvalues of the
state 𝜚 on C𝑑 .

1.2. Spectral gap from semiclassics plus fluctuations

The main result of this paper is a simple quasi-classical explanation and formulae for the low-energy
part of the spectrum of a self-adjoint mean-field operator 𝐻 as in Equation (1.1) in the limit 𝑁 → ∞.
We will denote by 𝐸0(𝐻) ≤ 𝐸1 (𝐻) ≤ 𝐸2 (𝐻) ≤ . . . the ordered sequence of its eigenvalues counted
with multiplicities. In particular, the existence and leading asymptotic value of the spectral gap

gap𝐻 = 𝐸1 (𝐻) − 𝐸0 (𝐻)

can be read of from the location of the minimum m0 of the polynomial 𝑃 : R3 → R restricted to the
unit ball 𝐵1. In case the minimum is unique and located on the surface 𝑆2, the operator (1.1) generically
has a spectral gap. To leading order in 𝑁 the value of this gap is in fact completely determined by the
coefficients of the quadratic polynomial which is uniquely associated with 𝑃. In view of the notorious
difficulty of determining the spectral gap in quantum lattice systems [24, 2, 1, 29], this simplicity might
be somewhat surprising.
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Broadly speaking, our results are in accordance with the general belief of fluctuation theory that
the second-order approximation to 𝑃, which involves the gradient ∇𝑃(m0) and the Hessian 𝐷𝑃 (m0) =(
𝜕 𝑗𝜕𝑘𝑃(m0)

)3
𝑗 ,𝑘=1 yields the description of the low-energy spectra. Related statements have been proven

in the context of mean-field Bose systems (see, e.g., [22, 32]). For the precise formulation of such a
result for quantum spin systems and in order to point out a subtlety caused by the geometry, we need
some basic geometric facts on functions on 𝐵1.

If m0 ∈ 𝑆2 is a minimum of 𝑃 on 𝐵1, the gradient either vanishes or points towards the center of
the ball, ∇𝑃(m0) = −|∇𝑃(m0) | m0. The quadratic approximation of the polynomial is then given by
𝐷𝑃 (m0) projected on the directions perpendicular to m0. In terms of the normalized directional vector

em0 =
m0
|m0 |

, we set 𝑄⊥ := 1R3 − e𝑇m0 em0 ,

which is understood as a linear projection map on R3. Introducing a local chart Φ : R2 → 𝑇m0𝑆
2, the

linear map on ran𝑄⊥ ≡ 𝑇m0𝑆
2 given by

𝐷⊥
𝑃 (m0) := 𝑄⊥𝐷𝑃 (m0)𝑄⊥ + |∇𝑃(m0) | 𝑄⊥ (1.9)

is then the quadratic approximation to 𝑃 ◦Φ at m0. The shift of the Hessian in Cartesian coordinates by
the norm of the gradient |∇𝑃(m0) | is thus an effect of the constraint due to the spherical geometry.

Theorem 1.2. Let 𝐻 be a self-adjoint operator on H𝑁 of the form (1.1) with a noncommuting self-
adjoint polynomial 𝑃 : R3 → R. Suppose that the minimum of 𝑃 restricted to the unit ball 𝐵1 is unique
and located at a point m0 ∈ 𝑆2 on the unit sphere. Then,

gap𝐻 = 2 min
{
|∇𝑃(m0) |,

√
det 𝐷⊥

𝑃 (m0)
}
+ 𝑜(1) (1.10)

is the spectral gap above the unique ground state in case the right-hand side is strictly positive.

This theorem is a special case of Theorem 2.3, which deals with mean-field spin Hamiltonians
with more general regular symbols than just polynomials. Theorem 2.3 also has the corresponding
description of the leading asymptotics of the entire low-energy spectrum in terms of fluctuation operators
in directions ran𝑄⊥. By Theorem 2.1, these more detailed results also apply to the polynomial case. To
the best of our knowledge, all these results are entirely new in the mathematics literature. Previously,
the spectrum spec𝐻 of mean-field operators as in Equation (1.1) has been identified only on order 𝑁 .
In [51, Cor. 2.2] it is shown that

lim
𝑁→∞

dist
(
𝑁−1 spec𝐻, ran 𝑃

)
= 0, (1.11)

where ran 𝑃 is the range of the function 𝑃 : 𝐵1 → R.
To demonstrate the applicability of Theorem 1.2, we consider the quantum Curie–Weiss Hamiltonian

𝐻 = − 4
𝑁 𝑆2

𝑥 − 2𝛾𝑆𝑧 , which corresponds to the choice 𝑃(m) = −𝑚2
𝑥 − 𝛾𝑚𝑧 . The gradient and Hessian in

Cartesian coordinates are given by

∇𝑃(m) =
⎡⎢⎢⎢⎢⎣
−2𝑚𝑦

0
−𝛾

⎤⎥⎥⎥⎥⎦ , 𝐷𝑃 (m) =
⎡⎢⎢⎢⎢⎣
−2 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎦ .
In the paramagnetic phase 𝛾 > 2, 𝑃 has only one minimum on 𝐵1 at m0 = (0, 0, 1)𝑇 . The eigenvalues of
the orthogonal part 𝐷⊥

𝑃 (m0) of the Hessian are 𝜔1 = −2 + 𝛾, 𝜔2 = 𝛾 and |∇𝑃(m0) | = 𝛾. Theorem 1.2
then yields:

gap𝐻 = 2
√
𝛾(𝛾 − 2) + 𝑜(1).
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The gap closes like a square root close to the critical point 𝛾 = 2. This is the end point (at 𝛽 = ∞)
of the critical line which separates the ferromagnetic phase of the quantum Curie–Weiss model at low
temperatures from the paramagnetic phase at high temperature or large transversal field (cf. [4]).

In the ferromagnetic phase |𝛾 | < 2, minima of 𝑃 are found at m±
0 = (±

√
1 − 𝛾2/4, 0, 𝛾/2)𝑇 .

The eigenvalues of the orthogonal part 𝐷⊥
𝑃 (m

±
0 ) of the Hessian are 𝜔1 = 2, 𝜔2 = 2(1 − 𝛾2/4) and

|∇𝑃(m±
0 ) | = 2. If we ignore the degeneracy of these two minima for the moment and pretend that only

the positive solution m+
0 exists, this leads to the expression 4

√
1 − 𝛾2/4 in the right side of Equation

(1.10). As will be explained below Theorem 2.5, the gap vanishes in this phase due to the degeneracy
of the two minima. What is calculated here is in fact the gap between the second excited state and the
ground state.

2. Low-energy spectra for operators with regular symbols

Our result on the gap and the low-energy spectrum applies to a more general class of mean-field
quantum spin Hamiltonians than just noncommutative self-adjoint polynomials of the total spin. Next,
we describe this class, which involves operators defined via their upper symbols. Besides the quest for
generality, the semiclassical methods used in the proof of our results for Hamiltonians as in Equation
(1.1) already naturally brings up such operators with more general symbols.

2.1. Assumptions

A0 We assume that 𝐻 is block diagonal with respect to the orthogonal decomposition (1.2) of H𝑁 ,

𝐻 =
𝑁 /2⊕

𝐽= 𝑁2 −� 𝑁2 �

𝑀𝐽⊕
𝛼=1

𝐻𝐽 ,𝛼 (2.1)

with self-adjoint blocks 𝐻𝐽 ,𝛼 acting on a copy of C2𝐽+1. Moreover, there is a twice continuously
differentiable symbol ℎ : 𝐵1 → R such that all blocks are uniformly approximable in operator norm on
C

2𝐽+1 to order one as 𝑁 → ∞:

max
𝐽 ,𝛼

����𝐻𝐽 ,𝛼 − 2𝐽 + 1
4𝜋

∫
𝑁ℎ

(2𝐽
𝑁

e(Ω)
) ��Ω, 𝐽〉〈Ω, 𝐽�� 𝑑Ω���� ≤ O(1), (2.2)

where the maximum runs over 𝛼 ∈ {1, . . . , 𝑀𝑁 ,𝐽 } and 𝐽 ∈ { 𝑁2 − � 𝑁2 �, . . . , 𝑁/2}.

For our semiclassical analysis, we introduce subspaces associated with a fixed block (𝐽, 𝛼) and any
direction defined by 0 ≠ m0 ∈ 𝐵1:

H𝐾
𝐽 (m0) = span

{
𝜓 ∈ C2𝐽+1 | m0 · S 𝜓 = |m0 | (𝐽 − 𝑘)𝜓 for some 𝑘 ∈ {0, , 1, . . . , 𝐾}

}
.

The associated orthogonal projection onC2𝐽+1 will be denoted by 𝑃𝐾𝐽 (m0). We will work with quadratic
approximations at m0 defined in terms of the matrix-valued self-adjoint second-order Taylor polynomial
associated with ℎ and the total spin S on C2𝐽+1:

𝑄(m0) := 𝑁ℎ(m0)1 + (2S − 𝑁m0) · ∇ℎ(m0) +
2
𝑁
(S − 𝑁m0/2) · 𝐷ℎ (m0) (S − 𝑁m0/2). (2.3)

The operators (S − 𝑁m0/2)/
√
𝐽𝑁 (m0) with 𝐽𝑁 (m0) � |m0 |𝑁/2 are the fluctuation operators (cf. [37,

38]) with respect to the coherent state |Ω0, 𝐽𝑁 (m0)〉, where Ω0 is the spherical angle of em0 . We assume
the approximability of 𝐻𝐽 ,𝛼 with 𝐽 close to 𝐽𝑁 (m0) either solely for the set of minima M ⊂ 𝐵1 or
globally at every point.
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A1 We assume that there is a continuously differentiable 𝜅 : 𝐵1 → R and diverging sequences 𝐾𝑁 ,
𝐾𝑁 ∈ N such that for all minima m0 ∈ M:

max
|𝐽−𝐽𝑁 (m0) |≤𝐾𝑁

max
𝛼

���[
𝜅(m0)1 +𝑄(m0) − 𝐻𝐽 ,𝛼

]
𝑃𝐾𝑁𝐽 (m0)

��� = 𝑜(1), (2.4)

where Landau’s 𝑜(1) stands for a null sequence as 𝑁 → ∞.

A1’ We assume that there is a continuously differentiable 𝜅 : 𝐵1 → R and a diverging sequence 𝐾𝑁 ∈ N
such that

max
m0∈𝐵1

max
|𝐽−𝐽𝑁 (m0) |≤1

max
𝛼

���[
𝜅(m0)1 +𝑄(m0) − 𝐻𝐽 ,𝛼

]
𝑃𝐾𝑁𝐽 (m0)

��� = 𝑜(1). (2.5)

Before moving on to the main results, let us add a few comments.

1. The reason for including an offset function 𝜅 in the quadratic approximations (2.4) and (2.5) is that
the symbol ℎ is only assumed to approximate 𝐻 up to order one, cf. Equation (2.2). However, our
main results address the spectrum exactly to this order.

2. In case the minimum m0 ∈ M is in the interior of the ball, |m0 | < 1, then ∇ℎ(m0) = 0. The second
term in the quadratic approximation (2.3) is hence absent. In case |m0 | = 1, the gradient either
vanishes or points to the center of the ball, ∇ℎ(m0) = −|∇ℎ(m0) | em0 . The second term in Equation
(2.3) then equals 2|∇ℎ(m0) |(em0 · S − 𝑁/2).

3. If A1 or A1’ hold for diverging sequences 𝐾𝑁 , 𝐾𝑁 , then they also hold for any such sequences,
which are upper bounded by 𝐾𝑁 , 𝐾𝑁 .

The projections corresponding to the subspaces H𝐾
𝐽 (m0) are chosen such that��(

em0 · S − 𝐽𝑁 (m0)
)
𝑃𝐾𝐽 (m0)

�� = max
𝑘∈{0,...,𝐾 }

|𝐽 − 𝑘 − 𝐽𝑁 (m0) | ≤ 𝐾 + |𝐽 − 𝐽𝑁 (m0) |. (2.6)

To estimate the norm of the spin operator 𝑄⊥S projected to orthogonal directions, 𝑄⊥ = 1R3 − e𝑇m0 em0

perpendicular to m0, it is convenient to introduce a coordinate system. When focusing on a patch
around one point, we may always assume without loss of generality that m0 = (0, 0, |m0 |)𝑇 . This can
be accomplished by the unitary rotation in Equation (1.3), for which 𝑈 (Ω0)∗ em0 · S 𝑈 (Ω0) = 𝑆𝑧 if
Ω0 denotes the spherical coordinates of em0 . In this coordinate system, the spin operators in the two
orthogonal directions are given by 𝑆𝑥 and 𝑆𝑦 , and the range of the projections 𝑃𝐾𝐽 ,𝛼 (m0) are spanned
by the canonical orthonormal eigenbasis of 𝑆𝑧 on C2𝐽+1, that is, 𝑆𝑧 |𝐽 − 𝑘〉 = (𝐽 − 𝑘) |𝐽 − 𝑘〉 for all
𝑘 ∈ {0, 1, . . . , 2𝐽}. We recall that both 𝑆𝑥 and 𝑆𝑦 are tridiagonal matrices in terms of this basis

〈𝐽 − 𝑘 |𝑆𝑥 |𝐽 − 𝑘 ′〉 = 𝑖𝑘
′−𝑘 〈𝐽 − 𝑘 |𝑆𝑦 |𝐽 − 𝑘 ′〉 =

√
2𝐽 max{𝑘, 𝑘 ′} − 𝑘𝑘 ′

4
𝛿 |𝑘′−𝑘 |,1. (2.7)

Therefore, for any 𝑑 ∈ N there is some 𝐶𝑑 < ∞ such that for both 𝜉 ∈ {𝑥, 𝑦}:

max
𝐽 ≤𝑁 /2

max
min{𝑘,𝑘′ }∈{0,...,𝐾 }

���〈𝐽 − 𝑘 |𝑆𝑑𝜉 |𝐽 − 𝑘 ′〉
��� ≤ 𝐶𝑑 (𝑁𝐾)

𝑑
2 1[|𝑘 ′ − 𝑘 | ≤ 𝑑] . (2.8)

This renders evident that on H𝐾
𝐽 (m0) the scaled operators 𝑁 (2𝑆𝜉 /𝑁)𝑑 are negligible if 𝑑 ≥ 3 and

𝐾 = 𝑜(𝑁1/3).
The above arguments also show that our assumptions are tailored to apply to Equation (1.1) with an

arbitrary noncommuting self-adjoint polynomial 𝑃.

Theorem 2.1. For 𝐻 = 𝑁P
( 2
𝑁 S

)
on H𝑁 with any noncommuting self-adjoint polynomial 𝑃, all

assumptions A0, A1, A1’ are satisfied with ℎ = 𝑃 and 𝐾𝑁 = 𝑜(𝑁2/3), 𝐾𝑁 = 𝑜(𝑁1/3).
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Proof. Thanks to Equation (1.7), an approximate symbol of the Hamiltonian is indeed the polynomial,
ℎ = 𝑃.

Let m0 ∈ 𝐵1 be arbitrary, not necessarily a minimum of 𝑃. Without loss of generality, we may
assume m0 = (0, 0, |m0 |)𝑇 and that the Hamiltonian is of the form 𝐻 = 𝑁P(𝑠𝑁 (1), 𝑠𝑁 (2), 𝑠𝑁 (3)) with

𝑠𝑁 (1) :=
2
𝑁
𝑆𝑥 , 𝑠𝑁 (2) :=

2
𝑁
𝑆𝑦 , 𝑠𝑁 (3) :=

2
𝑁
(𝑆𝑧 − 𝐽𝑁 (m0)).

The polynomial P is a linear combination of monomial products of a fixed order 𝑑 ∈ N. Due to
noncommutativity of matrix multiplication such monomials include all products of the form

Π𝑁 (i) := 𝑠𝑁 (𝑖1)𝑠𝑁 (𝑖2) . . . 𝑠𝑁 (𝑖𝑑)

with an arbitrary choice of ordered indices i = (𝑖1, . . . , 𝑖𝑑) ∈ {1, 2, 3}𝑑 . Up to order 𝑑 ≤ 2 and due to the
assumed self-adjointness of the noncommutative product, they coincide with the terms in the definition
(2.3) of 𝑄(m0).

