OPEN SURFACES WITH CONGRUENT GEODESICS

by CHARLAMBOS CHARITOS

(Received 27th October 1993)

Abstract

The aim of this paper is to prove the Theorem: Let M be a complete non compact surface without boundary in the euclidean space \mathbb{E}^{3}. We suppose that all geodesics of M are congruent. Then M is an affine plane in \mathbb{E}^{3}.

1991 Mathematics subject classification: 53A05.

If M is a closed surface in the euclidean 3-space which has all its geodesics congruent, then M is a round sphere. Compactness of M, which implies that M is a diffeomorphic to a sphere, is crucial in establishing the above result (see [3]).

Similarly, in the study of manifolds with families of congruent curves, compactness is an essential hypothesis (see $[2,6,10]$).

In the present note following the principal ideas of [3] we are able, for the first time, to remove the compactness assumption. In fact we show:

Theorem. Let M be a complete non-compact surface without boundary embedded in the euclidean space \mathbb{E}^{3}. We suppose that all geodesics of M are congruent. Then M is an affine plane in \mathbb{E}^{3}.

In the course of the proof we will often refer to the compact case [3]. However, we will make this paper as self-contained as possible by introducing all necessary notation and definitions.

Proof of the theorem. We separate the proof in several lemmas.
Lemma 1. The surface M is diffeomorphic to \mathbb{R}^{2}.
Proof. At first we show that all congruent geodesics of M are simple curves diffeomorphic to \mathbb{R}.

Suppose that the geodesics of M have self-intersection points. We pick such a geodesic γ. In the following we suppose that all the parametrizations of the geodesics or of the geodesic arcs that we consider are by arc-length. Let $f:(-\infty, \infty) \rightarrow M$ be a parametrization of γ with $f(0)=p$ and let $\rho>0$ such that $f /[0, \rho]$ has at least one selfintersection point. Since M is an open manifold it is well known that there exists a geodesic ray $r:[0,+\infty) \rightarrow M$ with $r(0)=p$. Therefore $r /[0, \rho]$ is an embedding in M and
consequently $r^{\prime}(0) \neq f^{\prime}(0)$. We fix an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of $T_{p} M$ with $e_{1}=r^{\prime}(0)$, which induces an orientation on $T_{p} M$. We parametrize each unit vector v of $T_{p} M$ by the oriented angle $\theta=\Varangle\left(v, e_{1}\right), 0 \leqq \theta<2 \pi$; note that $\Varangle\left(e_{1}, e_{2}\right)=\pi / 2$.

Let now $\theta_{0}=\sup \left\{\theta \in[0,2 \pi]\right.$ such that every geodesic arc $g:[0, \rho] \rightarrow M$ with $g^{\prime}(0) \in T_{p} M$ and $\Varangle\left(g_{0}^{\prime}(0), e_{1}\right)=\theta^{\prime}<\theta$ is simple $\}$. Note that $\theta_{0}>0$ since the set of embeddings g : $[0 . \rho] \rightarrow M$ is open in the space $C^{\infty}([0, \rho], M)$ [5]. Now we consider the geodesic g_{0} : $[0, \rho] \rightarrow M$ with $g_{0}^{\prime}(0) \in T_{p} M$ and let $\Varangle\left(g_{0}^{\prime}(0), e_{1}\right)=\theta_{0}$. Claim: $g_{0} /[0, \rho]$ is a simple geodesic arc. From this we conclude that $\theta_{0}=2 \pi$ which contradicts the hypothesis that $f /[0, \rho]$ has self intersection points. To prove the claim observe that if $g_{0} /[0, \rho]$ were not simple then every geodesic arc $g:[0, \rho] \rightarrow M \varepsilon$-close to $g_{0} /[0, \rho]$, for ε small enough, would not be simple. But this contradicts the definition of θ_{0}.

Suppose now that $\pi_{1}(M) \neq 1$. It is well known (see for example [4, Ch. 10, Th. 13] that for every pair of points p, q (and hence for $p=q$) and for every arc $\alpha(p, q)$ joining p, q there is a geodesic arc $\gamma(p, q)$ in the homotopy class of $\alpha(p, q)$ with end points fixed. So if we take a noncontractible loop $\alpha(p, p)$ on M and if we consider a geodesic arc $\gamma(p, p)$ in the homotopy class of $\alpha(p, p)$ with p fixed, then the geodesic of M containing $\gamma(p, p)$ is either closed or it has self-intersection points. But this is impossible since we have proved that all geodesics of M are curves diffeomorphic to \mathbb{R}. Therefore $\pi_{1}(M)=1$ and M is diffeomorphic to \mathbb{R}^{2}.

Now we consider a fixed curve Γ_{0} in \mathbb{E}^{3} such that every geodesic of M is congruent to Γ_{0}. If Γ_{0} is a plane curve or if the curvature of Γ_{0} is constant then in each case we can easily deduce that all points of M are umbilical and consequently M is an affine plane in \mathbb{E}^{3}. We next assume that Γ_{0} is not a plane curve as well as that the curvature of Γ_{0} is not constant and we will prove that this assumption is incompatible with the hypothesis that all geodesics of M are congruent. Let $\alpha(s), s \in(-\infty, \infty)$ be a parametrization by arc length of Γ_{0} and let $k(s), \tau(s)$ be the curvature and torsion functions of $\alpha(s)$ respectively.

