Proceedings of the Edinburgh Mathematical Society (1995) 38, 179-183 ©

OPEN SURFACES WITH CONGRUENT GEODESICS

by CHARLAMBOS CHARITOS

(Received 27th October 1993)

The aim of this paper is to prove the Theorem: Let M be a complete non compact surface without boundary in the euclidean space \mathbb{E}^3 . We suppose that all geodesics of M are congruent. Then M is an affine plane in \mathbb{E}^3 .

1991 Mathematics subject classification: 53A05.

If M is a closed surface in the euclidean 3-space which has all its geodesics congruent, then M is a round sphere. Compactness of M, which implies that M is a diffeomorphic to a sphere, is crucial in establishing the above result (see [3]).

Similarly, in the study of manifolds with families of congruent curves, compactness is an essential hypothesis (see [2, 6, 10]).

In the present note following the principal ideas of [3] we are able, for the first time, to remove the compactness assumption. In fact we show:

Theorem. Let M be a complete non-compact surface without boundary embedded in the euclidean space \mathbb{E}^3 . We suppose that all geodesics of M are congruent. Then M is an affine plane in \mathbb{E}^3 .

In the course of the proof we will often refer to the compact case [3]. However, we will make this paper as self-contained as possible by introducing all necessary notation and definitions.

Proof of the theorem. We separate the proof in several lemmas.

Lemma 1. The surface M is diffeomorphic to \mathbb{R}^2 .

Proof. At first we show that all congruent geodesics of M are simple curves diffeomorphic to \mathbb{R} .

Suppose that the geodesics of M have self-intersection points. We pick such a geodesic γ . In the following we suppose that all the parametrizations of the geodesics or of the geodesic arcs that we consider are by arc-length. Let $f: (-\infty, \infty) \rightarrow M$ be a parametrization of γ with f(0) = p and let $\rho > 0$ such that $f/[0, \rho]$ has at least one self-intersection point. Since M is an open manifold it is well known that there exists a geodesic ray $r: [0, +\infty) \rightarrow M$ with r(0) = p. Therefore $r/[0, \rho]$ is an embedding in M and

C. CHARITOS

consequently $r'(0) \neq f'(0)$. We fix an orthonormal basis $\{e_1, e_2\}$ of T_pM with $e_1 = r'(0)$, which induces an orientation on T_pM . We parametrize each unit vector v of T_pM by the oriented angle $\theta = \not\prec (v, e_1), 0 \leq \theta < 2\pi$; note that $\not\prec (e_1, e_2) = \pi/2$.

Let now $\theta_0 = \sup\{\theta \in [0, 2\pi] \text{ such that every geodesic arc } g:[0, \rho] \to M \text{ with } g'(0) \in T_pM$ and $\gtrless (g'_0(0), e_1) = \theta' < \theta$ is simple}. Note that $\theta_0 > 0$ since the set of embeddings $g: [0, \rho] \to M$ is open in the space $C^{\infty}([0, \rho], M)$ [5]. Now we consider the geodesic $g_0: [0, \rho] \to M$ with $g'_0(0) \in T_pM$ and let $\gtrless (g'_0(0), e_1) = \theta_0$. Claim: $g_0/[0, \rho]$ is a simple geodesic arc. From this we conclude that $\theta_0 = 2\pi$ which contradicts the hypothesis that $f/[0, \rho]$ has self intersection points. To prove the claim observe that if $g_0/[0, \rho]$ were not simple then every geodesic arc $g: [0, \rho] \to M \epsilon$ -close to $g_0/[0, \rho]$, for ϵ small enough, would not be simple. But this contradicts the definition of θ_0 .

Suppose now that $\pi_1(M) \neq 1$. It is well known (see for example [4, Ch. 10, Th. 13] that for every pair of points p, q (and hence for p=q) and for every arc $\alpha(p,q)$ joining p, q there is a geodesic arc $\gamma(p,q)$ in the homotopy class of $\alpha(p,q)$ with end points fixed. So if we take a noncontractible loop $\alpha(p,p)$ on M and if we consider a geodesic arc $\gamma(p,p)$ in the homotopy class of $\alpha(p,p)$ with p fixed, then the geodesic of M containing $\gamma(p,p)$ is either closed or it has self-intersection points. But this is impossible since we have proved that all geodesics of M are curves diffeomorphic to \mathbb{R} . Therefore $\pi_1(M)=1$ and M is diffeomorphic to \mathbb{R}^2 .