Each of the above matrices Π𝑁 (i) is block diagonal on H𝑁 and, when restricted to a copy of C2𝐽+1,
at most 2𝑑 + 1-diagonal. We may therefore estimate similarly as in Equation (2.8) for all 𝐽 ≤ 𝑁/2 and
any choice of indices i ∈ {1, 2, 3}𝑑:

max
min{𝑘,𝑘′ }∈{0,...,𝐾𝑁 }

|〈𝐽 − 𝑘 | 𝑁Π𝑁 (i) |𝐽 − 𝑘 ′〉 |

≤ 𝐶𝑑 𝑁
1−𝑑 max

𝑚∈{0,...,𝑑 }

{√
𝑁 (𝐾𝑁 + 𝑑)

𝑑−𝑚
(|𝐽 − 𝐽𝑁 (m0) | + 𝐾𝑁 + 𝑑)𝑚

}
1[|𝑘 ′ − 𝑘 | ≤ 𝑑]

≤ 𝐶𝑑

[ √
𝐾𝑁

𝑑

√
𝑁
𝑑−2 +

|𝐽 − 𝐽𝑁 (m0) |𝑑 + 𝐾𝑑𝑁
𝑁𝑑−1

]
1[|𝑘 ′ − 𝑘 | ≤ 𝑑], (2.9)

with a constant 𝐶𝑑 < ∞, which changes from line to line and which is independent of 𝐽. For any 𝑑 ≥ 3,
the right side vanishes if 𝐾𝑁 = 𝑜(𝑁1/3) and |𝐽 − 𝐽𝑁 (m0) | = 𝑜(𝑁2/3). Since

max
𝛼

���Π𝑁 (i)𝑃𝐾𝑁𝐽 (m0)
��� ≤ (2𝑑 + 1) max

min{𝑘,𝑘′ }∈{0,...,𝐾𝑁 }
|〈𝐽 − 𝑘 |Π𝑁 (i) |𝐽 − 𝑘 ′〉 |, (2.10)

any monomial of order 𝑑 ≥ 3 indeed does not contribute in Equation (2.4). �

Using similar estimates and under some more restrictive assumptions on 𝐾𝑁 and 𝐾𝑁 , one may
replace 𝑄(m0) in assumption (2.4) by the second-order polynomial

𝑄(m0) � 𝑁ℎ(m0)1 + (2S − 𝑁m0) · ∇ℎ(m0) +
2
𝑁
(𝑄⊥S) · 𝐷ℎ (m0) (𝑄⊥S), (2.11)

which only involves the projection 𝑄⊥ of the Hessian. This means that the fluctuation operator in the
radial direction of m0 is negligible.

Lemma 2.2. If 𝐾𝑁 = 𝑜(𝑁1/3) and 𝐾
2
𝑁𝐾𝑁 = 𝑜(𝑁), then

sup
|𝐽−𝐽𝑁 (m0) |≤𝐾𝑁

sup
𝛼

���[
𝑄(m0) −𝑄(m0)

]
𝑃𝐾𝑁𝐽 (m0)

��� = 𝑜(1). (2.12)

Proof. Using the same coordinate system and notation as in the proof of Theorem 2.1, the difference
𝑄(m0) − 𝑄(m0) is a linear combination of the five monomials of the form 𝑁Π𝑁 (i) with i = (𝑖1, 𝑖2) ∈
{(1, 3), (3, 1), (2, 3), (3, 2), (3, 3)}.
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By Equation (2.6), we have
���𝑁Π𝑁 (3, 3)𝑃𝐾𝑁𝐽 (m0)

��� ≤ 8 (|𝐽 − 𝐽𝑁 (m0) |2 + 𝐾2
𝑁 )/𝑁 = 𝑜(1). In all

other cases, we estimate similarly as in Equation (2.9). For example,

max
𝑘′ ∈{0,...,𝐾𝑁 }

|〈𝐽 − 𝑘 |𝑁Π𝑁 (3, 1) |𝐽 − 𝑘 ′〉 | ≤
√

𝐾𝑁 + 1
𝑁

(|𝐽 − 𝐽𝑁 (m0) | + 𝐾𝑁 + 1)1[|𝑘 ′ − 𝑘 | ≤ 1],

which by Equation (2.10) leads to
���𝑁Π𝑁 (3, 1)𝑃𝐾𝑁𝐽 ,𝛼 (m0)

��� ≤ 𝑜(1). The remaining terms are estimated
similarly. �

2.2. The case of a unique minimum

The following is our main result for mean-field Hamiltonians whose approximate symbol has a unique
minimum, which is at the surface of the unit ball.

Theorem 2.3. Assuming A0 and A1 and that the symbol ℎ has a unique global minimum at m0 ∈ 𝑆2,
where ∇ℎ(m0) ≠ 0 and det 𝐷⊥

ℎ (m0) > 0:

1. The ground state 𝜓0 of 𝐻 on H𝑁 is unique (up to phase) and contained in the subspace with maximal
total spin 𝐽 = 𝑁/2. In terms of the eigenstates |𝑁/2−𝑚〉 of m0 · S in that subspace, we have for any
𝑚 ∈ N0:

〈𝐽 − 𝑚 |𝜓0〉 = 𝜔1/4

√
2

(𝜔 + 1)𝑛!

(√
𝜔 − 1

2(𝜔 + 1)

)𝑛
𝐻𝑛 (0) + 𝑜(1), (2.13)

where 𝐻𝑛 denotes the n-th Hermite polynomial, and the ground state energy is given by

𝐸0 (𝐻) = 𝑁ℎ(m0) + 𝜅(m0) − |∇ℎ(m0) | +
√

det 𝐷⊥
ℎ (m0) + 𝑜(1). (2.14)

2. For any energy below 𝐸0(𝐻)+Δ withΔ > 0 fixed but arbitrary, the eigenvalues of 𝐻 stem from blocks
(𝐽, 𝛼) with 𝑘 = 𝑁/2 − 𝐽 ∈ N0 fixed. When counted with multiplicity, these low-energy eigenvalues
of 𝐻𝑁 /2−𝑘,𝛼 for 𝑘 ∈ N0 asymptotically coincide up to 𝑜(1) with the points in

𝑁ℎ(m0) + 𝜅(m0) + (2𝑘 − 1) |∇ℎ(m0) | + (2𝑚 + 1)
√

det 𝐷⊥
ℎ (m0), (2.15)

with 𝑚 ∈ N0. The spectral gap of 𝐻 is

gap𝐻 = 2 min
{
|∇ℎ(m0) |,

√
det 𝐷⊥

ℎ (m0)
}
+ 𝑜(1). (2.16)

The proof of Theorem 2.3 is the topic of Section 3.2. As can be inferred from there, the error estimates
hiding in the 𝑜(1)-terms are made up from two sources: first, the accuracy of the assumed quadratic
approximation (2.4), and second, the cumulative subsequent error estimates. Moreover, an asymptotic
form of all eigenfunctions of 𝐻𝐽 ,𝛼 on the outer blocks and not only the ground state (2.13) is found
there. Although the ground state is simple and the same applies to the oscillator spectrum (2.15) of
𝐻𝐽 ,𝛼 for fixed (𝐽, 𝛼), the multiplicity 𝑀𝑁 ,𝐽 in Equation (2.1) will cause the eigenvalues of 𝐻 to occur
approximately to order 𝑜(1) with these multiplicities.

Before moving on to the general case, let us put Theorem 2.3 in the context of available results.

1. The spectra of quadratic mean-field Hamiltonians such as the Lipkin–Meshkov–Glick model can
be described exactly through Bethe–Ansatz-type equations [50, 41, 40]. Since the latter are in the
most general case hard to solve, much attention has been given to finding approximate semiclassical
solutions [46, 12]. In view of this, it is worth emphasizing that the above theorem is (through
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Theorem 2.1) applicable to all 𝐻 of polynomial form (1.1). Their low-energy spectra are proven
to agree with that of the associated quadratic term. The latter turns out to produce the harmonic
oscillator spectrum (2.15), in which the frequency is determined by the Hessian in the spherical
geometry. The spectrum of such general mean-field Hamiltonians has so far only been determined
to a coarser order 𝑁 in [51] (cf.Equation (1.11)) and not on the fine scale 𝑜(1).

2. Expressions for the spectral gap of certain polynomial mean-field quantum-spin Hamiltonians have
been derived on the level of rigor of theoretical physics in [46, 4]. These works assume that the low-
energy spectrum of the relevant blocks 𝐻𝐽 ,𝛼 are equally spaced and argue that the gap is proportional
to its inverse density of states at the ground state. A posteriori and thanks to the proven equal spacing
of the low-energy eigenvalues of 𝐻𝑁 /2−𝑘,𝛼, this is correct in case the minimum in Equation (2.16)
is attained at

(
det 𝐷⊥

ℎ (m0)
)1/2. It hence works in case of the quantum Curie–Weiss model in the

paramagnetic phase. However, in case the minimum in Equation (2.16) is found at |∇ℎ(m0) | and
hence stems from the secondmost outer shell, this strategy fails.

Theorem 2.3 should be contrasted with the case that the minimum of the symbol is found strictly
inside the unit ball. In this case, the spectral gap vanishes since the following theorem shows that all
blocks (𝐽, 𝛼) with |𝐽 − 𝐽𝑁 (m0) | ≤ 𝑜(

√
𝑁) have the same ground-state energy up to an 𝑜(1)-error.

Theorem 2.4. Assuming A0 and A1’and that the symbol ℎ ∈ 𝐶3 has a unique global minimum at
m0 ∈ 𝐵1 with 0 < |m0 | < 1 and 𝐷ℎ (m0) > 0. Then:

1. Any ground-state eigenvector of 𝐻 on H𝑁 is contained in a subspace with total spin 𝐽 with
|𝐽 − 𝐽𝑁 (m0) | ≤ O(

√
𝑁) and

𝐸0 (𝐻) = 𝐸0 (𝐻𝐽 ,𝛼) = 𝑁ℎ(m0) + 𝜅(m0) + |m0 |
√

det 𝐷⊥
ℎ (m0) + 𝑜(1). (2.17)

2. For any 𝐽 with |𝐽 − 𝐽𝑁 (m0) | ≤ 𝑜(
√
𝑁), the ground-state energy 𝐸0(𝐻𝐽 ,𝛼) is still given by Equation

(2.17).

The proof largely builds on the techniques of the proof of Theorem 2.3 and is found in Section 3.3.
The techniques allow in fact to determine the whole low-energy spectrum of every block 𝐻𝐽 ,𝛼 with
|𝐽 − 𝐽𝑁 (m0) | ≤ 𝑜(

√
𝑁).

2.3. The case of a finite number of minima

Our last main result concerns the case of symbols with finitely many minima on the surface of the
quantum sphere.

Theorem 2.5. Assuming A0 and A1 and that the symbol ℎ has 𝐿 global minima at {m1, . . . ,m𝐿} ⊂ 𝑆2,
where at each minimum ∇ℎ(m𝑙) ≠ 0 and det 𝐷⊥

ℎ (m𝑙) > 0:

1. Any ground-state eigenvector of 𝐻 on H𝑁 is contained in the subspace with maximal total spin
𝐽 = 𝑁/2. The ground-state energy is

𝐸0(𝐻) = min
𝑙∈{1,...,𝐿 }

[
ℎ(m𝑙) + 𝜅(m𝑙) − |∇ℎ(m𝑙) | +

√
det 𝐷⊥

ℎ (m𝑙)
]
+ 𝑜(1).

2. For any energy below 𝐸0 (𝐻) + Δ with Δ > 0 fixed but arbitrary, the eigenvalues of 𝐻 stem from
blocks (𝐽, 𝛼) with 𝑘 = 𝑁/2 − 𝐽 ∈ N0 fixed but arbitrary. When counted with multiplicity, these low-
energy eigenvalues of 𝐻𝑁 /2−𝑘,𝛼 for 𝑘 ∈ N0 asymptotically coincide up to 𝑜(1) with the points in

𝑁ℎ(m𝑙) + 𝜅(m𝑙) + (2𝑘 − 1) |∇ℎ(m𝑙) | + (2𝑚 + 1)
√

det 𝐷⊥
ℎ (m𝑙), (2.18)

with 𝑚 ∈ N0 and 𝑙 ∈ {1, . . . , 𝐿}.
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The proof, which in comparison to Theorem 2.3 poses the additional difficulty of controlling the
tunnelling between minima, is found in Section 3.4.

The theorem allows for degeneracies in the spectrum already at the level of the ground state. The
quantum Curie–Weiss model 𝑃(m) = −𝑚2

𝑥 −𝛾𝑚𝑧 in the ferromagnetic phase |𝛾 | < 2 is an example. The
gradient’s norm |∇𝑃(m±

0 ) | = 2 and det 𝐷⊥
𝑃 (m

±
0 ) = 4−𝛾2 agree for the two minima m±

0 ∈ 𝑆2. Therefore,
all the low-energy eigenvalues described by Equation (2.18) are approximately doubly degenerate. In
this situation, the formula (1.10) yields the gap of the nearly 𝐿-fold degenerate ground state (𝐿 = 2 for
Curie–Weiss) to the next energy levels. Our proof enables to show that the level splitting due to tunnelling
through a macroscopic barrier from one minimum to the other is smaller than any polynomial in 𝑁−1.
As demonstrated numerically in [52], the quantum Curie–Weiss’s ferromagnetic phase exhibits the ‘flea
on the elephant phenomenon’ [28], that is, the sensitivity of the ground-state function to perturbations.
It might be interesting to combine the techniques in this paper with [26, 48] for a proof of this.

Let us conclude the main part of the paper with a general outlook. Having derived precise low-energy
asymptotics of eigenvalues in terms of quadratic approximations and using techniques as in [35, Sec. 5],
our techniques should extend to derive the fluctuations of the free energy not only at 𝛽 = ∞ but also for
finite temperature.

It would also be interesting to investigate the dynamical properties of the mean-field Hamiltonians.
Coherent wavepackets evolve semiclassically [19]. The latter work also connects to the question of
whether the description of the low-energy spectra in the present paper are helpful in the analysis of
models which become semiclassical only in a Kac-type scaling limit (cf. [43]).

3. Semiclassical analysis

This section is dedicated to the proofs of Theorems 2.3-2.5. The proofs combine projection techniques
in a Schur-complement analysis, which in the present paper constitutes of the following simple principle.

Proposition 3.1. Let 𝐴 be a bounded self-adjoint operator on a Hilbert spaceH, and 𝐸 and 𝐹 orthogonal
projections with 𝐸 + 𝐹 = 1H. Assume that 𝑎 < inf spec 𝐹𝐴𝐹, and let 𝑅(𝑎) = (𝐹𝐴𝐹 − 𝑎𝐹)−1 stand for
the block inverse on 𝐹H. Then

𝑎 ∈ spec 𝐴 if and only if 0 ∈ spec 𝐸𝐴𝐸 − 𝑎𝐸 − 𝐸𝐴𝐹𝑅(𝑎)𝐹𝐴𝐸.

In particular, the eigenvalues 𝛼0 (𝐴) ≤ 𝛼1 (𝐴) ≤ . . . of 𝐴 (counted with multiplicities) and the respective
eigenvalues of 𝐸𝐴𝐸 satisfy ��𝛼 𝑗 (𝐴) − 𝛼 𝑗 (𝐸𝐴𝐸)

�� ≤ ‖𝐸𝐴𝐹‖2

dist(spec 𝐹𝐴𝐹, 𝑎)

provided 𝛼 𝑗 (𝐴) < 𝑎 < spec 𝐹𝐴𝐹.

