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Abstract

In basic research, testing of oral fluid specimens by real-time quantitative polymerase chain
reaction (QPCR) has been used to evaluate changes in gene expression levels following experi-
mental treatments. In diagnostic medicine, gPCR has been used to detect DNA/RNA tran-
scripts indicative of bacterial or viral infections. Normalization of qPCR using endogenous
and exogenous reference genes is a well-established strategy for ensuring result comparability
by controlling sample-to-sample variation introduced during sampling, storage, and qPCR
testing. In this review, the majority of recent publications in human (n = 136) and veterinary
(n=179) medicine did not describe the use of internal reference genes in qPCRs for oral fluid
specimens (52.9% animal studies; 57.0% human studies). However, the use of endogenous ref-
erence genes has not been fully explored or validated for oral fluid specimens. The lack of valid
internal reference genes inherent to the oral fluid matrix will continue to hamper the reliabil-
ity, reproducibility, and generalizability of oral fluid qPCR assays until this issue is addressed.

Oral fluids as a diagnostic specimen

The terms ‘saliva’ and ‘oral fluid’ are often used interchangeably to refer to fluid samples col-
lected from the oral cavity (Kintz et al., 2000; Wong, 2006). More accurately, saliva is the fluid
produced by salivary glands whereas oral fluid is a composite of saliva, serum transudate,
mucosal cells and cellular debris, microorganisms, digestive enzymes, and food residues
(Schramm et al., 1993; Crouch, 2005; Cone and Huestis, 2007). This review will use the
term ‘oral fluid’ as defined by Atkinson et al. (1993): ‘The fluid obtained by insertion of
absorptive collectors into the mouth’.

Although various sampling strategies are used for human beings, oral fluid samples in
veterinary medicine are usually collected by introducing an absorbent material into the
oral cavity (Palmer et al., 2001; Shin et al., 2004; Cavalcante et al., 2018). Depending on
the size of animals, oral fluid samples could be collected by allowing large animals and pri-
mates to chew on absorbent material, e.g. cotton rope, or swabbing oral and buccal cavities
in small animals (Larghi et al., 1975; Thomas et al., 1995; Lutz et al., 2000; Shin et al., 2004;
Smith et al., 2004; Gomes-Keller et al., 2006; Prickett et al., 2008; Dietze et al., 2018; Cheng
et al., 2020).

The presence of viable viral pathogens, pathogen-specific antibody, and nucleic acids in oral
fluids has been well-described (Sirisinha and Charupatana, 1970; Garrett, 1975; Archibald
et al., 1986). In people, the presence of infectious viruses in oral fluid was first demonstrated
by bioassay, e.g. clinical signs in cats and monkeys inoculated with oral fluids from humans
with mumps (Wollstein, 1918; Johnson and Goodpasture, 1934; Henle et al., 1948). Later, it
was used to confirm rabies infection in an infant by intracerebral inoculation of Swiss
mouse pups with oral fluids from the child (Duffy et al., 1947). The fact that several viruses
including cytomegalovirus, human immunodeficiency virus (HIV) (Groopman et al., 1984),
herpesviruses (Kaufman et al., 1967; Douglas and Couch, 1970), Zika virus (Bonaldo et al.,
2016), and influenza virus (Vinagre et al, 2003), added additional evidence to the role of
oral fluids as a source of pathogens. In animals, Coxsackie b-1 virus from rabbits (Madonia
et al., 1966), rabies virus from dogs (Larghi et al, 1975), foot-and-mouth disease virus
(FMDV) from cattle (Sellers et al., 1968), and influenza A virus and porcine reproductive
and respiratory syndrome virus (PRRSV) from pigs (Wills et al, 1997; Detmer et al., 2011)
can be isolated from oral fluid specimens.

Statement of the problem

In both basic research and diagnostic medicine, the repeatability of quantitative polymerase
chain reaction (qQPCR) testing is affected by the variation introduced at any point between
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sample collection and the final test report (Heid et al., 1996;
Klein, 2002; Hoorfar et al., 2004). Ideally, proper controls can
be used to verify the integrity of the process accounting for vari-
ation. Internal controls that were extracted or amplified concur-
rently with test samples verify that the procedure was
performed correctly and functioned within expected parameters.
In addition, external positive amplification controls (template
control) containing fixed quantities of purified PCR target nucleic
acids may be used to identify run-to-run variation, e.g. concentra-
tion of reagents, qPCR profiles, instrument settings. In contrast,
external negative amplification controls (non-template controls)
are used to detect reagent contamination.