We denote by $<,>$ the usual inner product in \mathbb{E}^{3} and by A the shape operator of M. Let v_{p} be a vector in the unit tangent bundle $S(M)$ of M. There exists a unique geodesic $\gamma:(-\infty, \infty) \rightarrow M$ such that $\gamma(0)=p, \gamma^{\prime}(0)=v_{p}$. We denote by $\kappa\left(v_{p}\right), \tau\left(v_{p}\right)$ the normal curvature and torsion of γ at p, and we have that:

$$
\left.\kappa\left(v_{p}\right)=<A v_{p}, v_{p}\right\rangle, \tau\left(v_{p}\right)=\left\langle A v_{p}, J v_{p}\right\rangle
$$

where by $J v_{p}$ we denote the vector that we obtain if we rotate v_{p} counterclockwise in $T_{p} M$ by $\pi / 2$.

In what follows we will refer to them as the curvature and torsion of vectors of $S(M)$.
Lemma 2. (a) Let $r: S(M) \rightarrow \mathbb{R}^{+}$be the differentiable function defined by $r\left(v_{p}\right)=$ $\left|\kappa\left(v_{p}\right)\right|$ and let k_{0} be a non-critical value of $k(s)$. Then the set $r^{-1}\left(k_{0}\right)$ is a closed surface in $S(M)$.
(b) We can choose the non-critical value k_{0} such that there exists a component C of $r^{-1}\left(k_{0}\right)$ which contains only non-principal vectors. Moreover, for each v_{p} in $C, \tau\left(v_{p}\right)=$ constant $\neq 0$.

Proof. For the proof of (a) we remark that if k_{0} is a non-critical value of $k(s)$ then r is of rank 1 on $r^{-1}\left(k_{0}\right)$ (for more details see the proof of Proposition 2 in [3]).

For the proof of (b) we consider a non-umbilical point q in M; remark that such a point exists since the function $k(s)$ is not constant. Now we can choose a non-principal vector w_{q} in $T_{q} M$ such that $r\left(w_{q}\right)=k_{0}$ and k_{0} is a non-critical value of $k(s)$. Among the components of the surface $r^{-1}\left(k_{0}\right)$ consider that one which contains the vector w_{q} and denote it by C. We can prove that $\tau\left(v_{p}\right)=$ constant $\neq 0$ for each v_{p} in C which implies that all the vectors of C are non-principal (for more details see the proof of the lemma in [3]).

Lemma 3. Let $\pi: C \rightarrow M$ be the projection in M with $\pi\left(v_{p}\right)=p$. Then the pair (C, π) is a covering space of M.

Proof. As in Proposition 3 of [3] we prove that π has rank 2 at every v_{p} in C, so π is a local diffeomorphism. We next show that π is onto by proving that $\pi(C)$ is an open and closed subset in M. Since π is a local diffeomorphism we get that $\pi(C)$ is an open subset of M and next we will prove that $\pi(C)=\overline{\pi(C)}$ which implies that $\pi(C)$ is also closed in M. Let $p \in \overline{\pi(C)}$, then there is a sequence p_{n} in $\pi(C)$ which converges to p. Let $v_{n} \in C$ with $\pi\left(v_{n}\right)=p_{n}$. Since M is diffeomorphic to \mathbb{R}^{2} we have that $S(M)$ is diffeomorphic to $M \times S^{1}$ under a diffeomorphism F. Let $\left(p_{n}, \theta_{n}\right)=F\left(v_{n}\right)$. The space S^{1} is compact so there exists a subsequence $\theta_{n_{\kappa}}$ of θ_{n} converging to a $\theta \in S^{1}$. Consequently ($p_{n_{k}}, \theta_{n_{k}}$) converges to (p, θ); hence the subsequence $v_{n_{k}}$ of v_{n} converges to a v in C since C is a closed subset in $S(M)$. It follows that $p=\pi(v)=\lim _{\kappa} \pi\left(v_{n_{k}}\right)$ belongs to $\pi(C)$ which implies that $\pi(C)=\overline{\pi(C)}$.

Observe that M is simply connected and therefore has no non-trivial covering spaces. So the projection $\pi: C \rightarrow M$ is a diffeomorphism. This permits the construction of a nonvanishing vector field X on M such that $r\left(X_{p}\right)=$ constant for each p in M.

Lemma 4. The set of non-critical values k_{0} of the curvature function $k(s)$, such that some component of $r^{-1}\left(k_{0}\right)$ contains non-principal vectors, is dense into the range R of $k(s)$.