The proof is elementary. Extensions of this statement can be found in [49, 53, 54, 23].
Through suitably defined projections, our proof of Theorems 2.3–2.5 focuses the spectral analysis

of the mean-field Hamiltonian on subspaces associated with patches around the classical minima of
its symbol. More precisely, we proceed by a two-step localization procedure. To illustrate the main
idea, let us focus on the proof of Theorem 2.3. For a first coarse localization and at a fixed value of
the total spin 𝐽, we restrict attention to the subspaces H𝐾𝑁

𝐽 (m0) with 𝐾𝑁 increasing with 𝑁 and m0
the unique minimum of the symbol. On these increasing nested subspaces, we construct a sequence
of approximate Hamiltonians, which result from an explicit limit operator of the fluctuation operators.
In a second localization, the Schur-complement analysis of Proposition 3.1 is then applied with 𝐸 the
subspace spanned by an arbitrary, but finite, number of eigenspaces of the approximate limit operator,
which turns out to coincide with a harmonic oscillator. The off-diagonal terms featuring in Proposition
3.1 are estimated with the help of exponential decay estimates on the explicit eigenfunctions of the limit
operator.
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In case of Theorem 2.5, we proceed similarly. An additional challenge is to control the tunneling
between patches of different minima. This is done here using the exponential decay of coherent-state
inner products, which we derive in Appendix A.1. Let us stress that our method does not rely on sharp
semiclassical tunneling estimates in terms of the Agmon metric, which are available, for example, for
related problems of multiwell tunneling for Schrödinger operators [26, 48].

To the best of our knowledge, the above proof strategy is new in the present context of a spectral
analysis of mean-field quantum spin systems. In a broader context. the Schur-complement methods or
more generally, Gushin’s method, have been employed before in semiclassical analysis, for example,
for stability analysis and, under the name Feshbach–Schur method, in perturbation theory in quantum
mechanics; cf. [49, 54, 23].

We start with a description of the limit operators. The proof of Theorems 2.3-2.5 follow in the
subsequent sections.

3.1. Limit of fluctuation operators

We start our proof by introducing two operators 𝐿𝑥 and 𝐿𝑦 on the Hilbert space ℓ2(N0), which turn
out to be unitarily equivalent to the position and momentum operator on 𝐿2 (R). This enables us to
determine the spectrum and eigenfunctions of the operator

𝐷 = 𝜔2𝐿2
𝑥 + 𝐿2

𝑦 ,

which is equivalent to a harmonic oscillator with frequency 𝜔. In the following subsections, we show
that the Hamiltonians described in Section 2.1 indeed converge in a sense to be specified locally to an
operator of the form D. This is the key to determine their low-energy spectra explicitly.

To set the stage, we define 𝐿𝑥 and 𝐿𝑦 via their matrix elements in terms of the canonical orthonormal
bases in ℓ2(N0):

〈𝑘 |𝐿𝑥 |𝑘 ′〉 = 𝑖𝑘
′−𝑘 〈𝑘 |𝐿𝑦 |𝑘 ′〉 =

√
max{𝑘, 𝑘 ′}

2
𝛿 |𝑘−𝑘′ |=1. (3.1)

They give rise to essentially self-adjoint operators on the dense domain

𝑐00 � {(𝑥𝑛)𝑛∈N | ∃ 𝑁 ∈ N such that 𝑥𝑛 = 0 ∀ 𝑛 ≥ 𝑁}.

Moreover, by an elementary calculation

[𝐿𝑥 , 𝐿𝑦] |𝑘〉 � (𝐿𝑥𝐿𝑦 − 𝐿𝑦𝐿𝑥) |𝑘〉 = 𝑖 |𝑘〉, (3.2)

that is, 𝐿𝑥 and 𝐿𝑦 satisfy the canonical commutation relations. The following proposition is essentially
a consequence of this observation.

Proposition 3.2. Let 𝜔 ≥ 1. Then, 𝐷 = 𝜔2𝐿2
𝑥 + 𝐿2

𝑦 is a positive, essentially self-adjoint operator on the
domain 𝑐00 ⊂ ℓ2(N0) with spectrum

spec 𝐷 = {(2𝑘 + 1)𝜔 | 𝑘 ∈ N0}. (3.3)

Every point in the spectrum is a nondegenerate eigenvalue. The ground-state 𝜓0 is

〈𝑛|𝜓0〉 = 𝜔1/4

√
2

(𝜔 + 1)𝑛!

(√
𝜔 − 1

2(𝜔 + 1)

)𝑛
𝐻𝑛 (0). (3.4)

The k-th excited state is given by 𝜓𝑘 = (𝑎†)𝑘𝜓0/
√
𝑘! with the raising operator 𝑎† �

√
𝜔
2

(
𝐿𝑥 − 𝑖

𝜔 𝐿𝑦
)
.

In particular, 〈𝑛|𝜓𝑘〉 = 0 unless 𝑘 − 𝑛 is even in which case, we have the exponential decay estimate
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|〈𝑛|𝜓𝑘〉|2 ≤
√

𝜔

𝜋

22𝑘+1

𝜔 + 1
𝑛𝑘−

1
2

𝑘!

(
𝜔 − 1
𝜔 + 1

)𝑛−𝑘
, if 𝑛 ≥ 2𝑘, (3.5)

|〈𝑛|𝜓𝑘〉|2 ≤
√

𝜔

𝜋

22𝑛+1

𝜔 + 1
𝑘𝑛−

1
2

𝑛!

(
𝜔 − 1
𝜔 + 1

)𝑛−𝑘
, if 𝑘 ≥ 2𝑛. (3.6)

The value 𝐻𝑛 (0) is explicit:

𝐻𝑛 (0) =
{
(−1)𝑛/2 𝑛!

(𝑛/2)! if n even
0 if n odd.

(3.7)

In case 𝜔 = 1, the eigenbasis turns out to agree with the canonical orthonormal basis, |𝜓𝑘〉 = |𝑘〉
for all 𝑘 ∈ N0. The exponential decay estimates (3.5) and (3.6) will play a crucial role in subsequent
approximation results.

Proof of Proposition 3.2. The commutation relation (3.2) implies that there is a unitary 𝑈 : ℓ2(N0) →
𝐿2 (R) such that 𝑈𝐿𝑥𝑈

∗ = 𝑥 and 𝑈𝐿𝑦𝑈
∗ = 𝑝, where 𝑥 and 𝑝 denote the position and momentum

operator. In particular, 𝑈𝐷𝑈∗ is the standard harmonic oscillator with frequency 𝜔, which yields the
basic assertion on spec 𝐷. The eigenfunctions of 𝑈𝐷𝑈∗ are known to be given by

𝜑𝜔𝑛 (𝑥) =
1

√
2𝑛𝑛!

(𝜔
𝜋

)1/4
𝑒−𝜔𝑥

2/2𝐻𝑛 (
√
𝜔𝑥).

This unitary equivalence also proves the ladder operator representation for the excited states (cf. [25]).
Since 𝑈 |𝑛〉 = |𝜑1

𝑛〉, we seek for a representation of 𝜑𝜔𝑚 and, in particular 𝑚 = 0 in terms of the 𝜔 = 1
eigenfunctions:

〈𝜑1
𝑛 |𝜑𝜔𝑚〉 =

𝜔1/4
√

2𝑛+𝑚𝜋𝑛!𝑚!

∫
𝑒−(𝜔+1)𝑥2/2𝐻𝑛 (𝑥)𝐻𝑚

(√
𝜔𝑥

)
𝑑𝑥.

Using a change of variables and subsequently the multiplication theorem for Hermite polynomials,

𝐻𝑛 (𝛼𝑥) =
� 𝑛2 �∑
𝑙=0

𝛼𝑛−2𝑙 (𝛼2 − 1)𝑙 𝑛!
(𝑛 − 2𝑙)!𝑙!𝐻𝑛−2𝑙 (𝑥), 𝛼 ∈ R,

we arrive after some elementary algebra at

〈𝑛|𝜓𝑘〉 = 𝜔1/4

√
2 𝑛!𝑘!
(𝜔 + 1)

� 𝑛2 �∑
𝑙=0

(−1)𝑙
1
[
𝑙 + 𝑘−𝑛

2 ∈
{
0, 1, . . . , � 𝑘2 �

}]
(𝑛 − 2𝑙)! 𝑙! (𝑙 + 𝑘−𝑛

2 )!

(
2
√
𝜔

𝜔 + 1

)𝑛−2𝑙 (
𝜔 − 1

2(𝜔 + 1)

)2𝑙+ 𝑘−𝑛2
.

(3.8)

The above sum is only nonzero if 𝑛 − 𝑘 is even. In particular, due to the indicator function requiring
𝑙 = 𝑛/2, for 𝑘 = 0 only one term in the sum survives yielding Equation (3.4) with 𝐻𝑛 (0) replaced by
Equation (3.7).

For a proof of the exponential decay estimates (3.5), we start from Equation (3.8) with the triangle
inequality. Since 2

√
𝜔

𝜔+1 ≤ 1, this term can be upper bounded by one. Furthermore, since also 𝜔−1
2(𝜔+1) ≤ 1,

the we may lower bound 2𝑙 + 𝑘−𝑛
2 ≥ |𝑘−𝑛 |

2 since 𝑙 ≥ 0 in case 𝑘 ≥ 𝑛 and 𝑙 ≥ (𝑛 − 𝑘)/2 in case 𝑛 ≥ 𝑘 .
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Therefore, in case 𝑘 ≥ 𝑛 it remains to estimate

� 𝑛2 �∑
𝑙=0

√
𝑛!𝑘!

(𝑛 − 2𝑙)!
1

𝑙!(𝑙 + 𝑘−𝑛
2 )!

≤
𝑛∑
𝑙=0

(
𝑛

𝑙

) √
𝑘!

√
𝑛! ( 𝑘−𝑛2 )!

=
2𝑛
√
𝑛!

√
𝑘!

( 𝑘−𝑛2 )!
.

The last ratio is then estimated with the help of standard Stirling bounds,

√
2𝜋𝑚

(𝑚
𝑒

)𝑚
exp

(
1

12𝑚 + 1

)
≤ 𝑚! ≤

√
2𝜋𝑚

(𝑚
𝑒

)𝑚
exp

(
1

12𝑚

)
, 𝑚 ∈ N,

together with the elementary bound exp
(
−(𝑘 − 𝑛) ln

(
1 − 𝑛

𝑘

) )
≤ 2𝑛 valid for all 𝑘 ≥ 2𝑛. This yields

Equation (3.5) after some algebra. In case 𝑛 ≥ 𝑘 , we proceed similarly. The only difference is that the
sum in Equation (3.8) starts from |𝑘−𝑛 |

2 . �

The connection of 𝐷 to our models will be through its approximations defined on C2𝐽+1:

𝐷𝑁 := 𝜔2 (
𝐿 (𝑁 )
𝑥

)2 +
(
𝐿 (𝑁 )
𝑦

)2 with 𝐿 (𝑁 )
𝜉 �

𝑆𝜉√
𝐽𝑁

, 𝐽𝑁 :=
𝑁

2
|m0 |. (3.9)

In this subsection, |m0 | ∈ (0, 1] is treated as a scaling parameter. When restricting the commutation
relation,

[
𝐿 (𝑁 )
𝑥 , 𝐿 (𝑁 )

𝑦

]
= 𝑖𝑆𝑧/𝐽𝑁 , to the subspace

H𝐾𝑁
𝐽 := span

{
|𝐽 − 𝑘〉

�� 𝑘 ∈ {0, . . . , 𝐾𝑁 }
}

with |𝐽−𝐽𝑁 | ≤ 𝐾𝑁 , the commutator asymptotically agrees as 𝑁 → ∞ with the canonical one as long as
both 𝐾𝑁 and 𝐾𝑁 grow only suitably slow with 𝑁 . Hence, 𝐷𝑁 when restricted to H𝐾𝑁

𝐽 is expected to be
equal to the harmonic oscillator 𝐷 in the limit 𝑁 → ∞. This observation is at the heart of many works
on quantum spin systems in the large 𝐽 limit [27, 37, 38]. To turn it into a mathematical argument in
the present context, we note that through the identification |𝐽 − 𝑘〉 ≡ |𝑘〉 of their canonical orthonormal
basis, the Hilbert spaces H𝐾𝑁

𝐽 ⊂ C2𝐽+1 are all canonically embedded into ℓ2(N0). This embedding will
be denoted by

𝐼 (𝑁 )
𝐽 : H𝐾𝑁

𝐽 → ℓ2(N0), and 𝐼
(𝑁 )
𝐽 : ℓ2(N0) → H𝐾𝑁

𝐽

stands for its corresponding projection. Thus,

𝐷𝐽 ,𝑁 � 𝐼
(𝑁 )
𝐽 𝐷𝐼 (𝑁 )

𝐽

when restricted to H𝐾𝑁
𝐽 is unitarily equivalent to 𝐷𝑁 � 𝑃𝐾𝑁𝐷𝑃𝐾𝑁 when restricted to

𝐼 (𝑁 )
𝐽 H𝐾𝑁

𝐽 = span
{
|𝑘〉 ∈ ℓ2(N0) | 𝑘 ∈ {0, . . . , 𝐾𝑁 }

}
⊂ 𝑐00

with 𝑃𝐾𝑁 denoting the corresponding orthogonal projection in ℓ2(N0).

Lemma 3.3.

1. For any choice of sequences 𝐾𝑁 = 𝑜(𝑁1/2) and 𝐾𝑁𝐾
3
𝑁 = 𝑜(𝑁2),

max
|𝐽−𝐽𝑁 | ≤𝐾𝑁

���(
𝐷𝐽 ,𝑁 − 𝐷𝑁

)
𝑃
𝐾−
𝑁

𝐽

��� = 𝑜(1), (3.10)

where 𝐾−
𝑁 � 𝐾𝑁 − 2 and 𝑃

𝐾−
𝑁

𝐽 denotes the orthogonal projection onto H𝐾−
𝑁

𝐽 ⊂ H𝐾𝑁
𝐽 .
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2. For any sequence 𝐾𝑁 → ∞, the operators 𝐷𝑁 = 𝑃𝐾𝑁𝐷𝑃𝐾𝑁 converge as 𝑁 → ∞ in strong-
resolvent sense to 𝐷. Moreover, we also have the pointwise convergence of eigenvalues:

𝐸𝑘

(
𝐷𝑁

)
= 𝐸𝑘 (𝐷) + 𝑜(𝐾−∞

𝑁 ) (3.11)

for any 𝑘 ∈ N0. If 𝐸𝐾 and 𝐸 (𝑁 )
𝐾 denote the spectral projection onto the 𝐾 ∈ N lowest eigenvalues of

𝐷 and 𝐷𝑁 on 𝑃𝐾𝑁 ℓ
2(N0), then ���(

𝐸 (𝑁 )
𝐾 − 𝐸𝐾

)
𝐸 (𝑁 )
𝐾

��� = 𝑜(𝐾−∞
𝑁 ), (3.12)

where 𝑜(𝐾−∞
𝑁 ) denotes a sequence, which when multiplied by an arbitrary but fixed power of 𝐾𝑁

goes to zero.

Proof. 1. For any 𝑘, 𝑘 ′ ≤ 𝐾𝑁, the matrix-elements of the difference in the canonical basis of 𝐼 (𝑁 )
𝐽 H𝐾𝑁

𝐽
are given by

〈𝑘 |𝐷 − 𝐼 (𝑁 )
𝐽 𝐷𝑁 𝐼

(𝑁 )
𝐽 |𝑘 ′〉 = 〈𝑘 |𝐿2

𝑦 |𝑘 ′〉 − 𝐽−1
𝑁 〈𝐽 − 𝑘 |𝑆2

𝑦 |𝐽 − 𝑘 ′〉 + 𝜔2 [
〈𝑘 |𝐿2

𝑥 |𝑘 ′〉 − 𝐽−1
𝑁 〈𝐽− 𝑘 |𝑆2

𝑥 |𝐽− 𝑘 ′〉
]
.

