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We extend the classic sequential stochastic assignment problem to include arrivals of
workers. When workers are all of the same type, we show that the socially optimal
policy is the same as the individually optimal policy for which workers are given
priority according to last come–first served. This result also holds under several
variants in the model assumptions. When workers have different types, we show that
the socially optimal policy is determined by thresholds such that more valuable jobs
are given to more valuable workers, but now the individually optimal policy is no
longer socially optimal. We also show that the overall value increases when worker
or job values become more variable.

1. INTRODUCTION AND SUMMARY

We consider the sequential stochastic assignment problem, as originally introduced
by Derman, Lieberman, and Ross (DLR) [5], in which a set of workers of different
values are assigned sequentially arriving jobs with random values, where the value of
an assignment of a job to a worker is the product of the job and worker values and
where the objective is to maximize the sum of the assignment values. We extend their
analysis to permit arrivals of workers as well as of jobs. Jobs must be assigned or
rejected immediately upon arrival, without recall, but arriving workers stay until they
are assigned jobs.

In the classical DLR model, there are n workers, where worker i has value pi,
p1 ≥ p2 ≥ · · · ≥ pn, and where m ≥ n jobs will arrive sequentially and must be imme-
diately either assigned to a worker or rejected. Job values X are independent and
identically distributed (i.i.d.) random variables revealed upon arrival, and if a job of
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value x is assigned to a worker with value p, the reward is px. They show that there
are thresholds ∞ = t0,m ≥ t1,m ≥ · · · ≥ tn,m ≥ tn+1, m = 0, such that it is optimal to
assign an arriving job of value x to worker i if ti−1 < x ≤ ti and where worker n + 1
corresponds to rejection. Moreover, the thresholds are independent of the values of the
pis, and threshold i can be interpreted as the expected job value for worker i, assum-
ing each worker follows an individually optimal policy of accepting or rejecting jobs,
where jobs are offered to workers in descending order of their values (so worker i
has the ith highest priority). We will consider extensions to a slight modification of
the DLR model in which there are an infinite number of jobs arriving according to
a Poisson process with rate λ and rewards are exponentially discounted with rate α.
Again, the same threshold result applies, but now the thresholds can be simply written
as ti [2]. We extend this model to permit worker arrivals.

Since the sequential stochastic assignment problem was introduced, it has been
extended in numerous directions, such as having random arrival times of jobs and arbi-
trary discounting [2], having a random number of jobs with nonidentically distributed
values [8], developing asymptotic results [10], and allowing workers with different
skill sets [1]. The results have been applied in many contexts, including kidney trans-
plantation [3,4,11], aviation security [9], buying decisions in supply chains [12], and
real estate [10]. The only work we know of in which there are arrivals of workers
(patients) as well as jobs (kidneys) is that of David and Yechiali [3], in which pairs
of patients and kidneys arrive and there are two types of patients and kidneys. If a
patient is assigned a matching kidney, a reward R is earned; the reward for assigning
a kidney that does not match is r < R. They show that to maximize the long-term
average award, only matches should be assigned and the corresponding long-term
average reward is R. When rewards are discounted or there is a finite horizon, the
optimal policy is a threshold policy such that a mismatch is assigned only if there are
no matches and the number of (nonmatching) patients exceeds some threshold. Our
work differs by permitting arrivals that are not in pairs and an arbitrary number of
worker and job types, and our reward structure for assignments is different.

We first consider the problem in which workers are identical (also known as the
house selling problem) and they arrive according to a Poisson process with rate γ