Internal controls are nucleic acids that are either inherent to
the specimen matrix (endogenous reference genes) or added
(‘spiked’) into test samples (exogenous reference genes) prior to
nucleic acid extraction. Importantly, qPCR results can be ‘normal-
ized’ in the context of internal control results to compensate for
variation arising from the initial sample nucleic acid quantity
and/or concentration, differences among reverse transcription
and amplification efficiencies, assay protocols, and/or instrument
settings (Vandesompele et al., 2002; Bustin and Nolan, 2004;
Huggett et al, 2005; Bustin et al., 2009; Biassoni and Raso,
2014). A number of gPCR normalization-compatible internal ref-
erence genes have been described for diagnostic matrices in
human medicine, e.g. reticulocytes, keratinocytes, oral fluids,
bronchoalveolar lavage fluids, tissue samples (Glare et al., 2002;
Silver et al, 2006; Bar et al, 2009; Chervoneva et al., 2010;
Koppelkamm et al., 2010; Martin, 2016). In contrast, the use of
internal reference genes is less frequently reported in veterinary
research, perhaps because of the diversity of specimens and ani-
mal species (McIntosh et al., 2009; Pol et al., 2013; Yan et al.,
2020). Therefore, the objective of this review is to compare the
use of internal reference genes reported in recent human and vet-
erinary qPCR research involving the oral fluid matrix.

Inherent variations in real-time PCR

Although real-time PCR has been used to precisely quantify
molecular substances, the data should be interpreted with caution
because of the introduction of variations throughout the process.
PCR results are typically reported as quantitation cycles (Cy), i.e.
the number of cycles required for the cumulative fluorescent
intensity to meet a pre-determined threshold (Schmittgen and
Livak, 2008; Rao et al, 2013). In general terms, samples with a
higher initial concentration of target DNA/RNA will require
fewer PCR amplification cycles to reach the threshold than
those with a lower initial concentration (Schmittgen and Livak,
2008). However, in the laboratory, the Cy of any given sample
may be affected by extraneous factors, e.g. technicians’ profi-
ciency, test protocols, reagents, PCR conditions, and instruments
(Johnson et al., 2013; Kralik and Ricchi, 2017). For example, a
recent study concluded the process of collecting nasopharyngeal
swabs was a significant source of variability and could produce
false-negative results in a severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2) real-time PCR assay (Basso et al.,
2020). To address the problem of variability introduced by extra-
neous factors, results can be expressed as the DNA/RNA copy
number in the sample (absolute quantification) or expressed as
the difference in target DNA/RNA (relative quantification) rela-
tive to known negative samples (Klein, 2002; Schmittgen and
Livak, 2008; Kralik and Ricchi, 2017).
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Real-time PCR quantification

Absolute quantification converts a Cy result to DNA/RNA copy
number using either digital gPCR or absolute standard curves.
Digital qPCR is done by partitioning a sample into subsamples
and then performing qPCR separately on each subsample.
Thereafter, the distribution and proportion of subsamples con-
taining molecules of interest are used to estimate the number of
DNA/RNA copies based on the Poisson distribution (Dube
et al., 2008; Huggett et al., 2013). Alternatively, absolute quantifi-
cation based on standard curves uses the relationship between the
sample Cy and known concentrations of DNA/RNA to interpolate
the concentration of target in the sample. Absolute standard
curves are typically established by generating C; results of serially
diluted standards with known copy numbers of target DNA/RNA.

However, identifying the change of targets in unknown sam-
ples relative to negative calibrators may be sufficient for disease
surveillance and diagnostic medicine (Livak and Schmittgen,
2001). Relative quantification of qPCR data may be achieved
through two approaches: the relative standard curve and the com-
parative Cq (Liu and Saint, 2002). Relative standard curves use
methods similar to absolute standard curves except the standards
do not have known DNA/RNA copy numbers. Instead, relative
standard curves describe the relationship between Cgy values and
the mass of total DNA/RNA for each dilution. The sample Cg
result can then be interpreted in the context of the relative stand-
ard curve. Because both absolute and relative quantification
require that standard curves for targets and references be gener-
ated in each PCR run to account for run-to-run variation, a com-
parative Cq method (AAC,, pronounced ‘double delta C;), has
been used in gene expression studies (Livak and Schmittgen,
2001; Pfaffl, 2001). This method quantifies the expression of a tar-
get gene in a treated sample relative to an untreated calibrator in
terms of the fold change in gene expression (Rao et al., 2013).
Conveniently, the treated sample and untreated calibrator can
be collected at different time points, may be derived from different
tissues, or obtained from individuals in different treatment groups
(Rao et al., 2013). Unlike standard curve methods, the compara-
tive Cy method eliminates the need to generate standard curves in
each PCR run and, therefore, may be used in high-throughput
molecular laboratories performing routine disease diagnostic
and surveillance testing.