Now we consider a fixed curve \lceil_0 in \mathbb{E}^3 such that every geodesic of M is congruent to \lceil_0 . If \lceil_0 is a plane curve or if the curvature of \rceil_0 is constant then in each case we can easily deduce that all points of M are umbilical and consequently M is an affine plane in \mathbb{E}^3 . We next assume that \rceil_0 is not a plane curve as well as that the curvature of \rceil_0 is not constant and we will prove that this assumption is incompatible with the hypothesis that all geodesics of M are congruent. Let $\alpha(s)$, $s \in (-\infty, \infty)$ be a parametrization by arc length of \rceil_0 and let k(s), $\tau(s)$ be the curvature and torsion functions of $\alpha(s)$ respectively.

We denote by \langle , \rangle the usual inner product in \mathbb{E}^3 and by A the shape operator of M. Let v_p be a vector in the unit tangent bundle S(M) of M. There exists a unique geodesic γ : $(-\infty, \infty) \rightarrow M$ such that $\gamma(0) = p$, $\gamma'(0) = v_p$. We denote by $\kappa(v_p)$, $\tau(v_p)$ the normal curvature and torsion of γ at p, and we have that:

$$\kappa(v_p) = \langle Av_p, v_p \rangle, \tau(v_p) = \langle Av_p, Jv_p \rangle,$$

where by Jv_p we denote the vector that we obtain if we rotate v_p counterclockwise in T_pM by $\pi/2$.

In what follows we will refer to them as the curvature and torsion of vectors of S(M).

Lemma 2. (a) Let $r: S(M) \to \mathbb{R}^+$ be the differentiable function defined by $r(v_p) = |\kappa(v_p)|$ and let k_0 be a non-critical value of k(s). Then the set $r^{-1}(k_0)$ is a closed surface in S(M).

(b) We can choose the non-critical value k_0 such that there exists a component C of $r^{-1}(k_0)$ which contains only non-principal vectors. Moreover, for each v_p in C, $\tau(v_p) = \text{constant} \neq 0$.

Proof. For the proof of (a) we remark that if k_0 is a non-critical value of k(s) then r is of rank 1 on $r^{-1}(k_0)$ (for more details see the proof of Proposition 2 in [3]).

For the proof of (b) we consider a non-umbilical point q in M; remark that such a point exists since the function k(s) is not constant. Now we can choose a non-principal vector w_q in T_qM such that $r(w_q) = k_0$ and k_0 is a non-critical value of k(s). Among the components of the surface $r^{-1}(k_0)$ consider that one which contains the vector w_q and denote it by C. We can prove that $\tau(v_p) = \text{constant} \neq 0$ for each v_p in C which implies that all the vectors of C are non-principal (for more details see the proof of the lemma in [3]).

Lemma 3. Let $\pi: C \to M$ be the projection in M with $\pi(v_p) = p$. Then the pair (C, π) is a covering space of M.

Proof. As in Proposition 3 of [3] we prove that π has rank 2 at every v_p in C, so π is a local diffeomorphism. We next show that π is onto by proving that $\pi(C)$ is an open and closed subset in M. Since π is a local diffeomorphism we get that $\pi(C)$ is an open subset of M and next we will prove that $\pi(C) = \overline{\pi(C)}$ which implies that $\pi(C)$ is also closed in M. Let $p \in \overline{\pi(C)}$, then there is a sequence p_n in $\pi(C)$ which converges to p. Let $v_n \in C$ with $\pi(v_n) = p_n$. Since M is diffeomorphic to \mathbb{R}^2 we have that S(M) is diffeomorphic to $M \times S^1$ under a diffeomorphism F. Let $(p_m, \theta_n) = F(v_n)$. The space S^1 is compact so there exists a subsequence θ_{n_k} of θ_n converging to a $\theta \in S^1$. Consequently (p_{n_k}, θ_{n_k}) converges to (p, θ) ; hence the subsequence v_{n_k} of v_n converges to a v in C since C is a closed subset in S(M). It follows that $p = \pi(v) = \lim_{\kappa} \pi(v_{n_k})$ belongs to $\pi(C)$ which implies that $\pi(C) = \overline{\pi(C)}$.

Observe that M is simply connected and therefore has no non-trivial covering spaces. So the projection $\pi: C \to M$ is a diffeomorphism. This permits the construction of a non-vanishing vector field X on M such that $r(X_p) = \text{constant}$ for each p in M.

Lemma 4. The set of non-critical values k_0 of the curvature function k(s), such that some component of $r^{-1}(k_0)$ contains non-principal vectors, is dense into the range R of k(s).