and leave only after being assigned a job. We show that, as in the classical case with
no worker arrivals, the optimal policy can be implemented by allowing each worker
to accept or reject his or her own job, subject to a last come–first served (LCFS)
priority among the workers; that is, a worker will only be offered a job that has been
rejected by all workers who have arrived after that worker. This means that the socially
optimal policy is a threshold policy, such that a job is assigned to a worker only if
its value is above a threshold that is decreasing in the number of workers presently
available. This result also holds when there is a finite buffer for workers, workers are
impatient and leave after an exponential time (which would apply, e.g., in the kidney
allocation application), there is a random environment that determines worker and job
arrival rates and discount rate or abandonment rate, there are holding costs associated
with waiting workers, there are batch arrivals of workers and jobs, and the job arrival
process is an arbitrary renewal process.
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We then consider the heterogeneous worker case, for which a worker of type
i has value pi, p1 ≥ p2 ≥ · · · ≥ pn, and we show that the optimal policy is again a
threshold policy, where in state n = (n1, n2, . . . nK), representing the current number
of available workers of each type, a job of value x is assigned to a worker of type i if
ti(n) ≤ x < ti−1(n), with t0(n) = ∞ for all n, and where the thresholds are increasing
in each of the numbers of the different types of workers. However, unlike the case
with no arriving workers, these thresholds are not the same as would be obtained
for an individually optimal policy where within each class, workers that arrived later
have priority and where workers with higher values have higher priority over other
workers. Moreover, the thresholds depend on the pis and on the numbers of each type
of worker present, not just the total number present. We show that the overall value
in the heterogeneous worker case increases if the worker values and/or job values
become more variable (to be defined precisely latter).

2. IDENTICAL WORKERS

We first suppose we have identical workers, that workers and jobs arrive according to
Poisson processes with respective rates γ and λ , and that rewards are exponentially
discounted with rate α. Job values are i.i.d. All of these assumptions will be relaxed
later.

We first consider an individually optimal policy, called the IO policy, in which
workers are given priority in inverse order of their arrival times (or seniority); so the
worker that arrived most recently has first right of refusal for jobs, and workers try to
maximize their own expected job values. Note that this priority has the effect that the
decisions of individual workers have no impact on future workers. Label the workers
so that worker i is the ith most recently arriving worker and therefore will be the ith to
be offered an arriving job if a job arrives before another worker. The IO policy is the
Nash equilibrium of a noncooperative game; that is, it is such that if all workers follow
the IO policy and each worker is trying to maximize its own expected job value, then
no worker will have incentive to deviate from the IO policy.

Lemma 2.1: The IO policy is unique (except for the indifference of accepting or reject-
ing jobs with values equal to a threshold) and is determined by thresholds ti such that
worker i should accept a job of value x if x ≥ ti, where t1 > t2 > · · · and where,
for each i, ti is the expected discounted job value that will be assigned to worker i
under the IO policy, so the tis satisfy the following equations, for i = 1, 2, . . ., where
t0 = ∞:

ti = γ ti+1 + λ[tiP(X < ti) + E[X|ti−1 > X ≥ ti]P(ti−1 > X ≥ ti)

+ ti−1P(X ≥ ti−1)]. (1)

Proof: We consider the equivalent discrete-time problem by uniformizing with uni-
formization rate λ + γ + α = 1, and we use value iteration (i.e., induction on a finite
time horizon, n). Let tn

i be the discounted expected job value (henceforth we will

https://doi.org/10.1017/S0269964811000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964811000143


480 R. Righter

abbreviate this as the EJV) for the ith worker under the IO policy when the time hori-
zon is n, and there is not a job currently available so t0

i ≡ 0, and let tn
i (x) be the EJV

for worker i under the IO policy given that a job has just arrived with value x and it
is offered to worker i and there are n more steps to go. Let tn

0 = ∞ for all n. We will
show the following by induction on n:

(i) tn
i = 0 for i > n.

(ii) tn
i = γ tn−1

i+1 + λ[tn−1
i P(X < tn−1

i ) + E[X|tn−1
i−1 > X ≥ tn−1

i ]P(tn−1
i−1 > X ≥

tn−1
i ) + tn−1

i−1 P(X ≥ tn−1
i−1 )] for i ≤ n.

(iii) tn
i−1 > tn

i for all 2 ≤ i ≤ n + 1.

(iv) It is optimal for worker i to accept a job of value x that is offered to it when
there are n more steps to go if x ≥ tn

i , for any i.

Suppose (i)–(iv) are true for n = 0, ..., k and consider k + 1. Then (ii) follows
from the induction hypothesis for (iv), (i) follows from the induction hypotheses for
(i) and (iv) (no jobs will ever be offered to worker i for i > k + 1), (iii) follows from the
induction hypotheses for (ii) and (iii), and (iv) follows from the dynamic programming
equation tn

i (x) = max{x, tn
i }. We can rewrite (ii) as

tn
i = γ tn−1

i+1 + λE max{tn−1
i , min[X, tn−1

i−1 ]}
from which it is easy to see by induction that for each i, tn

i , n = 0, 1, ..., is an increasing
sequence. Since it is also bounded, the result follows in the limit. Note also that the IO
policy is a Nash equilibrium, because, under our priority scheme, a worker’s actions
has no impact on the job values it is offered, so it has no incentive to deviate from the
IO policy. �

Theorem 2.2: The IO policy is socially optimal (it maximizes the total discounted
return) when all workers are identical. Therefore, the socially optimal policy is a
threshold policy.