Each of the two terms terms in the right side are explicit thanks to EQuations (3.1) and (2.7). If
𝑘 ′ ≤ 𝐾𝑁 − 2, their difference can be expressed in terms of

〈𝑚 |𝐿𝑥 |𝑚′〉 − 𝐽−1/2
𝑁 〈𝐽 − 𝑚 |𝑆𝑥 |𝐽 − 𝑚′〉 = 𝛿 |𝑚−𝑚′ |,1

⎡⎢⎢⎢⎢⎣
√

max{𝑚, 𝑚′}
2

−

√
2𝐽 max{𝑚, 𝑚′} − 𝑚𝑚′

4𝐽𝑁

⎤⎥⎥⎥⎥⎦
with 𝑚, 𝑚′ ≤ 𝐾𝑁 and analogously for 𝑦 instead of 𝑥, for which the expression differs only by an overall
complex phase. By an explicit calculation, the modulus of the last term is upper bounded according to

max
|𝐽−𝐽𝑁 | ≤𝐾𝑁

���〈𝑚 |𝐿 𝜉 |𝑚′〉 − 𝐽−1/2
𝑁 〈𝐽 − 𝑚 |𝑆𝜉 |𝐽 − 𝑚′〉

��� ≤ max{𝑚, 𝑚′, 𝐾𝑁 }3/2

𝐽𝑁

√
1 − max{𝑚, 𝑚′, 𝐾𝑁 }/𝐽𝑁

𝛿 |𝑚−𝑚′ |,1

for both 𝜉 ∈ {𝑥, 𝑦}. Since also��〈𝑚 |𝐿 𝜉 |𝑚′〉
�� ≤ √

max{𝑚, 𝑚′}/2 ≤
√
𝐾𝑁 ,

𝐽−1/2
𝑁

��〈𝐽 − 𝑚 |𝑆𝜉 |𝐽 − 𝑚′〉
�� ≤ √

𝐾𝑁 /|m0 |,

we conclude that for some constant 𝐶 < ∞ and all 𝑘 ≤ 𝐾𝑁 , 𝑘 ′ ≤ 𝐾𝑁 − 2:

max
|𝐽−𝐽𝑁 | ≤𝐾𝑁

���〈𝑘 |𝐷 − 𝐼 (𝑁 )
𝐽 𝐷𝑁 𝐼

(𝑁 )
𝐽 |𝑘 ′〉

��� ≤ 𝐶

𝑁
max

{
𝐾2
𝑁 ,

√
𝐾𝑁𝐾

3
𝑁

}
1[|𝑘 − 𝑘 ′ | ≤ 2] . (3.13)

By an analogous estimate as in Equation (2.10), we thus arrive at the claimed norm estimates in Equation
(3.10).

2. Since 𝑐00 is a common core for 𝐷 and 𝐷𝑁 = 𝑃𝐾𝑁𝐷𝑃𝐾𝑁 , the claimed strong-resolvent convergence
is immediate from from the fact that the matrix elements of 𝐷 vanish unless their difference is smaller
than two (cf. [45]). To boost this strong convergence to convergence of eigenvalues, we use the block
approximation

𝐷𝑁 � 𝑃𝐾𝑁𝐷𝑃𝐾𝑁 +𝑄𝐾𝑁𝐷𝑄𝐾𝑁 , on ℓ2(N0) (3.14)
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with 𝑄𝐾𝑁 = 1 − 𝑃𝐾𝑁 . For 𝐸𝐾 =
∑𝐾−1
𝑘=0 |𝜓𝑘〉〈𝜓𝑘 |, we have

��𝐸𝐾𝑄𝐾𝑁 ��2
=

��𝐸𝐾𝑄𝐾𝑁 𝐸𝐾 �� ≤
𝐾−1∑
𝑘=0

∞∑
𝑛=𝐾𝑁

|〈𝑛|𝜓𝑘〉|2 = 𝑜(𝐾−∞
𝑁 ).

The error estimate as 𝑁 → ∞ follows from the exponential decay estimate (3.5).
The matrix elements of 〈𝑛|𝐷 −𝐷𝑁 |𝑚〉 are nonvanishing only for |𝑛−𝐾𝑁 |, |𝑚−𝐾𝑁 | ≤ 2. Moreover,

|〈𝑛|𝐷 − 𝐷𝑁 |𝑚〉| ≤ O(𝐾𝑁 ) such that again by the exponential decay estimate (3.5):���(𝐷 − 𝐷𝑁 )𝐸𝐾
��� = 𝑜(𝐾−∞

𝑁 ). (3.15)

Denoting by 𝐹𝐾 = 1−𝐸𝐾 , this implies that
���𝐸𝐾 (𝐷 − 𝐷𝑁 )𝐸𝐾

��� = 𝑜(𝐾−∞
𝑁 ) and

���𝐹𝐾𝐷𝑁 𝐸𝐾 ��� = 𝑜(𝐾−∞
𝑁 ).

Since also

𝐹𝐾𝐷𝑁 𝐹𝐾 ≥ 𝐹𝐾𝑃𝐾𝑁𝐷𝑃𝐾𝑁 𝐹𝐾 + 𝐸𝐾 (𝐷) 𝐹𝐾𝑄𝐾𝑁 𝐹𝐾𝑄𝐾𝑁 𝐹𝐾
= 𝐹𝐾𝑃𝐾𝑁 (𝐷 − 𝐸𝐾 (𝐷))𝑃𝐾𝑁 𝐹𝐾 + 𝐸𝐾 (𝐷)

(
𝐹𝐾 − 𝐹𝐾𝑄𝐾𝑁 𝐸𝐾𝑄𝐾𝑁 𝐹𝐾

)
≥ 𝐸𝐾 (𝐷) 𝐹𝐾

(
1 − 2‖𝑄𝐾𝑁 𝐸𝐾 ‖2

)
= 𝐸𝐾 (𝐷) 𝐹𝐾

(
1 − 𝑜(𝐾−∞

𝑁 )
)
,

the Schur-complement method of Proposition 3.1 proves that the eigenvalues of 𝐷𝑁 strictly below
𝐸𝐾 (𝐷) (1 − 𝑜(1)) aymptotically coincide with those of 𝐷 up to an error of order 𝑜(𝐾−∞

𝑁 ).
A similar estimate also shows that 𝑄𝐾𝑁𝐷𝑄𝐾𝑁 ≥ 𝐸𝐾 (𝐷)𝑄𝐾𝑁 (1 − 𝑜(1)) for any 𝐾 ∈ N so that the

low-energy spectrum of 𝐷𝑁 entirely coincides with that of its first block 𝐷𝑁 . This finishes the proof of
Equation (3.11).

The assertion (3.12) then follows from Equation (3.15), the discrete nature of the spectrum of 𝐷 and
a standard perturbation theory bound based on the representation of the spectral projection as a contour
integral involving resolvents (cf. [45]). �

3.2. Proof of Theorem 2.3

For a proof of Theorem 2.3, we analyse all the blocks 𝐻𝐽 ,𝛼 in the decomposition (2.1) of the Hamiltonian
separately. The main contribution to the lowest energies of 𝐻 will come from the largest 𝐽 and the vicinity
of the minimum. Projection techniques will help to focus on this patch.

To facilitate notation, by a unitary rotation we subsequently assume without loss of generality that the
minimum of ℎ is at m0 = (0, 0, 1)𝑇 and that the projected Hessian 𝑄⊥𝐷ℎ (m0)𝑄⊥ as a matrix on ran𝑄⊥
has its eigenvectors aligned with the 𝑥- and 𝑦-direction with 𝜔𝑥 and 𝜔𝑦 the corresponding eigenvalues.
This entails that

𝑄𝑁 (m0) = 𝑁ℎ(m0)1 + (𝑁 − 2𝑆𝑧) |∇ℎ(m0) | +
2
𝑁

(
𝜔𝑥𝑆

2
𝑥 + 𝜔𝑦𝑆2

𝑦

)
; (3.16)

cf. Equation (2.11). We will also assume without loss of generality that the positive eigenvalues of
𝐷⊥
ℎ (m0) are ordered according to 0 < 𝜔⊥

𝑦 = 𝜔𝑦 + |∇ℎ(m0) | ≤ 𝜔𝑥 + |∇ℎ(m0) | = 𝜔⊥
𝑥 , and we note that√

det 𝐷⊥
𝑃 (m0) =

√
𝜔⊥
𝑥𝜔

⊥
𝑦 = 𝜔⊥

𝑦 𝜔, with 𝜔2 :=
𝜔⊥
𝑥

𝜔⊥
𝑦
≥ 1. (3.17)

Moreover, we will use throughout the whole proof 𝐾𝑁 = 𝐾𝑁 = 𝑜(𝑁1/3) diverging as 𝑁 → ∞.
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3.2.1. Limit operator for 𝐽 ≥ 𝑁/2 − 𝐾𝑁
By assumption (2.4) and Lemma 2.2, on the increasing subspaces H𝐾𝑁

𝐽 (m0) with 𝐽 ≥ 𝑁/2 − 𝐾𝑁 , the
shifted quadratic polynomial 𝜅(m0)1 + 𝑄𝑁 (m0) approximates 𝐻𝐽 ,𝛼 uniformly in norm to order 𝑜(1).
Next, we show that this quadratic polynomial is well approximated by

𝐻 (𝑁 )
𝐽 := 𝑁ℎ(m0) + 𝜅(m0) + |∇ℎ(m0) |(𝑁 − 2𝐽 − 1) + 𝜔⊥

𝑦 𝐼
(𝑁 )
𝐽 𝐷𝐼 (𝑁 )

𝐽 on H𝐾𝑁
𝐽 (m0)

with 𝐷 = 𝜔2𝐿2
𝑥 + 𝐿2

𝑦 on ℓ2(N0) and 𝜔 from Equation (3.17).

Lemma 3.4. In the situation of Theorem 2.3, if 𝐾𝑁 = 𝑜(𝑁1/3):

max
𝐽 ≥𝑁 /2−𝐾𝑁

max
𝛼

���(
𝐻𝐽 ,𝛼 − 𝐻 (𝑁 )

𝐽

)
𝑃
𝐾−
𝑁

𝐽 (m0)
��� = 𝑜(1). (3.18)

Proof. We use assumption (2.4) and Lemma 2.2 to establish the claim (3.18) with 𝐻 (𝑁 )
𝐽 replaced by

𝜅(m0)1+𝑄𝑁 (m0). In order to simplify the term in Equation (3.16) proportional to |∇ℎ(m0) |, we rewrite

𝑁 − 2𝑆𝑧 =
𝑁

2
− 2
𝑁

(
S2 − 𝑆2

𝑥 − 𝑆2
𝑦

)
+ (𝑁 − 2𝑆𝑧)2

2𝑁
.

On H𝐾𝑁
𝐽 (m0) with 𝐽 ≥ 𝑁/2 − 𝐾𝑁 , the norm of the last term is bounded by (4𝐾𝑁 )2/2𝑁 = 𝑜(1). To

that order, we can therefore replace 𝐻 (𝑁 )
𝐽 by

𝐻 (𝑁 )
𝐽 := 𝑁ℎ(m0) + 𝜅(m0) + |∇ℎ(m0) |(𝑁 − 2𝐽 − 1) + 𝜔⊥

𝑦𝐷𝑁 ,

with 𝐷𝑁 =
𝜔2

𝐽𝑁
𝑆2
𝑥 +

1
𝐽𝑁

𝑆2
𝑦 and 𝐽𝑁 =

𝑁

2
.

Lemma 3.3 then yields

max
𝐽 ≥𝑁 /2−𝐾𝑁

���(𝐻 (𝑁 )
𝐽 − 𝐻 (𝑁 )

𝐽 )𝑃𝐾
−
𝑁

𝐽 (m0)
��� = 𝑜(1),

which completes the proof. �

3.2.2. Truncations
To control the blocks 𝐻𝐽 ,𝛼 for values of 𝐽 other than the ones of the previous paragraphs, we use the
following lemma.

Lemma 3.5. In the situation of Theorem 2.3, there are constants 𝑐, 𝐶 ∈ (0,∞) such that for all (𝐽, 𝛼)

𝐻𝐽 ,𝛼 ≥ 𝑁ℎ(m0) − 𝐶 + 𝑐
(
𝑁 − 2 em0 · S

)
. (3.19)

Proof. From assumption (2.2), we infer that for some 𝐶 < ∞:

𝐻𝐽 ,𝛼 ≥ −𝐶 + 2𝐽 + 1
4𝜋

∫
𝑁ℎ

(2𝐽
𝑁

e(Ω)
) ��Ω, 𝐽〉〈Ω, 𝐽�� 𝑑Ω. (3.20)

Since m0 ∈ 𝑆2 was assumed to be the unique minimum of ℎ : 𝐵1 → R and |∇ℎ(m0) | > 0, there is some
𝑐 > 0 such that for all m ∈ 𝐵1:

ℎ(m) ≥ ℎ(m0) + 𝑐(1 − em0 · m). (3.21)
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Plugging this estimate into the above operator inequality and using the fact that by Lemma A.5

2𝐽 + 1
4𝜋

∫
𝑑Ω 𝐽m0 · e(Ω)

��Ω, 𝐽〉〈Ω, 𝐽�� 𝑑Ω ≥ −𝐶 + em0 · S

with some constant 𝐶, which does not depend on 𝑁, 𝐽, we arrive at the claimed matrix inequality. �

3.2.3. Finishing the proof
With the above preparations, we are ready to spell out the proof of Theorem 2.3. Aside from exploiting
the block decomposition (2.1), the argument essentially relies on a two-step approximation procedure
and a Schur-complement analysis in the main blocks corresponding to 𝐽 ≥ 𝑁/2 − 𝐾𝑁 .

Proof of Theorem 2.3. We investigate the spectrum of each block 𝐻𝐽 ,𝛼 of the Hamiltonian in Equation
(2.1) separately and distinguish cases.

In case 𝐽 ≤ 𝑁/2 − 𝐾𝑁 , we use Lemma 3.5 to conclude that for all 𝛼

𝐻𝐽 ,𝛼 ≥ 𝑁ℎ(m0) − 𝐶 + 2𝑐𝐾𝑁 . (3.22)

Since 𝐾𝑁 → ∞ as 𝑁 → ∞, these blocks clearly do not contribute to the asserted low-energy spectrum
below 𝐸0(𝐻) + Δ with arbitrary Δ > 0.

In case 𝐽 ≥ 𝑁/2−𝐾𝑁 , we consider the approximating Hamiltonian 𝐻 (𝑁 )
𝐽 onH𝐾𝑁

𝐽 (m0) from Lemma
3.4 and define its projection

𝐻 (𝑁 )
𝐽 := 𝑃

𝐾−
𝑁

𝐽 (m0)𝐻 (𝑁 )
𝐽 𝑃

𝐾−
𝑁

𝐽 (m0) on H𝐾−
𝑁

𝐽 (m0).

Note that this operator is unitarily equivalent to

(𝑁ℎ(m0)1 + 𝜅(m0) + |∇ℎ(m0) |(𝑁 − 2𝐽 − 1))𝑃𝐾−
𝑁
+ 𝜔⊥

𝑦 𝑃𝐾−
𝑁
𝐷𝑃𝐾−

𝑁
on 𝑃𝐾−

𝑁
ℓ2(N0). (3.23)

We fix 𝐾 ∈ N arbitrary and let 𝐸 (𝑁 )
𝐾 stand for the orthogonal projection onto the 𝐾-dimensional

subspace of H𝐾−
𝑁

𝐽 (m0) spanned by eigenvectors of the 𝐾 lowest eigenvalues of 𝐻 (𝑁 )
𝐽 . Its orthogonal

complement in C2𝐽+1 will be denoted by 𝐹 (𝑁 )
𝐾 = 1C2𝐽+1 − 𝐸 (𝑁 )

𝐾 . Using Lemma 3.4, we conclude

max
𝐽 ≥𝑁 /2−𝐾𝑁

max
𝛼

���𝐻 (𝑁 )
𝐽 − 𝐸 (𝑁 )

𝐾 𝐻𝐽 ,𝛼𝐸
(𝑁 )
𝐾

��� = 𝑜(1), (3.24)

max
𝐽 ≥𝑁 /2−𝐾𝑁

max
𝛼

���𝐹 (𝑁 )
𝐾 𝐻𝐽 ,𝛼𝐸

(𝑁 )
𝐾

��� ≤ max
𝐽 ≥𝑁 /2−𝐾𝑁

���𝐹 (𝑁 )
𝐾 𝐷𝐽 ,𝑁 𝐸

(𝑁 )
𝐾

��� + 𝑜(1).