Real-time PCR data normalization

Data normalization is a statistical procedure designed to control
variations introduced in the sampling/testing process and to
ensure that results are comparable within and between laborator-
ies (Bylesjo et al., 2009; Biassoni and Raso, 2014; Filzmoser and
Walczak, 2014). For example, Dahdouh et al. (2020) contended
that direct estimation of SARS-CoV-2 viral load based on raw
Cgs could neglect variation introduced during the sample collec-
tion process, e.g. patient tolerance to nasal swabbing, and con-
cluded that the normalization of raw Cgys against marker nucleic
acid genes inherent to sampled cell masses or mucosal surfaces
should be implemented to ensure the comparability of corona-
virus disease 2019 (COVID-19) qPCRs (Dahdouh et al., 2020;
Walsh et al., 2020).

Three methods commonly used for PCR normalization
include consistently testing the same amount (mass) of sample,
measuring total RNA/DNA, or using endogenous/exogenous ref-
erence genes (Huggett et al., 2005):
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(1) Testing the same amount of sample is standard practice in
molecular and diagnostic laboratories that use standardized
protocols, albeit the concentration of detectable target in clin-
ical samples is still affected by sample collection, storage, and
handling and, therefore, may not fully represent the initial
concentration.

(2) Normalizing qPCR results against the total RNA/DNA con-
tent in sample extracts, i.e. prior to PCR, is a more precise
approach for controlling sample-to-sample variation (Wang
et al., 2015). Quantification of total RNA/DNA can be
achieved by spectrophotometrically measuring the optical
absorbance (OD,g) or the fluorescence of dyes that are ran-
domly bound to nucleic acids of the extracted sample (Jones
et al., 1998; Green and Sambrook, 2018). However, using total
DNA/RNA for data normalization assumes that the efficiency
of reverse-transcription and PCR amplification is identical for
each sample, i.e. does not take sample-to-sample variation
into account (Bustin, 2002).

(3) The most common approach for qPCR data normalization is
to express the Cg of target DNA/RNA in the context of the Cg
of one or more reference genes (Wittwer et al., 1997). To
serve this purpose, reference genes must have genetic
sequences that differ from the target and be present at pre-
dictable concentrations in the sample (Vandesompele et al.,
2002; Huggett et al, 2005; Bylesjo et al., 2009; Guenin
et al., 2009). Pfaffl (2001) proposed an approach that inte-
grated data normalization and qPCR relative quantification
using test sample and negative calibrator results (Equation 1).
This method calculates the target-to-reference ratio (R) of the
C, difference between a sample and a calibrator (AC,) while
taking PCR amplification efficiencies for target (Eiger) and
reference (E.f) sequences into account (Pfaffl, 2001):

( Et t)ACq[arge( (calibrator—sample)
argef

(6]

(Eve f)ACq ref (calibrator—sample)

In gene expression studies, samples collected from individuals
with no treatment, or prior to treatment, may be used as negative
calibrators and/or as a baseline relative to the expression/detection
level of target genes in samples from treated individuals.
Therefore, the relative quantity of a target gene in a treated sample
is expressed as the fold change relative to an untreated calibrator,
using a reference gene as a normalizer (Rao et al., 2013).