Proof: Again we consider the equivalent discrete-time problem through uniformiza-
tion. Our proof is by policy iteration; we show that following the IO policy starting
with the first decision, at time 0, is better (for all workers) than following an arbitrary
policy for the first decision and then switching to the IO policy thereafter (call the
latter policy π ). Suppose there are n workers and a job of value x arrives at time 0,
and first suppose that ti−1 > x ≥ ti for some i ≤ n, but that π rejects the job. Thus, the
IO policy assigns the job to worker i and follows the IO policy thereafter. From time
1 on, the EJVs for workers 1, . . . , i − 1 and all future workers will be the same under
both IO and π , but the EJVs for workers k, k = i + 1, . . . , n will be tk−1 ≥ tk , which
will be the EJV under π . Finally, the EJV for worker i under IO will be x ≥ ti, its
EJV under π . Hence, all workers will be better off under IO than under the alternative
policy. Now, consider the case for which x < tn, and π assigns a job to some worker.
Let us label that worker worker n and label the other workers 1, . . . , n − 1. Then,
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under π , worker n will have the lowest priority, and since π follows IO from time
1 on, worker n will have no effect on any other workers. Thus, all workers besides
worker n will have the same EJVs under π and under IO, but worker i’s EJV under
IO will be tn > x, the EJV under π . Again, all workers are better off under IO than
under π , so the IO policy cannot be improved upon in a social sense and therefore it
is also socially optimal. �

It is not hard to show that the thresholds are decreasing in γ and increasing in λ

and the overall value is increasing in both. The following extensions are also not hard
to show. We could have a finite waiting space for the workers. Instead of an exponential
discount rate, we could have each worker leave the system after an exponential time
with rate α, although in this case we would need an arbitrary upper bound on the
number of workers permitted in the system in order to do the uniformization. We
could have arbitrary Markov modulated arrival processes for workers and jobs and
a randomly varying discount rate or abandonment rate, although now the thresholds
would depend on the environmental state modulating the arrivals, discount rate, and
abandonment rate. We could have costs associated with waiting, so that now the EJV
for a worker would be net of its waiting cost. We could have batch arrivals of workers
and jobs with random independent batch sizes (i.e., compound Poisson processes) as
long as workers are given an arbitrary priority order within a batch of workers (but
later arrivals still have priority over later arrivals). In this case, the optimal policy is to
start with the job with the largest value in an arriving job batch and offer it sequentially
to the workers according to their priorities until it is accepted by one or rejected by
all of them, and then repeat with the next largest job value and so on (once a job is
rejected, all jobs of lesser value will be rejected). We could also have a general (batch)
renewal process for job arrivals, which would, in effect, create batches of workers
arriving between job arrivals. Under all of these extensions, Theorem 2.2 would hold;
that is, the socially optimal policy would correspond to the IO policy for which worker
priorities are assigned on a LCFS basis, and it would be a threshold policy. The details
are left to the reader.

3. HETEROGENEOUS WORKERS

Now, consider the problem with K worker types in which workers of type i have value
pi, p1 ≥ p2 ≥ · · · ≥ pK , and the total reward for assigning a job of value x to a worker
with value p is px. For a fixed policy π , let Wπ (n, γ , p) be the total expected discounted
return under π , where n = (n1, . . . , nK), nk is the number of type k workers present at
time 0. Let γ = (γ1, . . . , γK), where γk is the arrival rate of type k workers, and let p be
the vector of worker values. When γi ≡ 0, the IO policy is still optimal, as long as the
workers with the higher pi are given higher priority (otherwise it does not depend on
the values of the pis) [5]. We include a slightly different proof for completeness. Let
tπi (n, γ ) be the EJV for worker i under π when we start with n workers and the workers
are identical (i.e., pi ≡ 1) and γ is the total worker arrival rate, and let Vπ

k (n, γ ) =∑k
i=1 ti(n, γ ) be the total expected discounted return for the first k workers.
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Corollary 3.1: When γi ≡ 0, the IO policy is socially optimal for heterogeneous
workers.