The term in the right side equals���𝐹 (𝑁 )
𝐾 𝐼

(𝑁 )
𝐽 (𝐷 − 𝑃𝐾−

𝑁
𝐷𝑃𝐾−

𝑁
)𝐼 (𝑁 )
𝐽 𝐸 (𝑁 )

𝐾

��� ≤
���(𝐷 − 𝑃𝐾−

𝑁
𝐷𝑃𝐾−

𝑁
)𝐼 (𝑁 )
𝐽 𝐸 (𝑁 )

𝐾

��� = 𝑜(1), (3.25)

and its convergence follows from Equation (3.12) and (3.15).
For the Schur-complement principle in Proposition 3.1, it thus remains to control the lowest eigenvalue

of the block 𝐹 (𝑁 )
𝐾 𝐻𝐽 ,𝛼𝐹

(𝑁 )
𝐾 . For this task, we again employ Lemma 3.5, which yields the matrix

inequality

𝐹 (𝑁 )
𝐾 𝐻𝐽 ,𝛼𝐹

(𝑁 )
𝐾 ≥ (𝑁ℎ(m0) − 𝐶)𝐹 (𝑁 )

𝐾 + 𝑐 𝐹 (𝑁 )
𝐾 (𝑁 − 2𝑆𝑧)𝐹 (𝑁 )

𝐾

≥ (𝑁ℎ(m0) − 𝐶)𝐹 (𝑁 )
𝐾 + 2𝑐 𝑀

(
1 −

���𝐹 (𝑁 )
𝐾 𝑃𝑀𝐽 𝐹 (𝑁 )

𝐾

���)𝐹 (𝑁 )
𝐾 , (3.26)

where 𝑃𝑀𝐽 is the orthogonal projection in C2𝐽+1 spanned by the eigenvectors |𝐽〉, |𝐽 − 1〉, . . . |𝐽 − 𝑀〉
of 𝑆𝑧 corresponding to the highest 𝑀 + 1 eigenvalues. We establish a lower bound on the last term in
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Equation (3.26) with the help of an upper bound on

‖𝐹 (𝑁 )
𝐾 𝑃𝑀𝐽 𝐹 (𝑁 )

𝐾 ‖ = ‖𝑃𝑀𝐽 𝐹 (𝑁 )
𝐾 𝑃𝑀𝐽 ‖ ≤

𝑀∑
𝑚=0

〈𝐽 − 𝑚 | 𝐹 (𝑁 )
𝐾 |𝐽 − 𝑚〉. (3.27)

By Lemma 3.3 as 𝑁 → ∞ and for any sequence 𝐽 ≥ 𝑁/2 − 𝐾𝑁 , the matrices 𝑃𝐾−
𝑁
𝐷𝑃𝐾−

𝑁
converge in

strong-resolvent sense to𝐷. This implies the weak convergence of the corresponding spectral projections.
In particular, for each fixed 𝑚 ∈ N0 and any sequence 𝐽 ≥ 𝑁/2 − 𝐾𝑁 :

〈𝐽 − 𝑚 | 𝐹 (𝑁 )
𝐾 |𝐽 − 𝑚〉 =

∑
𝑘>𝐾

|〈𝑚 |𝜓𝑘〉|2 + 𝑜(1), (3.28)

where (𝜓𝑘 )𝑘∈N0 denotes the orthonormal eigenbasis of 𝐷. The latter are estimated in Proposition 3.2.
Thanks to the exponential decay estimate (3.6), the right side is exponentially small in 𝐾 − 𝑀 for all
𝑚 ∈ {0, 1, . . . , 𝑀} provided 𝐾 ≥ 2𝑀 . Hence, if we choose 𝑀 large enough and subsequently 𝐾 suitably
larger, the prefactor in the last term in Equation (3.26) exceeds any constant. The block 𝐹 (𝑁 )

𝐾 𝐻𝐽 ,𝛼𝐹
(𝑁 )
𝐾

then does not contribute to the low-energy spectrum of 𝐻𝐽 ,𝛼.
By Equations (3.24)–(3.28) and Proposition 3.1 the low-energy spectrum of 𝐻𝐽 ,𝛼 hence asymptot-

ically agrees with the lowest eigenvalues of 𝐻 (𝑁 )
𝐽 . In turn, they agree with those of the operator in

Equation (3.23). By the convergence (3.11), the eigenvalues of the last term in Equation (3.23) asymp-
totically agree with those of 𝜔⊥

𝑦𝐷, which are given by the oscillator values (3.3). For 𝑘 = 𝑁/2− 𝐽 ∈ N0
fixed, this yields the expression (2.15) for the eigenvalues including their multiplicities.

The minimal eigenvalue 𝐸0(𝐻) asymptotically corresponds to the choice 𝑘 = 𝑚 = 0, which estab-
lishes Equation (2.14). The corresponding weak convergence of the eigenvector (2.13) is a consequence
of the Schur-complement analysis, Lemma 3.3 and the explicit expression (3.4) for the ground-state of 𝐷.

Finally, the expression (2.16) for the spectral gap is immediate from Equation (2.15) since either the
first excited corresponds to 𝑘 = 0 and 𝑚 = 1 or vice versa. �

3.3. Proof of Theorem 2.4

In case the unique minimum is found at at m0 ∈ 𝐵1 with 0 < |m0 | < 1, the low-energy spectrum of 𝐻
stems again from blocks 𝐻𝐽 ,𝛼 with 𝐽-values in the vicinity of 𝐽𝑁 (m0) = 𝑁 |m0 |/2. This is evident from
the following lower bound, which substitutes Lemma 3.5 in the present case.

Lemma 3.6. In the situation of Theorem 2.4, there are constants 𝑐, 𝐶 ∈ (0,∞) such that for all (𝐽, 𝛼)
and all m1 ∈ 𝐵1:

𝐻𝐽 ,𝛼 ≥ 𝑁ℎ(m0) − 𝐶 − 𝑐𝑁

4
|m1 − m0 |2 +

𝑐

𝑁
(𝐽 − 𝐽𝑁 (m1))2 + 𝑐 |m1 |

(
𝐽 − em1 · S

)
. (3.29)

Proof. We use that m0 ∈ 𝐵1 is the unique minimum of ℎ : 𝐵1 → R at which 𝐷ℎ (m0) > 0. Hence, there
is some 𝑐 > 0 such that

ℎ(m) ≥ ℎ(m0) +
𝑐

4
|m − m0 |2 ≥ ℎ(m0) +

𝑐

8
|m − m1 |2 −

𝑐

2
|m1 − m0 |2. (3.30)

The last inequality was obtained using Cauchy–Schwarz and holds for all m ∈ 𝐵1. Plugging the estimate
into Equation (3.20) yields the claim using the same arguments as in the proof of Lemma 3.5. �

Proof of Theorem 2.4. A Rayleigh–Ritz bound with the variational state |Ω0, 𝐽𝑁 (m0)〉, with Ω0 the
spherical angle of em0 , yields the upper bound

𝐸0(𝐻) ≤ 𝐸0
(
𝐻𝐽𝑁 (m0) ,𝛼

)
≤ 〈Ω0, 𝐽𝑁 (m0) |𝐻𝐽𝑁 (m0) ,𝛼 |Ω0, 𝐽𝑁 (m0)〉 ≤ 𝑁ℎ(m0) + 𝐶
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by Proposition A.3. Combining this with Lemma 3.6 with m1 = m0, we immediately conclude that
the blocks 𝐻𝐽 ,𝛼 corresponding to |𝐽 − 𝐽𝑁 (m0) | ≥ 𝐶

√
𝑁 with 𝐶 > 0 suitably large, but fixed, do not

contribute to the spectrum near the ground state.
It thus remains to analyse the blocks corresponding to |𝐽−𝐽𝑁 (m0) | ≤ 𝐶

√
𝑁 . For any 𝐽 in this regime,

we associate a radius 𝑟𝐽 ,𝑁 := 2𝐽/𝑁 , which by construction satisfies
��𝑟𝐽 ,𝑁 − |m0 |

�� ≤ 𝐶𝑁−1/2. The value
of ℎ at the point on this sphere in direction of m0 is controlled by a second-order Taylor estimate using
|∇ℎ(m0) | = 0: ��ℎ (

𝑟𝐽 ,𝑁 em0

)
− ℎ(m0)

�� ≤ 𝐶
��𝑟𝐽 ,𝑁 − |m0 |

��2 ≤ 𝐶

𝑁
, (3.31)

where here and in the following the constant 𝐶 changes from line to line, but remains independent of
𝐽 and 𝑁 . Hence, the minimum m𝐽 ,𝑁 := arg min{ℎ(m) | |m| = 𝑟𝐽 ,𝑁 } on the sphere of radius 𝑟𝐽 ,𝑁 has
distance to m0 at most ��m𝐽 ,𝑁 − m0

�� ≤ 𝐶
√
𝑁
, (3.32)

since otherwise the first inequality in (3.30) together with the above estimate of ℎ
(
𝑟𝐽 ,𝑁 em0

)
would yield

a contradiction to the minimality of ℎ(m𝐽 ,𝑁 ). Using Taylor estimates for ℎ ∈ 𝐶3, this also implies��∇ℎ(m𝐽 ,𝑁 )
�� = ��∇ℎ(m𝐽 ,𝑁 ) − ∇ℎ(m0)

�� ≤ 𝐶
��m𝐽 ,𝑁 − m0

�� ≤ 𝐶
√
𝑁
,

|𝜅(m𝐽 ,𝑁 ) − 𝜅(m0) | ≤ 𝐶
��m𝐽 ,𝑁 − m0

�� ≤ 𝐶
√
𝑁
,��𝐷ℎ (m𝐽 ,𝑁 ) − 𝐷ℎ (m0)

�� ≤ 𝐶
��m𝐽 ,𝑁 − m0

�� ≤ 𝐶
√
𝑁
. (3.33)

Having singled out m𝐽 ,𝑁 , we now use assumption A1 to approximate 𝐻𝐽 ,𝛼 in the H𝐾𝑁
𝐽 (m𝐽 ,𝑁 ), where

we pick 𝐾𝑁 = 𝑜(𝑁1/6) diverging to infinity. This enables us to use Lemma 2.2 (with 𝐾𝑁 = 1) and the
second-order polynomial 𝑄(m𝐽 ,𝑁 ) in this approximation. The above estimate on the gradient implies
that the first-order term is negligible:���∇ℎ(m𝐽 ,𝑁 ) ·

(
2S − 𝑁m𝐽 ,𝑁

)
𝑃𝐾𝑁𝐽 (m𝐽 ,𝑁 )

��� ≤ 2
��∇ℎm𝐽 ,𝑁 )

��𝐾𝑁 ≤ 𝐶
𝐾𝑁√
𝑁

= 𝑜(1).

Changing coordinates by a unitary rotation such that m𝐽 ,𝑁 = (0, 0, 𝑟𝐽 ,𝑁 ), we thus conclude that on
H𝐾𝑁
𝐽 (m𝐽 ,𝑁 ) we may approximate 𝐻𝐽 ,𝛼 in terms of

𝑁ℎ(m𝐽 ,𝑁 ) + 𝜅(m𝐽 ,𝑁 ) +
2 𝑟𝐽 ,𝑁
𝑁

(
𝜔 (𝑁 )
𝑥 𝑆2

𝑥 + 𝜔
(𝑁 )
𝑦 𝑆2

𝑦

)
,

where 𝜔 (𝑁 )
𝑥 , 𝜔 (𝑁 )

𝑦 are the two eigenvalues of 𝐷⊥
ℎ (m𝐽 ,𝑁 ), that is, the Hessian projected onto the

directions perpendicular to m𝐽 ,𝑁 . Since 𝐷ℎ (m0) > 0, these eigenvalues are uniformly bounded away
from zero for all |𝐽 − 𝐽𝑁 (m0) | ≤ 𝐶

√
𝑁 by Equation (3.33). Moreover, they uniformly converge to the

eigenvalues 0 < 𝜔𝑦 ≤ 𝜔𝑥 of 𝐷⊥
ℎ (m0) as 𝑁 → ∞. In fact, from Equation (3.33) we have the estimates

|𝜔 (𝑁 )
𝜉 −𝜔𝜉 | ≤ 𝐶𝑁−1/4 for both 𝜉 ∈ {𝑥, 𝑦}. Since also

���𝑆2
𝜉𝑃

𝐾𝑁
𝐽 (m𝐽 ,𝑁 )

��� ≤ 𝐶𝑁𝐾𝑁 (cf. Equation (2.8)),
we may thus use

𝐻 (𝑁 )
𝐽 := 𝑁ℎ(m𝐽 ,𝑁 ) + 𝜅(m0) + |m0 | 𝜔𝑦 𝐼

(𝑁 )
𝐽

(
𝜔2𝐿2

𝑥 + 𝐿2
𝑦

)
𝐼 (𝑁 )
𝐽 on H𝐾𝑁

𝐽 (m𝐽 ,𝑁 )
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to show the following substitute for Lemma 3.4:

max
|𝐽−𝐽𝑁 (m0) |≤𝐶

√
𝑁

���(
𝐻𝐽 ,𝛼 − 𝐻 (𝑁 )

𝐽

)
𝑃𝐾𝑁𝐽 (m𝐽 ,𝑁 )

��� = 𝑜(1).

We then proceed with the Schur-complement analysis as in the proof of Theorem 2.3 with only one
modification. To control the last block, we use Lemma 3.6 with m1 = m𝐽 ,𝑁 . For this choice, the
quadratic difference term in its right side is bounded by a constant thanks to Equation (3.32).

This proves that 𝐸0 (𝐻𝐽 ,𝛼) = 𝑁ℎ(m𝐽 ,𝑁 ) + 𝜅(m0) + |m0 |
√

det 𝐷⊥
ℎ (m0) + 𝑜(1) for all blocks (𝐽, 𝛼)

with |𝐽 − 𝐽𝑁 (m0) | ≤ 𝐶
√
𝑁 . Clearly for 𝐽 = 𝐽𝑁 (m0), we have m𝐽 ,𝑁 = m0, which concludes the proof

of Equation (2.17). The assertion concerning the regime |𝐽 − 𝐽𝑁 (m0) | ≤ 𝑜(
√
𝑁) follows by a Taylor

estimate as in Equation (3.31). �

3.4. Proof of Theorem 2.5

Compared to the case of one minimum, the case of several minima M = {m1, . . . ,m𝐿} ⊂ 𝑆2 of ℎ poses
the additional problem to separate the patches around them. In the next subsection, we use semiclassical
analysis based on refined projection techniques to tackle this issue and to focus on the subspaces, from
which the low-energy spectrum arises. The part going beyond this semiclassics largely parallels the
proof in the previous section.

3.4.1. Semiclassics for subspace decompositions
In each of the subspaces H𝐾

𝐽 (m𝑙) ⊂ C2𝐽+1, which are associated to the minimizing directions m𝑙 , we
may choose the canonical orthonormal basis consisting of normalized eigenvectors of m𝑙 · S, that is,

m𝑙 · S |𝑘; m𝑙〉 = 𝑘 |𝑘; m𝑙〉, 𝑘 ∈ {−𝐽, . . . , 𝐽},

and hence H𝐾
𝐽 (m𝑙) = span{|𝐽 − 𝑘; m𝑙〉 | 𝑘 ∈ {0, 1, . . . , 𝐾}}.