Both exogenous and endogenous reference genes have been
used for data normalization at the individual sample level (Ke
et al., 2000). Exogenous reference genes are artificially synthesized
nucleic acids with genetic sequences distinct from the target’s
(Huggett et al., 2005). These heterologous genes may be spiked
into test samples prior to the DNA/RNA extraction procedure
at a fixed copy number or concentration (Yan et al, 2020) to
monitor the efficiency of DNA/RNA extraction and the integrity
of reverse transcription and PCR amplification in test samples
(Guenin et al., 2009; Johnston ef al., 2012). In contrast, endogen-
ous reference genes are host-specific nucleic acids inherent to the
specimen (Yan et al., 2020). Since endogenous reference genes are
processed concurrently with target DNA/RNA, the detection of
these genes reflects both the sample-to-sample variation in the
quantity and quality of initial amplifiable DNA/RNA and the
variation introduced by the extraction and amplification proce-
dures (Radonic et al., 2004).
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Internal reference genes in oral fluids

Endogenous reference genes have been widely used in gene
expression analyses for the purpose of representing sample
nucleic acid concentration and as the gold standard for qPCR
data normalization (Vandesompele et al., 2002; Bustin et al.,
2005; Huggett et al., 2005). However, the expression of common
reference genes depends on a variety of factors, e.g. cell/specimen
types, sample quality and handling, age of subjects, animal spe-
cies, and disease/treatment status (Zhong and Simons, 1999;
Hamalainen et al., 2001; Selvey et al., 2001; Deindl et al., 2002;
Glare et al, 2002). Thus, endogenous reference genes must be
validated for their consistency of expression and/or detection in
test specimens and under the conditions in which target genes
will be evaluated (Mestdagh et al., 2009). Typically, this involves
comparing the variation in endogenous gene Cg, in samples
from subjects with potentially impactful biological characteristics,
e.g. age, gender, and disease status (Huggett ef al., 2005; Robinson
et al., 2007; Becker et al., 2010).

In this review, QPCR-based gene expression and disease diag-
nostic studies were evaluated for the use of endogenous and/or
exogenous reference standards in oral fluid specimens from non-
human vertebrate and human subjects. Initially, the MEDLINE®
database was searched (title and abstract fields) on 24 October
2020 for refereed scientific publications containing the following
searching terms: (‘saliva®” or ‘oral fluid* or ‘oral swab*’) and
(‘gper® or ‘quantitative pcr*’ or ‘real time pcr*’ or ‘real-time
per®’ or ‘realtime pcr’ or ‘RT-qPCR’ or ‘qQRT-PCR’ or ‘real time
RT-PCR’ or ‘real-time RT-PCR’ or ‘realtime RT-PCR’) not
(review[Publication Type]). Articles were excluded if not written
in English, if not applicable to non-human vertebrate animals,
if the oral fluid specimen was not collected by insertion of an
absorptive collector into the mouth (Atkinson et al., 1993), or if
only components of oral fluids, e.g. microorganisms, biofilms, sal-
ivary extracellular vesicles, were evaluated. The remaining publi-
cations were evaluated for the use of internal endogenous and/
or exogenous reference genes. A total of 1566 articles were
retrieved from MEDLINE®. For the period 2003-2020, 136 met
the language, research subject, and full-text criteria (Table 1).
Among these, exogenous reference genes were used in 25.7%
(35/136), endogenous reference genes in 27.2% (37/136), and
52.9% (72/136) did not include sufficient information on the
use of internal reference genes.

A similar strategy was used to retrieve oral fluid-based qPCR stud-
ies on human subjects from the MEDLINE® database for the articles
published between 2016 and 2020. Among the 772 articles retrieved,
184 met the language, species, and content criteria (Table 1).

Exogenous reference genes were used in 14.0% of reviewed
studies (25/179), endogenous reference genes in 31.8% (57/179),
and 57.0% (102/179) of the studies did not include sufficient infor-
mation on the use of internal reference genes. As shown in Table 1,
B-actin (ACTB) mRNA, ribosomal RNAs (18S and 28S rRNA), and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA,
respectively, were the most frequently used endogenous reference
genes in published studies on non-human vertebrates. In human
studies, ACTB mRNA, GAPDH mRNA, and U6 small nuclear
RNA (snRNA) were the most commonly reported.

Ribosomal RNAs

In mammalian cells, gene expression begins by transcribing DNA
into single-stranded messenger RNA (mRNA) in the cell nucleus.
From the nucleus, mRNA migrates to the cytoplasm where it is
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Table 1. Frequency of reference genes reported in published qPCR studies using the oral fluid matrix

Animal species

Human Animal

(2016-2020) (2003-2020) Canine Feline Ruminant® Swine Rodent® Primate Other®
Overall studies 179 136 11 15 20 57 22 7 14
Endogenous 57 37 6 8 6 13 5 1 3
reference genes
ACTB 17 14 3 1 4 6 - - -
B-Globin 5 - - - - - - - -
GAPDH 12 6 1 2 - 2 1 - -
rRNAs 7 11 - 4 - 3 2 - 2
RNase P 6 = = = = = = = =
ué6 10 2 1 1 1 1 2 = =
Others? 38 9 1 2 1 4 = 1 1
Exogenous reference 25 35 2 1 8 21 2 - 1
genes
Not reported 102 72 3 7 9 24 15 6 10

ACTB, B-actin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; rRNAs, 5S, 18S, 28S ribosomal RNAs.