Proof: Since there are no worker arrivals, suppose, without loss of generality, that
we start with one worker of each type, nk = 1 for k = 1, . . . , K , and K = n. We
know from Theorem 2.2 that for any i and K , the IO policy maximizes Vπ

i (K , 0). It
therefore maximizes Wπ (K , 0, p) because we can write Wπ (K , 0, p) as follows, where
pK+1 = 0:

Wπ (K , 0, p) =
K∑

i=1

pit
π
i (K , 0) =

K∑
i=1

(pi − pi+1)

i∑
j=1

tπj (K , 0)

=
K∑

i=1

(pi − pi+1)V
π
i (K , 0). (2)

�

When there are arrivals, the IO policy is no longer socially optimal. With worker
arrivals, we define the IO policy so that type i workers always have priority over
type j > i workers, and within type, workers have priority according to LCFS. Let
Nk = ∑k

j=1 nj and �k = ∑k
j=1 γj, and let T IO

i (�i−1, γi) be the total expected discounted
job value (EJV) for all future arrivals of type i under the IO policy. Let tIO

l (�i) be the
EJV under the IO policy for the lth customer initially present, assuming it is type i,
l = Ni−1 + 1, Ni−1 + 2, . . . , Ni. Then

WIO(n, γ , p) =
K∑

i=1

pi

⎛
⎝

Nii∑
l=Ni−11

tIO
l (�i) + T IO

i (�i−1, γi)

⎞
⎠ . (3)

Note that the IO policy cannot be socially optimal. For example, for K = 2, p1 = p2,
and n2 = 0, the socially optimal policy, from Theorem 2.2, is to assign an arriving job
of value x to a type 1 worker if and only if x ≥ tn1(γ1 + γ2), whereas the IO policy
is to assign an arriving job of value x to a type 1 worker if and only if x ≥ tn1(γ1) �=
tn1 (γ1 + γ2) (unless γ2 = 0). (The latter would be the socially optimal policy when
p1 > p2 = 0.) In general, the socially optimal policy will depend on the values of
the pis.

Proposition 3.2: For heterogeneous workers, the IO policy is not, in general, socially
optimal.

Let W(n, γ , p) (W(n, γ , p|x)) be the maximal expected discounted return under
the optimal policy for the heterogeneous worker model starting with the vector n
of numbers of each worker type at a random time (when a job of value x has just
arrived). Let n−i = (n1, . . . , ni−1, ni − 1, ni+1, . . . , nK) and n+i = (n1, . . . , ni−1, ni + 1,
ni+1, . . . , nK). Then

W(n, γ , p|x) = max{W(n, γ , p); max
i=1,...,K

I{ni > 0}(pix + W(n−i, γ , p))} (4)
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and

W(n, γ , p) =
K∑

i=1

γiW(n+i, γ , p) + λEW(n, γ , p|X). (5)

Additionally, from our previous result,

W(n, γ , 1) = WIO
NK

(NK , �K , 1). (6)

We can show that the optimal policy with heterogeneous workers is still a threshold
policy, but now the thresholds depend on the worker values.

Theorem 3.3: The optimal policy for the heterogeneous worker problem is determined
by a set of state-dependent thresholds, ∞ = t0(n, γ , p) > t1(n, γ , p) ≥ t2(n, γ , p) ≥
· · · ≥ tK(n, γ , p), such that if an arriving job has value x, it is optimal to assign it to
a worker of type i if ti−1(n, γ , p) > x ≥ ti(n, γ , p) and to reject it if x < tK(n, γ , p).

Proof: If we accept the job and assign it to a type i worker, the value is pix +
W(ni, γ , p), which is increasing in x, whereas if we reject it, the value is W(n, γ , p),
so there must be a rejection threshold, tK(n, γ , p), such that a job will be rejected if its
value is lower than the threshold and accepted if it is greater. Similarly, we will prefer
to assign the job to a worker of type i − 1 rather than type i if x ≥ (W(ni, γ , p) −
W(ni−1, γ , p))/(pi−1 − pi). �

We now consider the impact of variability in the worker values and job values
on the optimal return. For two vectors p and p′, we say that p′ weakly majorizes p,
p′ �w p, if

k∑
1

p′
[i] ≥

k∑
1

p[i], k = 1, . . . , K , (7)

where p[i] denotes the components of p in decreasing order [7]. For two random
variables X ′ and X, we say that X ′ is larger than X in the increasing convex sense,
X ′ ≥icx X, if Ef (X ′) ≥ Ef (X) for all increasing and convex functions f . Intuitively, p′
is both larger and more variable than p, and X ′ is larger and more variable than X. A
function f is increasing and Schur-convex if f (p′) ≥ f (p) for any p′ �w p.