Proof. At first we know by Sard's theorem [5] that the set of non-critical values of k(s) is dense in R. Let k_0 be a non-critical value of k(s) such that $r^{-1}(k_0)$ contains only principal vectors. Let v_p be such a vector in $r^{-1}(k_0)$. We distinguish 2 cases:

(1) The point p is non-umbilical. Suppose without loss of generality that $k_0 = r(v_p)$ is the minimum normal curvature at p. Then for each $\varepsilon > 0$ there is a non-critical value k_1 of k(s) in $[k_0, k_0 + \varepsilon)$ such that $r^{-1}(k_1)$ contains a non-principal vector w_p and hence all the vectors in the connected component of $r^{-1}(k_1)$ which contains w_p are non-principal. To find such a non-critical value k_1 it is sufficient to note that if we consider an open neighbourhood U of v_p in $S_p(M) = \{v \in T_p M: |v| = 1\}$, sufficiently small, then r(U) is of the form $[k_0, k_0 + \delta), \delta > 0$ and $\tau(v) \neq 0$ for each $v \in U - \{v_p\}$.

(2) The point p is umbilical. Let O be the set of umbilical points of M. Then there is not an open neighbourhood U of p in M with $U \subset O$. If such an open subset existed,

C. CHARITOS

then U should be a piece of a plane or of a sphere (Th. 2-2 of [8]). So the value of $r(v_p) = k_0$ should be a critical value of k(s) which is absurd. Therefore we can obviously find a sequence p_n of non-umbilical points in M converging to p. Now using case (1) above we can find a sequence of non-principal vectors (v_n) , $v_n \in T_pM$ such that: the sequence (v_n) converges to v_p and the values $r(v_n) = k_n$ are non-critical values of k(s) for each n = 1, 2, ... This completes the proof of Lemma 4.

Now we can finish the proof of the theorem:

The range R(p) of the function $r/S_p(M)$ is obviously a closed subset of R and $R(p) \subset R$, for each p in M. By Lemmas 3 and 4 at every p in M there are unit tangent vectors v_i such that the values $r(v_i)$ form a dense subset in R. Therefore $R(p) = \overline{R(p)} = R$. This implies readily that the Gaussian curvature K of M is constant. If K > 0 then M is compact (Th. 8–18 of [9]) which is impossible. On the other hand a complete surface Mof constant negative curvature cannot be embedded in \mathbb{E}^3 (Th. 5–12 of [8]). Therefore the curvature K of M is equal to zero which implies that M is a generalized cylinder (Th. 5–9 of [8]), and since all geodesics of M are congruent, M will be necessarily an affine plane. But in this case, all geodesics of M are straight lines which contradicts the assumption that the curvature function k(s) is not constant. Therefore k(s) is a constant function and, as explained above, this implies that M is an affine plane.

Remark. In a similar way we can prove the same result for open surfaces M embedded in the hyperbolic space \mathbb{H}^3 . However, since we have not a complete idea for the surfaces of constant curvature in \mathbb{H}^3 (see [9, p. 163]) we proceed as follows: With exactly the same reasonings we conclude that if Γ_0 is not a plane curve and if the curvature of Γ_0 is not constant then the functions of principal curvatures remains constant on M. Therefore M is an isoparametric surface in \mathbb{H}^3 . The classification of these surfaces which have at most two distinct principal curvatures [1], [7] gives that M is either a geometric sphere or a geometric cylinder or a geodesic plane in \mathbb{H}^3 , and since $\pi_1(M) = 1$ the result follows.

REFERENCES

1. E. CARTAN, Sur des familles remarquables d'hypersurfaces dans les espaces spheriques, Math. Z. (1939), 335-367.

2. C. CHARITOS, Surfaces with Congruent Shadow-lines, Mathematika 37 (1990), 43-58.

3. C. CHARITOS and P. PAMFILOS, Surfaces with Isometric Geodesics, Proc. Edinburgh Math. Soc. 34 (1991), 359-362.

4. W. BALLMAN, E. GHYS, A. HAEFLIGER, P. de la HARPE, E. SALEM, R. STREBEL, M. TROYANOV, Sur les groupes hyperboliques d'après Gromov (Seminaire Berne édité par E. Ghys et P. de la Harpe, Birkhauser, 1990).

5. M. HIRSCH, Differential Topology (Springer-Verlag, 1976).

6. P. MANI, Fields of planar bodies tangent to spheres, Monatsh. Math. 74 (1970) 145-149.

7. P. RYAN, Homogeneity and some curvature conditions for hyperfurfaces, *Tôhoku Math. J.* 21 (1969), 363–388.

8. [S₁], [S₂] M. SPIVAK, A Comprehensive Introduction to Diff. Geometry. vol III.

9. vol IV (Publish or Perish, 1975).

10. [Su] W. Suss Kennzeichende Eigenschaften der Kugel als Folgerung eines Brouwersche Fixtpunktsatzes, Comment. Math. Helv. 20 (1947), 61-64.

UNIVERSITY OF CRETE DEPARTMENT OF MATHEMATICS IRAKLION P. O. BOX 1470 GREECE