®Buffalo, cattle, deer, goat, and sheep.

Chipmunk, gerbil, guinea pig, mongoose, mouse, rabbit, rat, shrew, squirrel, and vole.
“Bat, elephant, horse, opossum, poultry, skunk, turtle, and weasel.

dEndogenous reference genes with frequency <5 pooled.

paired with complementary amino acids by ribosomes to build
proteins (Sergiev et al., 2018). Ribosomes compose two subunits,
the small subunit containing the 18S ribosomal RNA (rRNA) and
ribosomal proteins, and the large subunit containing 5, 5.8S, 28S
rRNA, and ribosomal proteins (Lafontaine and Tollervey, 2001).
Since ribosomal genetic material is highly conserved and nearly
universal in cell-rich specimens, e.g. cell culture, peripheral
blood mononuclear cells, and tissue samples, rRNA is one of
the most commonly used internal reference genes for qPCR nor-
malization in gene-expression research (Kozera and Rapacz, 2013;
Ban et al.,, 2014). Because the 18S and 28S rRNAs are cleaved
from the same single-stranded RNA transcript, the 28S:18S
rRNA ratio has been used as an index of the integrity and quality
of extracted RNA for electrophoresis-based PCR (Schroeder et al.,
2006; Becker et al., 2010). For example, De Ketelaere et al. (2006)
and Zhao et al. (2016) reported 18S rRNA as one of the most con-
sistently expressed genes in bovine polymorphonuclear leukocytes
and peripheral blood mononuclear cells (De Ketelaere et al., 2006;
Zhao et al., 2016). Zhong and Simons (1999) concluded that the
expression level of 285 rRNA was more consistent in hypoxia-
cultured cells than ACTB mRNA, GAPDH mRNA, and cyclophi-
lin mRNA (Zhong and Simons, 1999; Wang and Heitman, 2005).

However, the use of rRNAs as internal reference genes in
qPCR has several shortcomings. First, their quantity and concen-
tration can vary within specimens from the same species
(Ingerslev et al., 2006; Rekawiecki et al., 2013). Second, ribosomes
are absent from red blood cells and rRNA detection can be incon-
sistent in specimens in which blood is a significant component.
Finally, rRNAs may be overabundant in cell-rich specimens, e.g.
peripheral blood mononuclear cells, tissue, and laboratory-
cultured cells (Tong et al., 2009). As a consequence, when reverse-
transcribed and/or amplified simultaneously with the target, they
may compete with the target for PCR components, e.g. polymer-
ase, magnesium ions, and dNTP. Furthermore, an overabundance
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of rRNA increases the risk of cross-contamination during sample
handling and testing (Yan et al., 2020).

ACTB mRNA

B-Actin, encoded by ACTB mRNA, is an isoform of non-muscle
actin protein that primarily serves as a component of the cytoskel-
eton of eukaryotic cells (Bunnell ef al., 2011). ACTB has been used
for sample quality assessment and qPCR normalization because of
its ubiquitous expression in cells (Hunter and Garrels, 1977;
Biederman et al., 2004; Johansson et al, 2007; Robinson et al.,
2007; Ruan and Lai, 2007; Bar et al., 2009; Die et al., 2017), but
recent studies have found the expression level of ACTB to vary
by animal species, cell and/or specimen type, sample storage
time, growth stage, medical treatment, and disease state (Gutala
and Reddy, 2004; Nishimura et al., 2008; Spalenza et al, 2011;
Panahi et al., 2016; Khanna et al., 2017; Alshehhi and Haddrill,
2019). For example, in human beings, lower expression of ACTB
was reported in bronchoalveolar lavage fluid cells and airway endo-
bronchial biopsy samples from asthmatic patients versus clinically
normal subjects or subjects treated with inhaled corticosteroids
(Glare et al., 2002). Hamalainen et al. (2001) reported up to
11-fold down-regulation of ACTB expression in T-cells over a
14-day course of T-cell differentiation (Hamalainen et al., 2001).
In a qPCR reference gene validation study using peripheral blood
mononuclear cells and whole blood from healthy and tuberculosis-
positive subjects, ACTB showed >30-fold variability in both speci-
mens and was determined to be unsuitable for data normalization
(Dheda et al., 2004).