We have the following result: More variability yields greater returns. Part (ii) is
a special case of the result of Lippman and Ross [6] for marked point processes. We
give a simple proof for completeness.

Theorem 3.4: Let W ′(n, γ , p) be the maximal expected discounted return under the
optimal policy when the job values have the same distribution as X ′ instead of X.

(i) If p′ �w p, then W(n, γ , p′) ≥ W(n, γ , p).

(ii) If X ′ ≥icx X, then W ′(n, γ , p) ≥ W(n, γ , p).
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Proof:

(i) We can write W(n, γ , p) as follows:

W(n, γ , p) =
K∑

i=1

piUi(n, γ , p), (8)

where Ui(n, γ , p) is the total EJV for type i workers under the optimal policy
given (n, γ , p). Now, suppose that the worker values are p′ but we follow the
policy that is optimal when worker values are p. Then the total discounted
return will be

∑K
i=1 p′

iUi(n, γ , p), which is less than the optimal total return;
that is,

W(n, γ , p′) ≥
K∑

i=1

p′
iUi(n, γ , p) ≥

K∑
i=1

piUi(n, γ , p) = W(n, γ , p), (9)

where the second inequality follows because
∑

piui is an increasing Schur-
convex function of p for any u = (u1, . . . , uK) [7].

(ii) We can write W(n, γ , p|x) as follows, where tK+1(n, γ , p) = pK+1 = 0 and
nK+1 = n:

W(n, γ , p|x) =
K+1∑
i=1

(
pixI{ti−1(n, γ , p) > x ≥ ti(n, γ , p)}I{ni > 0}

+ W(ni, γ , p)
)

. (10)

Since this is an increasing convex function of x, the result follows. �

A consequence of part (i) is that we can bound the total optimal return with the
easier to compute IO policy. Let p̄ = ∑

pi/K .

Corollary 3.5:

W(n, γ , p) ≥ W(n, γ , p̄) = p̄W IO(NK , �K , 1). (11)

References

1. Akçay, Y., Balakrishnan, A., & Xu, S.H. (2010) Dynamic assignment of flexible service resources.
Production and Operations Management 19: 279–304.

2. Albright, S.C. (1974). Optimal sequential assignments with random arrival times. Management Science
21: 60–67.

3. David, I. &Yechiali, U. (1990). Sequential assignment match processes with arrivals of candidates and
offers. Probability in the Engineering and Informational Sciences 4: 413–430.

4. David, I., &Yechiali, U. (1995). One-attribute sequential assignment match processes in discrete time.
Operations Research 43: 879–884.

https://doi.org/10.1017/S0269964811000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964811000143


STOCHASTIC SEQUENTIAL ASSIGNMENT PROBLEM 485

5. Derman, C., Lieberman, G., & Ross, S.M. (1972). A sequential stochastic assignment problem.
Management Science 18: 349–355.

6. Lippman, S.A. & Ross, S.M. (2008). Variability is beneficial in marked stopping problems. Economic
Theory 35: 333–342.

7. Marshall, A. & Olkin, I. (1979). Inequalities: Theory of majorization and its applications. Orlando,
FL: Academic Press.

8. Nikolaev, A. & Jacobson, S.H. (2010). Stochastic sequential decision-making with a random number
of jobs. Operations Research 58: 1023–1027.

9. Nikolaev, A., Jacobson, S.H., & McLay, L.A. (2007). A sequential stochastic security system design
problem for aviation security. Transportation Science 41: 182–194.

10. Saario, V. (1985). Limiting properties of the discounted house-selling problem. European Journal
Operational Research 20: 206–210.

11. Su, X.M. & Zenios, S.A. (2005). Patient choice in kidney allocation:A sequential stochastic assignment
model. Operations Research 53: 443–455.

12. You, P.S. (2000). Sequential buying policies. European Journal of Operational Research 120: 535–544.

https://doi.org/10.1017/S0269964811000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964811000143



