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THE FARKAS LEMMA OF
SHIMIZU, AIYOSHI AND KATAYAMA

CHARLES SWARTZ

Shimizu, Aiyoshi and Katayama have recently given a finite
dimensional generalization of the classical Farkas Lemma. In
this note we show that a result of Pshenichnyi on convex
programming can be used to give a generalization of the result of
Shimizu, Aiyoshi and Katayama to infinite dimensional spaces. A

generalized Farkas Lemma of Glover is also obtained.

In [7]), Theorem 2.1, Shimizu, Aiyoshi and Katayama have given a finite
dimensional generalization of the classical lemma of Farkas ([2]). 1In this
note we show that an infinite dimensional generalization of the result of
Shimizu, Aiyoshi and Katayama can be obtained from a global
characterization of a minimum in a convex programming problem due to
Pshenichnyi ([6], II1.2.1). We also show that a generalized Farkas Lemma

due to Glover can be obtained from Pschenichnyi's result ([3], Theorem 1).

We begin by describing the result of Shimizu, Aiyoshi and Katayama.
Throughout this paper, let X be a (real) Hausdorff locally convex
topological vector space with dual X' and duality form ¢ , ) . We
assume throughout that X' is equipped with the weak* topology from X .
Let A and B be compact subsets of X such that O 1is not in the
convex hull of A (0 ¢ co 4) . The result of Shimizu, Aiyoshi and
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Katayama ([7], 2.1) then states that in a finite dimensional space the

following conditions are equivalent:
(1) max{¢z', b) : b € B} =0 implies max{{z’', a) : a € A} =2 0

(2) there exist z, €cod, z €coB and ¢t =0 such that

xo = txi .

If E is a subset of X , let S(+|E) be the support functional of
E, S(z'|E) = sup{{x’, ) : * € E} for x' € X' ([1], 2.1.3). Note that
S(«|E) = S(-

ES-E) , where co E is the closed convex hull of E . Using

the notation of support functional, (1) becomes:
S(x'|B) =0 implies S(x'|4) =0

Now the support functional is always convex so this suggests replacing

condition (1) by the condition:
(') A(xz) =0 implies f(xz) =0 ,

where &k and f are convex functions defined on X . We then need to
obtain an appropriate generalization of (2) for this situation. This is

given in Theorem 2 (also Corollary 3).

We now fix the notation and terminology which will be used. Let #
and f Dbe real valued convex functions defined on X . The subgradient of
. — [ r o, '
f at zy is afﬂxo) = {z" e x' : f(x)-f(xo) z(=z', x—xo) for x € X}

({61, 1.1.1; [4], 6D). If f is continuous at x. , then af(xo) is a

O 3
non-void, weak*® compact subset of X' ([4], 14B). A similar statement
holds if f is a lower semicontinuous sublinear function (f is sublinear
it flaxty) = flz) + fly) and f(tz) = tf(x) for x, y € X and tzo];
that is, Bfﬁro) is a non~void weak* compact subset of X' ([101,
Proposition 1 and [1], ).

If Q is a subset of X and xy € Q , then the cone of feasible
directions to Q at Ty is

F[Q, xo) = {e : there exists a > 0 such that xy*tte € Q for 0 = ¢t = a}

({61, 1IT; (43, 1kE). For a convex set,
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P, z,) = {t(z-zy) : t 20,z €} .

If C < X then the dual cone of ( is given by
c* = {x' ¢ X' : (x', x) =20 for all x € C}
([61, 1, p. 30).

Psheninchnyi gives a necessary and sufficient condition for a convex
programming problem to have a solution in terms of subgradients and the
feasible direction cone ([6], II.2.1; [4]1, 14E). If f is a convex

function with Bfﬁxo] a non-void, weak* compact subset, then [ attains

its minimum at zy € Q if and only if F[Q, xo)* n Bfﬁxo) #0 .