In veterinary studies, the expression of ACTB depends on a
number of factors and its use as an internal reference standard
requires assessment on a case-by-case basis. Stable expression of
ACTB has been reported in feline tissue samples and bovine per-
ipheral blood mononuclear cells (Ingerslev et al., 2006; Robinson
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et al., 2007; Kessler et al., 2009; Jursza et al., 2014), but the expres-
sion of ACTB has been reported as low in bovine polymorpho-
nuclear leukocytes (De Ketelaere et al., 2006). In a study
evaluating the expression of 11 housekeeping genes in canine tis-
sue specimens, including bone marrow, various enteric tissues,
heart, muscle, pancreas, and spleen, ACTB was found to be the
least consistently expressed (Peters et al., 2007). Thus, although
ACTB has been widely used for data normalization in qPCR stud-
ies, care should be taken to validate its consistency of expression
in the target species and specimen.

GAPDH mRNA

Encoded by GAPDH mRNA, GAPDH is a cytoplasmic enzyme
that facilitates glycolysis, a metabolic pathway to release energy, by
converting glyceraldehyde-3-phosphate to 1,3-biphosphoglycerate
(Tristan et al., 2011; Nicholls et al., 2012; Alfarouk et al, 2014).
The ubiquitous expression of GAPDH mRNA in living cells has
led to its common use as an endogenous reference control for
qPCR normalization in gene expression and disease diagnostic
studies (Rebougas et al., 2013). However, like rRNAs and ACTB
mRNAs, the expression of GAPDH mRNA may vary among sub-
jects and treatments. Consistent GAPDH mRNA expression has
been reported in oral fluid specimens from premature human
neonates, human cervical tissues, and neonatal cardiac ventricular
myocytes (Winer et al, 1999; Shen et al, 2010; Maron et al.,
2012). However, the inconsistent expression of GAPDH mRNA
has been reported under a number of experimental conditions,
e.g. growing collateral arteries of rabbits, asthmatic human sub-
jects with/without corticosteroid treatment, cells cultured under
hypoxic conditions, and whole blood from tuberculosis patients
(Zhong and Simons, 1999; Deindl et al, 2002; Glare et al,
2002; Dheda et al., 2004). Barber et al. (2005) reported up to a
15-fold difference in the expression level of GAPDH mRNA
across 72 human tissues (Barber et al, 2005). Therefore,
GAPDH mRNA may not be the appropriate endogenous refer-
ence control for the comparison of qPCR results across specimen
matrices.

U6 snRNA

After DNA transcription, RNA transcripts undergo modification
to become functional mRNAs able to perform protein synthesis
(Moore and Proudfoot, 2009). This pre-mRNA processing
involves (1) removing introns from pre-mRNAs (splicing); (2)
adding a modified guanine nucleotide at the 5" ends (5" capping);
and (3) adding a long chain of adenine nucleotides at the 3’ end
(3’ poly-A tailing). In mammalian cells, U1, U2, U4, U5, and U6
snRNAs complex with RNA-binding proteins to form small
nuclear ribonucleoproteins able to perform the splicing activity
required to functionalize mRNA (Maniatis and Reed, 1987;
Brow and Guthrie, 1988; Stefl et al, 2005). Among five
snRNAs, U6 snRNA was the most conserved in size, sequence,
and structure across yeast, bean, fly, and mammalian cells
(Brow and Guthrie, 1988). Because of its small size (~100 nucleo-
tides), U6 snRNA has been used to research the expression of
micro RNAs, a group of small single-stranded RNAs known for
silencing and interfering with mRNA expressions in plants, ani-
mals, and viruses (Bushati and Cohen, 2007; Mase et al., 2017;
Didychuk et al., 2018). For human samples, U6 snRNA has
been used as an internal reference gene for the study of
micro-RNA expression in human urinary sediment and serum
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samples from colorectal adenoma, colorectal adenocarcinoma,
and healthy human subjects (Zheng et al, 2013; Duan et al.,
2018). However, as observed in other endogenous reference
genes, the expression level of U6 snRNA varies among specific
specimens and treatments. For example, variation in U6 snRNA
expression has been reported in 13 normal and 5 tumorous tissues
including colon, esophagus, lung, lymphoid, and prostate (Peltier
and Latham, 2008). Lou et al. (2015) evaluated the expression of
U6 snRNA in normal and carcinomatous tissues and showed
higher levels of U6 snRNA in carcinoma tissues of human breast,
liver, and intrahepatic bile ducts compared to normal adjacent tis-
sues (Lou et al, 2015). Therefore, the constancy of U6 snRNA
expression should be ascertained prior to implementing its use
as an endogenous reference control for gPCR normalization.