Lemma 3.7. Let M := {m1, . . . ,m𝐿} ⊂ 𝑆2 be a finite set and 𝐽 ∈ N/2 and 𝐾 ∈ N fixed. Then the
spectrum of the Gram matrix

𝐺 := (〈𝐽 − 𝑘 ′; m𝑙′ |𝐽 − 𝑘; m𝑙〉) 𝑙,𝑙′ ∈{1,...,𝐿 }
𝑘,𝑘′ ∈{0,1,...,𝐾 }

(3.34)

is contained in the set [1 − 𝑅𝐾𝐽 , 1 + 𝑅𝐾𝐽 ] with

𝑅𝐾𝐽 = (𝐿 − 1) (𝐾 + 1) (4𝐾𝐽)𝐾 exp(−(𝐽 − 2𝐾)𝛾) and 𝛾 = min
𝑙≠𝑙′

ln
(
cos
�(m𝑙 ,m𝑙′ )

2

)−1
> 0,

with �(m𝑙 ,m𝑙′ ) the spherical angle between the two points.

Proof. From Lemma A.2, we infer that for all 𝑘, 𝑘 ′ ≤ 𝐾:��〈𝐽 − 𝑘; m𝑙

��𝐽 − 𝑘 ′; m𝑙′ 〉
�� ≤ (2𝐽) (𝑘+𝑘′)/2(2 max{𝑘, 𝑘 ′})min{𝑘,𝑘′ }

����cos
�(m𝑙 ,m𝑙′ )

2

����2𝐽−(𝑘+𝑘′) . (3.35)

Since 𝐺 is a Hermitian block matrix with 𝐿 × 𝐿 blocks of size 𝐾 + 1 and the diagonal blocks all equal
to the unit matrix, the assertion follows straightforwardly from Gershgorin’s circle theorem. �

The last lemma ensures that for 𝐽 ≥ 𝑁/2 − 𝐾𝑁 and 𝐾𝑁 = 𝑜(𝑁/ln 𝑁):

𝑅𝐾𝑁𝐽 = 𝑜(𝑁−∞). (3.36)
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The union of the individual basis vectors of H𝐾𝑁
𝐽 (m𝑙) for any finite number of directions hence still

form a set of linearly independent vectors and thus a basis of joint subspace

H𝐾𝑁
𝐽 :=

𝐿∨
𝑙=1

H𝐾𝑁
𝐽 (m𝑙).

In this situation, we may construct an orthonormal basis using the square root of the inverse, 𝐺−1/2, of
the Gram matrix defined as in Equation (3.34):

��(𝑘, 𝑙)〉 :=
𝐿∑
𝑙′=1

𝐾𝑁∑
𝑘′=0

𝐺−1/2
(𝑘𝑙) , (𝑘′𝑙′)

��𝐽 − 𝑘 ′; m𝑙′ 〉, (𝑘, 𝑙) ∈ {0, . . . , 𝐾𝑁 } × {1, . . . , 𝐿}. (3.37)

Clearly, 〈(𝑘 ′, 𝑙 ′)
��(𝑘, 𝑙)〉 = 𝛿𝑙,𝑙′𝛿𝑘,𝑘′ . The spectral projections onto H𝐾𝑁

𝐽 (m𝑙) and its cousins after
orthogonalization,

𝑃𝐾𝑁𝐽 (m𝑙) :=
𝐾𝑁∑
𝑘=0

��𝐽 − 𝑘; m𝑙〉〈𝐽 − 𝑘; m𝑙〉
��, 𝑃𝐾𝑁𝐽 (𝑙) :=

𝐾𝑁∑
𝑘=0

��(𝑘, 𝑙)〉〈(𝑘, 𝑙)〉��, (3.38)

are then norm-close to each other.

Theorem 3.8. For 𝑁/2 ≥ 𝐽 ≥ 𝑁/2 − 𝐾𝑁 and 𝐾𝑁 = 𝑜(𝑁/ln 𝑁),

1.
��| (𝑘, 𝑙)〉 − |𝐽 − 𝑘; m𝑙〉

�� = 𝑜(𝑁−∞) for all (𝑘, 𝑙) ∈ {0, . . . , 𝐾𝑁 } × {1, . . . , 𝐿}.
2. max

𝑙

���𝑃𝐾𝑁𝐽 (m𝑙) − 𝑃𝐾𝑁𝐽 (𝑙)
��� = 𝑜(𝑁−∞), and the projection 𝑃𝐾𝑁𝐽 :=

∑𝐿
𝑙=0 𝑃

𝐾𝑁
𝐽 (𝑙) onto H𝐾𝑁

𝐽 is ap-
proximated according to �����𝑃𝐾𝑁𝐽 −

𝐿∑
𝑙=0

𝑃𝐾𝑁𝐽 (m𝑙)

����� = 𝑜(𝑁−∞). (3.39)

Proof. 1. By definition, we have

��𝐽 − 𝑘; m𝑙〉 =
𝐿∑
𝑙′=1

𝐾𝑁∑
𝑘′=0

𝐺1/2
(𝑘𝑙) , (𝑘′𝑙′)

��(𝑘 ′, 𝑙 ′)〉.
The norm of the difference vector is hence bounded according to

��| (𝑘, 𝑙)〉 − |𝐽 − 𝑘; m𝑙〉
�� ≤ ‖𝐺1/2 − 1‖ ≤ max

|𝜆−1 | ≤𝑅𝐾𝑁𝐽

���√𝜆 − 1
��� ≤ 𝑅𝐾𝑁𝐽

2
√

1 − 𝑅𝐾𝑁𝐽

.

The last inequality follows from the bounds on the eigenvalues of 𝐺 established in Lemma 3.7. The
assertion is therefore a simple consequence of Equation (3.36).

2. The assertions follow immediately from the first item with the help of the triangle inequality. �

In order to be able to control the relation of vectors in H𝐾𝑁
𝐽 (m𝑙) to a slightly fattened version of

H𝐾𝑁
𝐽 (m𝑙′ ) with 𝑙 ≠ 𝑙 ′, we also need the following lemma. It will play a crucial role in the truncation

procedure below.
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Lemma 3.9. Let

0 < 𝜅 <
1
2

(
sin
�(m𝑙 ,m𝑙′ )

2

)2
, (3.40)

and suppose that 𝑁/2 ≥ 𝐽 ≥ 𝑁/2 − 𝐾𝑁 and 𝐾𝑁 = 𝑜(𝑁/ln 𝑁). Then for any 𝑘 ∈ {0, . . . , 𝐾𝑁 }:

𝐾𝑁∑
𝑘=0

𝜅𝑁∑
𝑘′=0

|〈𝐽 − 𝑘 ′; m𝑙′ |𝐽 − 𝑘; m𝑙〉|2 = 𝑜(𝑁−∞). (3.41)

Proof. We split the 𝑘 ′-sum in two terms. The first sum to 𝐾𝑁 is estimates with the help of Equation
(3.35) from which the claim follows by the same lines of reasoning as above. For the second sum, we
have 𝑘 ≤ 𝑘 ′. Abbreviating 𝜃 := �(m𝑙 ,m𝑙′ ), we estimate this part with the help of Equation (A.4) by

𝐾𝑁∑
𝑘=0

(
2𝐽
𝑘

)
(𝜅𝑁)2𝑘

(
2 + 2(sin 𝜃

2 )
2

sin 𝜃

)2𝑘 (
cos

𝜃

2

)4𝐽 𝜅𝑁∑
𝑘′=0

(
2𝐽
𝑘 ′

) (
tan

𝜃

2

)2𝑘′

.

The truncated binomial is bounded by a standard Chernoff bound for any 𝑡 > 0(
cos

𝜃

2

)4𝐽 𝜅𝑁∑
𝑘′=0

(
2𝐽
𝑘 ′

) (
tan

𝜃

2

)2𝑘′

≤ 𝑒𝑡 𝜅𝑁

(
1 − (1 − 𝑒−𝑡 )

(
sin

𝜃

2

)2
)𝑁

. (3.42)

Choosing 𝑡 (𝜃) = ln 1−𝜅
𝜅

(
tan 𝜃

2
)2

> 0, the right side is of the form exp(−𝑁𝛼(𝜃)) with 𝛼(𝜃) = −𝜅𝑡 (𝜃) −
ln

[
cos2 (

𝜃
2
)
/(1 − 𝜅)

]
< 0. Since the remaining summation is estimated trivially by the number of terms

𝐾𝑁 times the maximum of each term, which occurs at 𝑘 = 𝐾𝑁 with the binomial also trivially bounded,(2𝐽
𝑘

)
≤ 𝑁 𝑘 ≤ 𝑁𝐾𝑁 , the result follows. �

3.4.2. Truncation
By assumption, the minima of ℎ have the property ℎ(m) ≥ ℎ(m1) = · · · = ℎ(m𝐿) for all m ∈ 𝐵1. A
substitute for Equation (3.21) is provided by a bound of the form

ℎ(m) ≥ ℎ(m1) + 𝑓0 +
𝐿∑
𝑙=1

𝑓 (m𝑙 · m) (3.43)

with 𝑓0 > 0 and a monotone decreasing 𝐶2-function 𝑓 : [0, 1] → [0,∞) of the form

𝑓 (𝑥) =
{

0 if 0 ≤ 𝑥 ≤ 𝜉,

𝑐(1 − 𝑥) − 𝑓0 if 1+𝜉
2 ≤ 𝑥 ≤ 1,

with some 𝑐 > 0. The parameter 𝜉 ∈ (0, 1) is chosen close enough to one such that the supports
corresponding to distinct 𝑙 ≠ 𝑙 ′ do not overlap, that is, 𝑓 (m𝑙 · m) 𝑓 (m𝑙′ · m) = 0. We will choose

0 < 1 − 𝜉 < min
𝑙≠𝑙′

(
sin
�(m𝑙 ,m𝑙′ )

2

)2
. (3.44)

The same strategy as in the proof of Lemma 3.5 immediately yields that for some constant𝐶𝐿 ∈ (0,∞)
and all (𝐽, 𝛼):

𝐻𝐽 ,𝛼 ≥ 𝑁ℎ(m1) − 𝐶𝐿 + 𝑁 𝑓0 +
𝐿∑
𝑙=1

𝑁 𝑓

(
2
𝑁

m𝑙 · S
)
. (3.45)
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This would enable us to discard all blocks 𝐽 < 𝑁/2−𝐾𝑁 as far as the low-energy spectrum is concerned.
For the other blocks, we, however, need a slightly more refined lower bound which distinguishes-patches
corresponding to the subspace decomposition in the previous subsection.

Lemma 3.10. In the situation of Theorem 2.5, there are constants 𝐶, 𝑐 ∈ (0,∞) such that for all (𝐽, 𝛼)
with 𝐽 ≥ 𝑁/2 − 𝐾𝑁 and 𝐾𝑁 = 𝑜(𝑁/𝑙𝑛𝑁):

𝐻𝐽 ,𝛼 ≥ 𝑁ℎ(m1) − 𝐶 + 𝑐𝐾𝑁𝑄
𝐾𝑁
𝐽 +

𝐿∑
𝑙=1

𝑐(𝑁 − 2m𝑙 · S)𝑃𝐾𝑁𝐽 (m𝑙), (3.46)

where 𝑄𝐾𝑁𝐽 := 1C2𝐽+1 − 𝑃𝐾𝑁𝐽 is the orthogonal projection to the complement of H𝐾𝑁
𝐽 .

Proof. We start from Equation (3.45). In order to ease the notation, in this proof we abbreviate 𝑓𝑙 :=
𝑁 𝑓

(
2
𝑁 m𝑙 · S

)
and we will drop the super-/subscripts on the projection, for example, 𝑃 := 𝑃𝐾𝑁𝐽 . We will

estimate the block of this operator in the decomposition 𝑃 +𝑄 = 1 separately. For the blocks involving
𝑃, we use

�� 𝑓𝑙𝑃 − 𝑓𝑙𝑃(m𝑙)
�� ≤ ‖ 𝑓𝑙 ‖

�����𝑃 −
𝐿∑
𝑙=0

𝑃(m𝑙)

����� + ∑
𝑙′≠𝑙

�� 𝑓𝑙𝑃(m𝑙′ )
��. (3.47)

The operator 𝑓𝑙 is diagonal in the eigenbasis of m𝑙 · S, i.e.

𝑓𝑙 =
� 𝑁2 (1−𝜉 ) �∑
𝑘=0

𝑁 𝑓

(
2
𝑁
(𝐽 − 𝑘)

) ��𝐽 − 𝑘; m𝑙〉〈𝐽 − 𝑘; m𝑙

��, (3.48)

where the truncation of the 𝑘-sum results from the bounds on the support of 𝑓 . Evidently, ‖ 𝑓𝑙 ‖ ≤ 𝑁 𝑓0.
Therefore, for any 𝑙 ′ ≠ 𝑙:

�� 𝑓𝑙𝑃(m𝑙′ )
�� ≤ 𝑁 𝑓0

/01
� 𝑁2 (1−𝜉 ) �∑
𝑘=0

𝐾𝑁∑
𝑘′=0

��〈𝐽 − 𝑘; m𝑙

��𝐽 − 𝑘 ′; m𝑙′ 〉
��2234

1/2

= 𝑜(𝑁−∞),

where the last step is Lemma 3.9. Its applicability is ensured by the choice (3.44) of 𝜉. From Equation
(3.47) and Theorem 3.8, we this conclude

�� 𝑓𝑙𝑃 − 𝑓𝑙𝑃(m𝑙)
�� = 𝑜(𝑁−∞). By the spectral representation

(3.48), we also have for all sufficiently large 𝑁:

𝑓𝑙𝑃(m𝑙) =
[
𝑐𝑁

(
1 − 2

𝑁
m𝑙 · S

)
− 𝑁 𝑓0

]
𝑃(m𝑙).

Upon summation over 𝑙 ∈ {1, . . . , 𝐿} and adding 𝑁 𝑓0𝑃, this term produces the last term in the right
side of Equation (3.46) up to another norm-error of order 𝑜(𝑁−∞) due to Equation (3.39). These error
terms are absorbed in the constant in Equation (3.46).

It thus remains to investigate the block 𝑄 𝑓𝑙𝑄 + 𝑁 ( 𝑓0 + ℎ(m1))𝑄. To do so, it is most convenient to
switch back to the representation using coherent states. Since 𝑓 ∈ 𝐶2, this may be done at the expense
of another constant thanks to Equation (A.3). We then lower bound

𝑄

[
2𝐽 + 1

4𝜋

∫
𝑁ℎ

(
2
𝑁

e(Ω)
)
|Ω, 𝐽〉〈Ω, 𝐽 | 𝑑Ω

]
𝑄 ≥ 2𝐽 + 1

4𝜋

∫
𝐶𝑐𝑁

𝑁ℎ

(
2
𝑁

e(Ω)
)
𝑄 |Ω, 𝐽〉〈Ω, 𝐽 |𝑄 𝑑Ω,
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where 𝐶𝑐𝑁 = 𝑆2\
⋃𝐿
𝑙=1 𝐶𝑁 (m𝑙) is the complement of the union of the spherical caps

𝐶𝑁 (m𝑙) :=
{
Ω | e(Ω) · m𝑙 ≥ 1 − 𝐾𝑁

2𝑁

}
.

These are chosen such that on 𝐶𝑐𝑁 we have the lower bound 𝑁ℎ(m) ≥ 𝑁ℎ(m1) + 𝑐𝐾𝑁 . Thanks to the
decomposition of unity (1.4), to complete the proof, it remains to establish an upper bound for all 𝑙 on����2𝐽 + 1

4𝜋

∫
𝐶𝑁 (m𝑙)

𝑄 |Ω, 𝐽〉〈Ω, 𝐽 |𝑄 𝑑Ω

���� ≤ 𝑁 + 1
4𝜋

∫
𝐶𝑁 (m𝑙)

‖𝑄 |Ω, 𝐽〉‖2𝑑Ω.

The spherical volume of𝐶𝑁 (m𝑙) is 𝜋𝐾𝑁 /𝑁 . To estimate the norm in the integrand, we fix Ω ∈ 𝐶𝑁 (m𝑙)
and employ the approximate decomposition of unity as expressed in Equation (3.39):

‖𝑄 |Ω, 𝐽〉‖ ≤ ‖(1 − 𝑃(m𝑙)) |Ω, 𝐽〉‖ +
∑
𝑙′≠𝑙

‖𝑃(m𝑙′ ) |Ω, 𝐽〉‖ + 𝑜(𝑁−∞).