Proof. At first we know by Sard's theorem [5] that the set of non-critical values of $k(s)$ is dense in R. Let k_{0} be a non-critical value of $k(s)$ such that $r^{-1}\left(k_{0}\right)$ contains only principal vectors. Let v_{p} be such a vector in $r^{-1}\left(k_{0}\right)$. We distinguish 2 cases:
(1) The point p is non-umbilical. Suppose without loss of generality that $k_{0}=r\left(v_{p}\right)$ is the minimum normal curvature at p. Then for each $\varepsilon>0$ there is a non-critical value k_{1} of $k(s)$ in $\left[k_{0}, k_{0}+\varepsilon\right)$ such that $r^{-1}\left(k_{1}\right)$ contains a non-principal vector w_{p} and hence all the vectors in the connected component of $r^{-1}\left(k_{1}\right)$ which contains w_{p} are non-principal. To find such a non-critical value k_{1} it is sufficient to note that if we consider an open neighbourhood U of v_{p} in $S_{p}(M)=\left\{v \in T_{p} M:|v|=1\right\}$, sufficiently small, then $r(U)$ is of the form $\left[k_{0}, k_{0}+\delta\right), \delta>0$ and $\tau(v) \neq 0$ for each $v \in U-\left\{v_{p}\right\}$.
(2) The point p is umbilical. Let O be the set of umbilical points of M. Then there is not an open neighbourhood U of p in M with $U \subset O$. If such an open subset existed,
then U should be a piece of a plane or of a sphere (Th. 2-2 of [8]). So the value of $r\left(v_{p}\right)=k_{0}$ should be a critical value of $k(s)$ which is absurd. Therefore we can obviously find a sequence p_{n} of non-umbilical points in M converging to p. Now using case (1) above we can find a sequence of non-principal vectors $\left(v_{n}\right), v_{n} \in T_{p} M$ such that: the sequence $\left(v_{n}\right)$ converges to v_{p} and the values $r\left(v_{n}\right)=k_{n}$ are non-critical values of $k(s)$ for each $n=1,2, \ldots$. This completes the proof of Lemma 4.

Now we can finish the proof of the theorem:
The range $R(p)$ of the function $r / S_{p}(M)$ is obviously a closed subset of R and $R(p) \subset R$, for each p in M. By Lemmas 3 and 4 at every p in M there are unit tangent vectors v_{i} such that the values $r\left(v_{i}\right)$ form a dense subset in R. Therefore $R(p)=\overline{R(p)}=R$. This implies readily that the Gaussian curvature K of M is constant. If $K>0$ then M is compact (Th. 8-18 of [9]) which is impossible. On the other hand a complete surface M of constant negative curvature cannot be embedded in \mathbb{E}^{3} (Th. 5-12 of [8]). Therefore the curvature K of M is equal to zero which implies that M is a generalized cylinder (Th. 5-9 of [8]), and since all geodesics of M are congruent, M will be necessarily an affine plane. But in this case, all geodesics of M are straight lines which contradicts the assumption that the curvature function $k(s)$ is not constant. Therefore $k(s)$ is a constant function and, as explained above, this implies that M is an affine plane.

Remark. In a similar way we can prove the same result for open surfaces M embedded in the hyperbolic space \mathbb{H}^{3}. However, since we have not a complete idea for the surfaces of constant curvature in \mathbb{H}^{3} (see [9, p. 163]) we proceed as follows: With exactly the same reasonings we conclude that if Γ_{0} is not a plane curve and if the curvature of Γ_{0} is not constant then the functions of principal curvatures remains constant on M. Therefore M is an isoparametric surface in \mathbb{H}^{3}. The classification of these surfaces which have at most two distinct principal curvatures [1], [7] gives that M is either a geometric sphere or a geometric cylinder or a geodesic plane in H^{3}, and since $\pi_{1}(M)=1$ the result follows.

REFERENCES

1. E. Cartan, Sur des familles remarquables d'hypersurfaces dans les espaces spheriques, Math. Z. (1939), 335-367.
2. C. Charitos, Surfaces with Congruent Shadow-lines, Mathematika 37 (1990), 43-58.
3. C. Charitos and P. Pamfilos, Surfaces with Isometric Geodesics, Proc. Edinburgh Math. Soc. 34 (1991), 359-362.
4. W. Ballman, E. Ghys, A. Haefliger, P. de la Harpe, E. Salem, R. Strebel, M. Troyanov, Sur les groupes hyperboliques d'après Gromov (Seminaire Berne édité par E. Ghys et P. de la Harpe, Birkhauser, 1990).
5. M. Hirsch, Differential Topology (Springer-Verlag, 1976).
6. P. Mani, Fields of planar bodies tangent to spheres, Monatsh. Math. 74 (1970) 145-149.
7. P. Ryan, Homogeneity and some curvature conditions for hyperfurfaces, Tôhoku Math. J. 21 (1969), 363-388.
8. $\left[S_{1}\right],\left[S_{2}\right]$ M. Spivak, A Comprehensive Introduction to Diff. Geometry. vol III.
9. vol IV (Publish or Perish, 1975).
10. [Su] W. Suss Kennzeichende Eigenschaften der Kugel als Folgerung eines Brouwersche Fixtpunktsatzes, Comment. Math. Helv. 20 (1947), 61-64.
University of Crete
Department of Mathematics
Iraklion P. O. Box 1470
Greece