Exogenous reference genes

The use of exogenous mRNAs or DNAs added (‘spiked’) to speci-
mens is well-described for qPCR normalization (Johnston et al.,
2012). Exogenous genes are often artificially synthesized and sim-
ultaneously detected by primers and probes distinct from those
designed for the target genes. Unlike endogenous reference
genes, they reflect variation in nucleic acid extraction and qPCR
amplification procedures, but not sample collection and handling.
For diagnostic qPCRs, exogenous reference genes provide the
advantage of consistency, i.e. to avoid the variation reported for
endogenous genes, and, therefore, may be a more reliable normal-
izer than endogenous genes. However, their use in gene expres-
sion research is limited because they do not provide a baseline
for the comparison of treated and untreated subjects. Among ani-
mal qPCR publications reviewed, internal positive controls
included in commercial qPCR assays were the most frequently
used while heterologous genes, e.g. algal and enhanced green
fluorescent genes, were described as well (Hoffmann et al,
2006; Henderson et al., 2013).

Use of endogenous and exogenous reference genes in routine
oral fluid diagnostics

Exploration of the diagnostic use of PCR technologies for the
detection of pathogen-specific nucleic acids in human oral fluids
began in the 1990s (Mandel, 1993; Streckfus and Bigler, 2002) and
early successes included Epstein-Barr virus, human herpesvirus
type 6, HIV, human cytomegalovirus, and human papillomavirus
(Goto et al., 1991; Saito et al., 1991; Garweg et al., 1993; Tominaga
et al., 1996). This developmental work led to PCR testing of oral
fluid samples for the surveillance of human papillomavirus, HIV,
measles, and others (Johnson et al., 1988; Frerichs et al., 1992;
Ramsay et al, 1997; Ahn et al, 2014). More recently,
SARS-CoV-2 has been detected in oral fluids, suggesting that
oral fluid could facilitate the efficient surveillance of the ongoing
worldwide coronavirus pandemic (COVID-19) (Azzi et al., 2020;
Pasomsub et al., 2020; To et al., 2020).

As for human beings, PCR technology has been applied to the
detection of viral pathogens in animal oral fluid specimens,
including feline herpesvirus 1 in oral swabs from experimentally
inoculated cats (Reubel et al., 1993), canine distemper virus in
dogs (Shin et al, 2004), Borna disease virus in rodents
(Sierra-Honigmann et al., 1993), FMDV in sheep (Callens et al.,
1998), and PRRSV in swine (Wills et al., 1997). As in human
diagnostic medicine, PCR testing has been used in oral fluid-
based surveillance and herd-level detection of various swine
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viral diseases, e.g. porcine circovirus type 2, PRRSV, porcine epi-
demic diarrhea virus, influenza A virus (Ramirez et al., 2012;
Bjustrom-Kraft et al., 2018), and others (Henao-Diaz et al., 2020).

Several fundamental concerns arise when considering the rou-
tine use of endogenous reference genes in oral fluid specimens.
First, oral fluid is not a cell-rich specimen and the quantity/con-
centration of target genes, e.g. viral DNA/RNA, may not be bio-
logically associated with the concentration of endogenous
reference genes, as it would in specimens with cellular context
(Nybo, 2012). For that reason, endogenous reference genes com-
monly used with cell-rich specimens may not be valid for gPCR
normalization in oral fluids. Second, the quality of oral fluid spe-
cimens can be affected by sample collection methods. Rogers et al.
(2007) reported that oral fluid specimens collected via spitting or
oral rinse resulted in a higher concentration and quality of DNA
compared to oral brush and swab samples (Rogers et al., 2007).
Third, few studies have evaluated the expression of common
endogenous reference genes in oral fluid specimens.