By a unitary rotation, we may assume without loss of generality that m𝑙 = (0, 0, 1)𝑇 . In this case, an
estimate on the first term is contained in Proposition A.1 in the appendix. For its application we note
that 2𝐽 sin2 ( 𝜃2 ) = 𝐽 (1 − cos 𝜃) ≤ 𝐾𝑁 /4. Choosing 𝛿 = 𝐾𝑁 /[8𝐽 sin2 ( 𝜃2 )] ≥ 1, we hence conclude

‖(1 − 𝑃(m𝑙)) |Ω, 𝐽〉‖2 ≤
∑

𝑘≥𝐾𝑁 /2
|〈𝐽 − 𝑘 |Ω, 𝐽〉|2 ≤ exp

(
−𝐾𝑁

12

)
= 𝑜(𝐾−∞

𝑁 ).

As a consequence of this, we also have for all 𝑙 ′ ≠ 𝑙

‖𝑃(m𝑙′ ) |Ω, 𝐽〉‖ ≤ ‖(1 − 𝑃(m𝑙)) |Ω, 𝐽〉‖ + ‖𝑃(m𝑙′ )𝑃(m𝑙)‖ ≤ 𝑜(𝐾−∞
𝑁 ) + 𝑜(𝑁−∞),

where the last estimate is due to Theorem 3.8. This completes the proof. �

3.4.3. Finishing the proof
Once the above semiclassical reduction to the relevant subspaces in the vicinity of the minima is
accomplished, the proof largely follows the strategy of the case of one minimum. In the following. we
will therefore only highlight the differences.

We start by setting some notation. By assumption the projection 𝐷⊥
ℎ (m𝑙) of the Hessian of ℎ at each

minimum onto the plane perpendicular to m𝑙 has two strictly positive eigenvalues,

0 < 𝜔⊥
𝑦,𝑙 = 𝜔𝑦 + |∇ℎ(m𝑙) | ≤ 𝜔⊥

𝑥,𝑙 = 𝜔𝑥 + |∇ℎ(m𝑙) |, and we set 𝜔2
𝑙 :=

𝜔⊥
𝑥,𝑙

𝜔⊥
𝑦,𝑙

≥ 1.

Throughout the proof, we again use 𝐾𝑁 = 𝐾𝑁 = 𝑜(𝑁1/3) diverging as 𝑁 → ∞.
By assumption (2.4) and Lemma 2.2, on the increasing subspaces H𝐾𝑁

𝐽 (m𝑙), we approximate 𝐻𝐽 ,𝛼
in terms of the quadratic term 𝑄(m𝑙), which involves 2

(
𝜔𝑥,𝑙𝑆

2
𝑥 + 𝜔𝑦,𝑙𝑆2

𝑦

)
/𝑁 . Proceeding as in Lemma

3.4, we therefore arrive at ���(
𝐻𝐽 ,𝛼 − 𝐻 (𝑁 )

𝐽 (𝑙)
)
𝑃
𝐾−
𝑁

𝐽 (m𝑙)
��� = 𝑜(1), (3.49)

where

𝐻 (𝑁 )
𝐽 ,𝑙 � 𝑁ℎ(m𝑙) + 𝜅(m𝑙) + |∇ℎ(m𝑙) |(𝑁 − 2𝐽 − 1) + 𝐼

(𝑁 )
𝐽 ,𝑙 𝜔

⊥
𝑦,𝑙𝐷 (𝑙)𝐼 (𝑁 )

𝐽 ,𝑙 on H𝐾𝑁
𝐽 (m𝑙).
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The operator 𝐷 (𝑙) := 𝜔2
𝑙 𝐿

2
𝑥 + 𝐿2

𝑦 acts in ℓ2(N0) and

𝐼 (𝑁 )
𝐽 ,𝑙 : H𝐾𝑁

𝐽 (m𝑙) → ℓ2(N0), 𝐼
(𝑁 )
𝐽 .𝑙 : ℓ2(N0) → H𝐾𝑁

𝐽 (m𝑙)

is the natural injection respectively projection with respect to the 𝑧-basis in the 𝑙-direction, that is,
𝐼 (𝑁 )
𝐽 ,𝑙 |𝐽 − 𝑘; m𝑙〉 = |𝑘〉 for all 𝑘 ∈ {0, . . . , 𝐾𝑁 }. Theorem 3.8 ensures the proximity of these 𝑧-basis

vectors to the orthonormalized basis | (𝑘, 𝑙)〉, which compose an orthonormal basis for the joint subspace
H𝐾𝑁
𝐽 =

∨𝐿
𝑙=1 H

𝐾𝑁
𝐽 (m𝑙). We therefore replace the above isometric embeddings and projections by

𝐼 (𝑁 )
𝐽 : H𝐾𝑁

𝐽 →
𝐿⊕
𝑙=1

ℓ2(N0), and 𝐼
(𝑁 )
𝐽 :

𝐿⊕
𝑙=1

ℓ2(N0) → H𝐾𝑁
𝐽 ,

where 𝐼 (𝑁 )
𝐽 | (𝑘, 𝑙)〉 = |𝑘〉𝑙 . These embeddings are direct sums, 𝐼 (𝑁 )

𝐽 =
⊕𝐿

𝑙=1 𝐼
(𝑁 )
𝐽 (𝑙), of embeddings of

H𝐾𝑁
𝐽 (𝑙) � 𝑃𝐾𝑁𝐽 (𝑙)C2𝐽+1 into the 𝑙th copy of ℓ2(N0); cf. Equation (3.38). Theorem 3.8 then allows us

to replace 𝐻 (𝑁 )
𝐽 ,𝑙 on H𝐾𝑁

𝐽 (m𝑙) by

𝐻 (𝑁 )
𝐽 (𝑙) � 𝑁ℎ(m𝑙) + 𝜅(m𝑙) + |∇ℎ(m0) |(𝑁 − 2𝐽 − 1) + 𝐼

(𝑁 )
𝐽 (𝑙)𝜔⊥

𝑦,𝑙𝐷 (𝑙)𝐼 (𝑁 )
𝐽 (𝑙) on H𝐾𝑁

𝐽 (𝑙).

These operators can be lifted to the direct sum

𝐻 (𝑁 )
𝐽 �

𝐿⊕
𝑙=1

𝐻 (𝑁 )
𝐽 (𝑙) on H𝐾𝑁

𝐽 =
𝐿⊕
𝑙=1

H𝐾𝑁
𝐽 (𝑙).

The above argument, then yields to following modification of Lemma 3.4.

Lemma 3.11. In the situation of Theorem 2.5, if 𝐾𝑁 = 𝑜(𝑁1/3):

max
𝐽 ≥𝑁 /2−𝐾𝑁

max
𝛼

���(
𝐻𝐽 ,𝛼 − 𝐻 (𝑁 )

𝐽

)
𝑃
𝐾−
𝑁

𝐽

��� = 𝑜(1), (3.50)

where 𝑃𝐾
−
𝑁

𝐽 �
𝐿∑
𝑙=1

𝐾−
𝑁∑

𝑘=0
| (𝑘, 𝑙)〉〈(𝑘, 𝑙) | with 𝐾−

𝑁 = 𝐾𝑁 − 2.

The proof is straightforward from Equation (3.49) and Theorem 3.8. Equipped with this, we then
proceed with the proof of Theorem 2.5 in the same way as for the case of one minimum.

Proof of Theorem 2.5. In case 𝐽 ≤ 𝑁/2−𝐾𝑁 , we use Equation (3.45) to conclude that the ground-state
of 𝐻𝐽 .𝛼 is found above 𝑁ℎ(m1) − 𝐶 + 𝑐𝐾𝑁 and hence does not contribute at the energies considered.

In case 𝐽 > 𝑁/2 − 𝐾𝑁 , we consider the projections

𝐻 (𝑁 )
𝐽 � 𝑃

𝐾−
𝑁

𝐽 𝐻 (𝑁 )
𝐽 𝑃

𝐾−
𝑁

𝐽 on 𝑃
𝐾−
𝑁

𝐽 H𝐾𝑁
𝐽 .

Note that this matrix is still a direct sum of matrices associated with the subspaces corresponding to
𝑃
𝐾−
𝑁

𝐽 (𝑙) =
∑𝐾−

𝑁

𝑘=0 | (𝑘, 𝑙)〉〈(𝑘, 𝑙) |. The matrices forming the direct sum are unitarily equivalent to

(𝑁ℎ(m𝑙) + 𝜅(m𝑙) + |∇ℎ(m0) |(𝑁 − 2𝐽 − 1))𝑃𝐾−
𝑁
+ 𝜔⊥

𝑦,𝑙 𝑃𝐾−
𝑁
𝐷 (𝑙)𝑃𝐾−

𝑁
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on 𝑃𝐾−
𝑁
ℓ2(N0) = span

{
|𝑘〉|𝑘 ∈ {0, . . . , 𝐾−

𝑁 }
}
. In turn, these operators have been described in detail in

Section 3.1.
We now fix 𝐾 ∈ N arbitrary, and let 𝐸 (𝑁 )

𝐾 stand for the orthogonal projection onto the subspace of
𝑃
𝐾−
𝑁

𝐽 H𝐾𝑁
𝐽 spanned by eigenvectors of the 𝐾 lowest eigenvalues of 𝐻 (𝑁 )

𝐽 . Its orthogonal complement in
C2𝐽+1 will be denoted by 𝐹 (𝑁 )

𝐾 = 1C2𝐽+1 − 𝐸 (𝑁 )
𝐾 .

Lemma 3.11 ensures the validity of the estimates (3.24)–(3.25) (with minor modifications in the
notation). It thus remains to again control the block 𝐹 (𝑁 )

𝐾 𝐻𝐽 ,𝛼𝐹
(𝑁 )
𝐾 . To do so, we modify the argument

in Equation (3.26). With the help of Lemma 3.10, we arrive at

𝐹 (𝑁 )
𝐾 𝐻𝐽 ,𝛼𝐹

(𝑁 )
𝐾 ≥ (𝑁ℎ(m1) − 𝐶)𝐹 (𝑁 )

𝐾 + 𝑐 min{2𝑀, 𝐾𝑁 }𝐹 (𝑁 )
𝐾 − 2𝑐𝑀𝐹 (𝑁 )

𝐾

𝐿∑
𝑙=1

���𝐹 (𝑁 )
𝐾 𝑃𝑀𝐽 (m𝑙)𝐹 (𝑁 )

𝐾

���,
(3.51)

where 𝑀 ∈ N is arbitrary. Using Theorem 3.8, we can replace the projection 𝑃𝑀𝐽 (m𝑙) by 𝑃𝑀𝐽 (𝑙) at the
expense of a term which is 𝑜(𝑁−∞). The latter can be added to the order one term proportional to 𝐶.
Proceeding as in Equation (3.27), it thus remains to estimate

𝐿∑
𝑙=1

���𝑃𝑀𝐽 (𝑙)𝐹 (𝑁 )
𝐾 𝑃𝑀𝐽 (𝑙)

��� ≤
𝐿∑
𝑙=1

𝑀∑
𝑚=0

〈(𝑚, 𝑙) |𝐹 (𝑁 )
𝐾 | (𝑚, 𝑙)〉.

Since 𝐻 (𝑁 )
𝐽 is a direct sum, for each of the terms in the 𝑙-sum we are therefore back to Equation (3.28)

with 𝐾 changed depending on how the 𝐿 harmonic oscillator levels interlace. Since Equation (3.28) was
identified to be exponentially small in case 𝐾 is chosen much larger than 𝑀 , this still shows that the
last term in the right side of Equation (3.51) is bounded independent of 𝑀 . Hence, choosing 𝑀 large
enough and subsequently 𝐾 larger, the ground state energy of the block 𝐹 (𝑁 )

𝐾 𝐻𝐽 ,𝛼𝐹
(𝑁 )
𝐾 is seen to be

much larger than the energies of interest.
By a Schur-complement analysis (Proposition 3.1) the low-energy spectrum of 𝐻𝐽 ,𝛼 agrees with

that of 𝐻 (𝑁 )
𝐽 . In the limit of 𝑁 → ∞ and using Lemma 3.3, the spectrum of 𝐻 (𝑁 )

𝐽 is a direct sum of 𝐿
harmonic oscillator spectra as described in Proposition 3.2. �

A. Miscellanea on spin-coherent states

In this appendix, we collect properties of the spin-coherent states as defined in Equation (1.3). We
restrict attention to the semiclassical properties, which were essential for the analysis in this paper. We
refer to the textbooks [42, 20, 16] and [3, 33] for further information and references.

A.1. Semiclassical estimates for the states

The spin-coherent states (1.3) on C2𝐽+1 are parametrised by the angles Ω = (𝜃, 𝜑) on the unit sphere.
Their scalar product

〈Ω′, 𝐽 |Ω, 𝐽〉 =
[
cos

𝜃

2
cos

𝜃 ′

2
+ 𝑒𝑖 (𝜑−𝜑

′) sin
𝜃

2
sin

𝜃 ′

2

����2𝐽
shows that, for large values of 𝐽 ∈ N/2, they are sharply localised. Denoting by �(Ω,Ω′) the spherical
angle between two points on the unit sphere, one has the Gaussian-type localisation

|〈Ω′, 𝐽 |Ω, 𝐽〉|2 = [cos �(Ω,Ω′)]4𝐽

with width proportional to 𝐽−1/2.
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With respect to the orthonormal eigenbasis of 𝑆𝑧 on C2𝐽+1, the spin-coherent states are linear
combinations with coefficients given by

〈𝐽 − 𝑘 |Ω, 𝐽〉 =
(
2𝐽
𝑘

)1/2 (
cos

𝜃

2

)2𝐽−𝑘 (
sin

𝜃

2

) 𝑘
𝑒𝑖𝑘𝜑 , (A.1)

for any 𝑘 ∈ {0, 1, . . . , 2𝐽} and Ω = (𝜃, 𝜑). Measurement of 𝑆𝑧 will therefore result in a binomial
distribution of 2𝐽 independent Bernoulli variables with parameter 𝑝 = sin2 (

𝜃
2
)
. The following lemma

records the standard upper-tail Chernoff estimate for the binomial distribution.

Proposition A.1. For any 𝐽 ∈ N/2 and any 𝑘 ∈ {0, 1, . . . , 2𝐽} and any 𝛿 > 0,∑
𝑘≥2(1+𝛿)𝐽 sin2( 𝜃2 )

|〈𝐽 − 𝑘 |Ω, 𝐽〉|2 ≤ exp
(
− 𝛿2

2 + 𝛿
2𝐽 sin2

(
𝜃

2

))
. (A.2)

We will also need the following generalisation of the identity (A.1), which involves the unitary𝑈 (Ω)
defined in (1.3).

Lemma A.2. For any 𝑘, 𝑘 ′ ∈ {0, 1, . . . , 2𝐽} and any Ω = (𝜃, 𝜑),

〈𝐽 − 𝑘 ′ |𝑈 (Ω) |𝐽 − 𝑘〉 =
𝑘∑

𝑚=max{0,𝑘−𝑘′ }
(−1)𝑘

(
2𝐽 + 𝑚 − 𝑘

𝑚

)1/2 (
2𝐽 + 𝑚 − 𝑘

𝑘 ′ − 𝑘 + 𝑚

)1/2 (
𝑘

𝑚

)1/2 (
𝑘 ′

𝑘 ′ − 𝑘 + 𝑚

)1/2

×
(
cos

𝜃

2

)2𝐽−𝑘−𝑘′ (
sin

𝜃

2

)2𝑚+𝑘′−𝑘
𝑒𝑖 (𝑘

′−𝑘)𝜑 . (A.3)

Moreover, if 𝑘 ≤ 𝑘 ′ (with the convention that 00 = 1),

|〈𝐽 − 𝑘 ′ |𝑈 (Ω) |𝐽 − 𝑘〉| ≤
(
2𝐽
𝑘

)1/2 (
2𝐽
𝑘 ′

)1/2
(𝑘 ′)𝑘

(
cos

𝜃

2

)2𝐽−𝑘−𝑘′ (
sin

𝜃

2

) 𝑘′−𝑘 (
1 +

(
sin

𝜃

2

)2
) 𝑘
. (A.4)

Proof. We use the decomposition of the unitary [42, Eq. (4.3.14)] (see also [3]):

𝑈 (Ω) = exp
(
tan

𝜃

2
𝑒𝑖𝜑𝑆−

)
exp

(
2 ln

(
cos

𝜃

2

)
𝑆𝑧

)
exp

(
− tan

𝜃

2
𝑒−𝑖𝜑𝑆+

)
.

The formula (A.3) follows from a straightforward, but tedious, calculation which uses that

1
𝑚!

(𝑆+)𝑚 |𝐽 − 𝑘〉 =
(
𝑘

𝑚

)1/2 (
2𝐽 + 𝑚 − 𝑘

𝑚

)1/2
|𝐽 − 𝑘 + 𝑚〉

and similarly for 𝑆− (and the usual convention that the binomial is zero if the upper integer is smaller
than the lower one); cf. [42, Eq. (4.2.3)].

The bound (A.4) then follows by estimating(
2𝐽 + 𝑚 − 𝑘

𝑘 ′ − 𝑘 + 𝑚

) (
𝑘 ′

𝑘 ′ − 𝑘 + 𝑚

)
=

(
2𝐽
𝑘 ′

)
(2𝐽 + 𝑚 − 𝑘)!
(2𝐽)!(𝑘 − 𝑚)!

(
(𝑘 ′)!

(𝑘 ′ + 𝑚 − 𝑘)!

)2

≤
(
2𝐽
𝑘 ′

)
(𝑘 ′)2𝑘

(𝑘 − 𝑚)! ,
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and similarly (
2𝐽 + 𝑚 − 𝑘

𝑚

)
≤

(
2𝐽
𝑘

)
𝑘!
𝑚!

.

This yields the claim by binomial formula. �

A.2. Semiclassical estimates for the symbols

Associated to any linear operator on C2𝐽+1 are two semiclassical symbols: the lower and upper one. We
recall from [33] the lower symbols of the spin operator

〈Ω, 𝐽 |S|Ω, 𝐽〉 = 𝐽e(Ω), (A.5)

as well as its upper symbol alongside, the symbol of the square of the 𝑧-component,

S =
2𝐽 + 1

4𝜋

∫
𝑑Ω (𝐽 + 1)e(Ω)

��Ω, 𝐽〉〈Ω, 𝐽�� (A.6)

𝑆2
𝑧 =

2𝐽 + 1
4𝜋

∫
𝑑Ω ((𝐽 + 1) (𝐽 + 3/2)e𝑧 (Ω)2 − (𝐽 + 1)/2)

��Ω, 𝐽〉〈Ω, 𝐽��. (A.7)

For operators with a smooth upper symbol, the lower symbol is know to agree with the upper symbol
in the semiclassical limit [33, 17]. Since we need quantitative error estimates, we include the following
result, which is tailored to the applications considered here (see also [31, Prop. 4.2]).

Proposition A.3. For any

𝐻 =
2𝐽 + 1

4𝜋

∫
𝑑Ω 𝑁 𝑓

(2𝐽
𝑁

e(Ω)
) ��Ω, 𝐽〉〈Ω, 𝐽��

on C2𝐽+1 with some 𝑓 ∈ 𝐶2, there is some 𝐶 < ∞ such that for all 𝐽 ≤ 𝑁/2

sup
Ω

����〈Ω, 𝐽��𝐻��Ω, 𝐽〉 − 𝑁 𝑓
(2𝐽
𝑁

e(Ω)
) ���� ≤ 𝐶. (A.8)

Proof. The proof is based on the standard Taylor estimate

𝑓
(2𝐽
𝑁

e(Ω′)
)
= 𝑓

(2𝐽
𝑁

e(Ω)
)
+ 2𝐽

𝑁
∇ 𝑓

(2𝐽
𝑁

e(Ω)
)
· (e(Ω′) − e(Ω)) + 𝑟 (Ω,Ω′; 𝐽/𝑁)

with |𝑟 (Ω,Ω′; 𝐽/𝑁) | ≤ ‖ 𝑓 ′′‖∞
(

2𝐽
𝑁

)2
(1 − e(Ω′) · e(Ω)).

Using the representation (A.6) and Equation (A.5) and the completeness (1.4), we arrive at

2𝐽 + 1
4𝜋

∫
𝑑Ω′ ∇ 𝑓

(2𝐽
𝑁

e(Ω)
)
· (e(Ω′) − e(Ω)) |〈Ω, 𝐽 |Ω′, 𝐽〉|2

= ∇ 𝑓
(2𝐽
𝑁

e(Ω)
)
·
(

1
𝐽 + 1

〈Ω, 𝐽 |S|Ω, 𝐽〉 − e(Ω)
)
= ∇ 𝑓

(2𝐽
𝑁

e(Ω)
)
· e(Ω)

(
𝐽

𝐽 + 1
− 1

)
.

The remainder term is estimated similarly

2𝐽 + 1
4𝜋

∫
𝑑Ω′ |𝑟 (Ω,Ω′; 𝐽/𝑁) | |〈Ω, 𝐽 |Ω′, 𝐽〉|2 ≤ ‖ 𝑓 ′′‖∞

(
2𝐽
𝑁

)2 (
1 − 𝐽

𝐽 + 1

)
.
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Inserting the Taylor estimate into the integral expression for 𝐻 and using the normalization
〈Ω, 𝐽 |Ω, 𝐽〉 = 1, we thus arrive at����〈Ω, 𝐽��𝐻��Ω, 𝐽〉 − 𝑁 𝑓

(2𝐽
𝑁

e(Ω)
)
− 2𝐽 ∇ 𝑓

(2𝐽
𝑁

e(Ω)
)
· e(Ω)

(
𝐽

𝐽 + 1
− 1

)����
≤ ‖ 𝑓 ′′‖∞

4𝐽2

𝑁

(
1 − 𝐽

𝐽 + 1

)
from which the claim follows. �

The last proposition shows the consistency of the two symbols in the semiclassical limit. We also
need the following quantitative version of Duffield’s theorem [17] on the consistency of the quantisation
of noncommuting self-adjoint polynomials with the help of the lower symbol.

Proposition A.4. If 𝐻 = 𝑁 P
(

2
𝑁 S

)
on C2𝐽+1 with a noncommuting self-adjoint polynomial P, then

there is some 𝐶 < ∞, which is independent of 𝐽 ≤ 𝑁/2 such that����𝐻 − 2𝐽 + 1
4𝜋

∫
𝑑Ω 𝑁𝑃

(2𝐽
𝑁

e(Ω)
) ��Ω, 𝐽〉〈Ω, 𝐽������ ≤ 𝐶. (A.9)

The proof, which is spelled out at the end of this subsection, will rest on two preparatory lemmas.
The first lemma deals with operators of the type 𝑓 (2𝑆𝑧/𝑁).

Lemma A.5. If 𝐻 = 𝑁 𝑓 (2v · S/𝑁) on C2𝐽+1 for some 𝑓 ∈ 𝐶2, then there is some 𝐶 < ∞, which is
independent of 𝐽 ≤ 𝑁/2, such that for all unit vectors v ∈ 𝑆2 and 𝑁 , 𝐽 ≤ 𝑁/2:����𝐻 − 2𝐽 + 1

4𝜋

∫
𝑁 𝑓

(2𝐽
𝑁

v · e(Ω)
) ��Ω, 𝐽〉〈Ω, 𝐽�� 𝑑Ω���� ≤ 𝐶. (A.10)

Proof. We first reduce the assertion to the case v = e𝑧 . If Ω stands for the spherical angles of v = e(Ω),
we have 𝑈 (Ω)∗(v · S)𝑈 (Ω) = 𝑆𝑧 with the unitary from Equation (1.3). Similarly, by the definition of
the coherent states, one easily arrives at

𝑈 (Ω0)∗
(∫

𝑁 𝑓
(2𝐽
𝑁

v · e(Ω)
) ��Ω, 𝐽〉〈Ω, 𝐽�� 𝑑Ω)

𝑈 (Ω0) =
∫

𝑁 𝑓
(2𝐽
𝑁

e𝑧 (Ω)
) ��Ω, 𝐽〉〈Ω, 𝐽��𝑑Ω

for any continuous function f.
In order to establish the claim in case v = e𝑧 , we first show that

𝐻 ′ �
2𝐽 + 1

4𝜋

∫
𝑑Ω 𝑁 𝑓

(2𝐽
𝑁

e𝑧 (Ω)
) ��Ω, 𝐽〉〈Ω, 𝐽��

s diagonal in the orthonormal basis |𝑘〉 with 𝑘 ∈ {−𝐽, . . . , 𝐽} for which the operator 𝑆𝑧 is diagonal.
Inserting the explicit expression (A.1) in

〈𝑘 |𝐻 ′ |𝑘 ′〉 = 2𝐽 + 1
4𝜋

∫
𝑑Ω 𝑁 𝑓

(2𝐽
𝑁

e𝑧 (Ω)
)
〈𝑘, 𝐽

��Ω, 𝐽〉〈Ω, 𝐽��𝑘 ′, 𝐽〉
the 𝜑-integration of the spherical angle Ω = (𝜃, 𝜑) immediately yield 〈𝑘 |𝐻 ′ |𝑘 ′〉 = 0 if 𝑘 ≠ 𝑘 ′.

It remains to control the diagonal elements of 𝐻 ′ for which we fix 𝑘 = 𝑘 ′ in the above integral. By a
standard Taylor approximation, we have���� 𝑓 (2𝐽

𝑁
e𝑧 (Ω)

)
− 𝑓

(2𝑘
𝑁

)
− 2𝐽

𝑁
𝑓 ′(2𝑘/𝑁) (e𝑧 (Ω) − 𝑘/𝐽)

���� ≤ ‖ 𝑓 ′′‖∞
2

(
2𝐽
𝑁

)2
(e𝑧 (Ω) − 𝑘/𝐽)2.
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In particular, we have

|〈𝑘 |𝐻 ′ − 𝐻 |𝑘〉 ≤ 2𝐽‖ 𝑓 ′‖∞
����2𝐽 + 1

4𝜋

∫
𝑑Ω (e𝑧 (Ω) − 𝑘/𝐽) |〈Ω, 𝐽

��𝑘〉|2����
+ ‖ 𝑓 ′′‖∞𝑁

2

(
2𝐽
𝑁

)2 2𝐽 + 1
4𝜋

∫
𝑑Ω (e𝑧 (Ω) − 𝑘/𝐽)2 |〈Ω, 𝐽

��𝑘〉|2.
To estimate the right side, we make use of the explicit operator representations (A.6) for 𝑆𝑧 and Equation
(A.7) which immediately yields

|〈𝑘 |𝐻 ′ − 𝐻 |𝑘〉 ≤ 𝐶 (‖ 𝑓 ′‖∞ + ‖ 𝑓 ′′‖∞),

with some numerical constant C. �

Our second ingredient is an algebraic result, which allows to write any homogeneous polynomial of
degree d as sum of linear forms to the power d:

Lemma A.6. Let 𝑄𝑑hom(𝑥1, . . . , 𝑥𝑘 ) be the real vector space of homogeneous polynomials of degree d
in the k variables 𝑥1, . . . 𝑥𝑘 . Then,

𝑄𝑑hom(𝑥1, . . . , 𝑥𝑘 ) = span{(𝛼1𝑥1 + · · · 𝛼𝑘𝑥𝑘 )𝑑 | 𝛼1, . . . , 𝛼𝑑 ∈ R}.

We remark that this a commutative result in the sense that we distinguish between the order of
variables. For example, the polynomials 𝑥1𝑥2 and 𝑥2𝑥1 are considered to be the same.

Proof. It is clear that

𝑊𝑑 (𝑥1, . . . , 𝑥𝑘 ) � span{(𝛼1𝑥1 + · · · 𝛼𝑘𝑥𝑘 )𝑑 | 𝛼1, . . . , 𝛼𝑑 ∈ R}

is a closed subspace of 𝑄𝑑hom(𝑥1, . . . , 𝑥𝑘 ). Let 𝑓𝛼 � (𝛼1𝑥1 + · · · 𝛼𝑘𝑥𝑘 )𝑑 . Note that 𝑓𝛼 − 𝑓𝛼′ ∈
𝑊𝑑 (𝑥1, . . . , 𝑥𝑘 ), and since 𝑊𝑑 (𝑥1, . . . , 𝑥𝑘 ) is closed, we see that

𝜕𝛼𝑖 𝑓𝛼 ∈ 𝑊𝑑 (𝑥1, . . . , 𝑥𝑘 ).

Similarly, partial derivatives of higher order are element of𝑊𝑑 (𝑥1, . . . , 𝑥𝑘 ); in particular, the d-th order
derivatives which agree with the monomials of degree d. Thus, 𝑊𝑑 (𝑥1, . . . , 𝑥𝑘 ) contains all monomials
of degree d and, hence, coincides with 𝑄𝑑hom(𝑥1, . . . , 𝑥𝑘 ). �

We are finally ready to spell out the following.

Proof of Proposition A.4. Due to linearity and Lemma A.6, it enough to prove the assertion for an
operator of the form 𝐻 = (v · S)𝑑 , where v is some unit vector in R3, in which case the claim follows
from Lemma A.5. �

A.3. Semiclassics for the free energy

Proposition A.7. For a Hamiltonian 𝐻 of the form (2.1) on H𝑁 with a regular symbol ℎ ∈ 𝐶2 satisfying
A0, the pressure at inverse temperature 𝛽 > 0 is

𝑝(𝛽) := lim
𝑁→∞

𝑁−1 ln Tr exp(−𝛽𝐻) = max
𝑟 ∈[0,1]

{
𝐼 (𝑟) − 𝛽 min

Ω∈𝑆2
ℎ(𝑟e(Ω))

}
. (A.11)
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Proof. We first use the block decomposition (2.1) in the trace to write

Tr exp(−𝛽𝐻) =
𝑁 /2∑

𝐽= 𝑁2 −� 𝑁2 �

𝑀𝑁,𝐽∑
𝛼=1

Tr C2𝐽+1 exp
(
−𝛽𝐻𝐽 ,𝛼

)
.

By Equation (2.2), the logarithm of the trace in the right side bounded according to

sup
𝐽 ,𝛼

����ln Tr C2𝐽+1 exp
(
−𝛽𝐻𝐽 ,𝛼

)
− ln Tr C2𝐽+1 exp

(
−𝛽2𝐽 + 1

4𝜋

∫
𝑁ℎ

(2𝐽
𝑁

e(Ω)
) ��Ω, 𝐽〉〈Ω, 𝐽�� 𝑑Ω)���� = 𝑂 (1).

We then use the Berezin–Lieb inequalities (1.6) and Proposition A.3, which ensures that the upper and
lower symbol agree up to order one, to replace the last trace by an integral,

sup
𝐽 ,𝛼

����ln Tr C2𝐽+1 exp
(
−𝛽𝐻𝐽 ,𝛼

)
− ln

2𝐽 + 1
4𝜋

∫
exp

(
−𝛽𝑁ℎ

(2𝐽
𝑁

e(Ω)
))
𝑑Ω

���� = 𝑂 (1).

In order to use a standard Laplace evaluation for the above integral in the limit 𝑁 → ∞, we set 𝐽 = 𝑟𝑁/2
with fixed 𝑟 ∈ (0, 1]. Since ℎ ∈ 𝐶2, we arrive at

1
𝑁

ln
2𝐽 + 1

4𝜋

∫
exp

(
−𝛽𝑁ℎ

(2𝐽
𝑁

e(Ω)
))
𝑑Ω = −𝛽min

Ω
ℎ(𝑟e(Ω)) + 𝑜(1).

The assertion then follows from the known asymptotics of the binomial coefficient in Equation (1.2) for
𝑀𝑁 ,𝐽 , that is, 1

𝑁 ln 𝑀𝑁 ,𝐽 = 𝐼 (𝑟) + 𝑜(1). �
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