The ideal endogenous reference gene for the normalization of
diagnostic qPCRs would be abundant and consistent across speci-
men types, stable in diagnostic specimens over time, and inde-
pendent from the effect of the pathogen (or the treatment) on
the host (Thellin et al., 1999; Dheda et al., 2004; Radonic et al.,
2004; Mestdagh et al., 2009; Chervoneva et al., 2010). Such a ref-
erence gene has not been identified (Peltier and Latham, 2008);
however, other genes inherent to oral fluid specimens merit
consideration.

Ubiquitous in epithelial tissues throughout the body, mucins
are a family of high molecular weight glycoproteins that are
used to protect and lubricate mucosal surfaces (Gendler and
Spicer, 1995; Debailleul et al., 1998; Moniaux et al., 2001). The
21 types of mucin identified to date may be divided into gel-
forming mucins, soluble mucins, and transmembrane mucins
(Kumar et al, 2017). Among these, MUC1, MUC4, MUC5B,
MUC7, and MUCI19 are secreted by salivary glands (Nielsen
et al, 1997; Thornton et al, 1999; Sengupta et al, 2001; Liu
et al., 2002; Alos et al., 2005; Linden et al., 2008), with MUC5B
and MUC?7, the two major mucins in saliva, constituting ~20%
of the total salivary protein (Takehara et al., 2013). Data are lack-
ing at present, but future research should determine whether
mRNAs that transcribe critical mucin domains might serve as
endogenous reference standards for oral fluid specimens
(Debailleul et al., 1998).

As an alternative to a single endogenous reference gene, nor-
malizing qPCR data against the geometric mean of multiple
endogenous reference genes has been used in gene expression
research. As opposed to using a single reference gene, this strategy
lowers the risk of introducing additional variation into research
data (Vandesompele et al., 2002; Bustin et al., 2009). For example,
in a study comparing the mRNA levels of eight common
endogenous reference genes in oral fluid specimens between
healthy (n=9) and autistic (n=9) males (~4 years of age), the
most consistent detection was determined in GAPDH mRNA,
but the combination of GAPDH and YWHAZ (tyrosine 3-mono-
oxygenase/tryptophan 5-monooxygenase activation protein and
zeta polypeptide) mRNAs provided the best gPCR normalization
(Panahi et al,, 2016). Regardless, data normalization using mul-
tiple endogenous reference genes is impractical in high-
throughput testing laboratories performing diagnostic qPCRs.
For that reason, exogenously synthesized genetic sequences spiked
into oral fluid samples have been utilized to monitor the DNA/
RNA extraction and qPCR testing processes (Howson et al.,
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2018; Weiser et al., 2018; Nagel et al., 2020; Nagura-Ikeda et al.,
2020). Although they cannot reflect sample quality, exogenous
reference genes can be used for qPCR normalization to provide
consistent comparisons across clinical samples (Johnston et al.,
2012; O’Connell et al., 2017).

Conclusion

Endogenous and exogenous reference genes are used in
gene-expression studies to control for variation inherent in the
qPCR testing process and achieve qPCR normalization using well-
described mathematical approaches, e.g. the AC; method pro-
posed by Pfaffl (2001). Although qPCR normalization is recom-
mended to ensure the comparability of results, the majority of
oral fluid-based qPCR publications evaluated for this review
(52.9% animal studies; 57.0% human studies) did not describe
the use of internal controls (Table 1). As oral fluid-based PCRs
become more widely implemented in human and veterinary diag-
nostic settings, this shortcoming should be addressed through the
routine use of validated endogenous and/or exogenous reference
genes in qPCR testing. The problems inherent with the use of
endogenous reference genes include variation in the concentra-
tion of endogenous reference genes introduced by specimen
matrices, sample quality and handling, subject age, animal spe-
cies, and/or disease status (Bustin, 2002; Glare et al, 2002;
Bustin and Nolan, 2004; Silver et al., 2006; Nishimura et al,
2008; Kozera and Rapacz, 2013). One possible solution is to nor-
malize qPCR data using two or more validated endogenous refer-
ence genes (Vandesompele et al, 2002), but in the
high-throughput diagnostic setting, a more efficient and practical
approach would be spiking samples with a universally synthesized
exogenous gene. Notably, this approach does not control for sam-
ple quality (Kavlick, 2018). Finally, because of their robust and
consistent expressions in oral fluids, specific mucin genes should
be evaluated for the potential to serve as endogenous reference
genes for gPCR normalization.
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