(Pshenichnyi proves this result for f continuous but the continuity is

only used to guarantee that Bf(xo] is weak*® compact and non-empty;

actually Pshenichnyi's proof applies to the class of quasi-differentiable

functions with Bf(xo) weak* compact ([6], 3.1).)

Set Q= {x : h(x) =0} and let =z, € Q be such that h(xo] =0 .

0]

Concerning the cone F(Q, xo) , we have that the inclusion
F[Q, xo)* >R Bh(xo) holds always, where R_ is the set of non-positive

real numbers ([6], 2.2; [4], 14E). Concerning the equality, we make the

following constraint qualification.

DEFINITION 1. fThe function #% 1is regular at =z, if and only if

0
FQ, x,)* = R dh(z,)
A sufficient condition for % to be regular at xy is that &

satisfy Slater's condition; that is, there exists xl € Q such that

h(xl) <0 ([6]1, 1I.2.2; [41, 1LE).

From Pshenichnyi's condition given above, we have

THEOREM 2. Let h be regular at x, and let f be such that

0

af(xo] is weak* compact and non-void. The following conditions are
equivalent:

(3) h(xz) =0 implies f(z) = flx.) ;

0
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(4) there exist z) € 3f(xo) s xi € o (xo) and t =0 such

r = [J
that zg t:cl .

Proof. If (3) holds, .'co solves the convex programming problem

min{f{x) : x € Q} . By Pshenichnyi's condition and the regularity

assumption, (4) follows immediately.
If (4) holds and =z € Q , then
’ = ’ —
flz) - f(xo) _>_(:x:0, x—:x:o) t(xl, x aco) .
But O = h(z) - h[xo) z (2], z-z,) so flx) - f(:z:o] = 0 , and (3) holds.
(This implication does not require regularity.)

This result is given in [4], 14E, under the assumption that f is

continuous and Slater's condition is satisfied.

We now indicate haw an infinite dimensional version of the result of
Shimizu, Aiyoshi and Katayama can be obtained from Theorem 2. Let 4 and
B be weak* compact subsets of X' with A and B such that co 4 and
co B are also weak? compact (this condition is automatically satisfied if
X is barrelled ({5], 3.6.2)). Set h = 85(+|B) = S(+|co B) and

f = 8(-|A) = 8(+|co A) , where we compute these support functionals in the

duality between X and X' . Note that both f and % are lower semi-
continuous and sublinear with 9f(0) = co A . From Theorem 2 we obtain

the following generalization of the result of Shimizu, Aiyoshi and Katayama
(L71, 2.1).

COROLLARY 3. Suppose O & co B . The following conditions are

equivalent:
(5) h(x) =0 implies f(zx) = f(0) =0 ;

(6) there exist xC')EEA, xl'EZB_B and t =0 such that

[ [
a:o t:z:l .

Proof. Since 0 § co B , by the Hahn-Banach Theorem there is an

xy € X such that h(:z:o] = max{(x', x)) : @' € B} <0 ; that is, h

satisfies Slater's condition. Since 0k(0) = co B and 9f(0) = co 4 ,
Theorem 2 gives the result.

https://doi.org/10.1017/50004972700009400 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700009400

The Farkas Lemma 449

Shimizu, Aiyoshi and Katayama treat the case when X = R’ is finite
n .
dimensional. In this case the weak* topology on X' = R coincides with

the norm topology and if A, B E.Rn are compact, then co A and co B
are also compact. Thus, in this case, condition (6) can be stated in

stronger form:

(6') there exist xé €cod , xi € coB and t =0 such that

't = ’
xo txl .

Condition (6') is clearly equivalent to condition (3) of Shimizu,

Aiyoshi and Katayama ([71).

The classical finite dimensional version of the Farkas Lemma

corresponds to the case when B is finite and A is a singleton.

The Farkas result of Shimizu, Aiyoshi and Katayama for locally convex
spaces has also been obtained by somewhat different methods in [§].

We now also show that a generalized Farkas Lemma of Glover can be
obtained from Pshenichnyi's result. Let f : X + R be a lower semi-
continuous sublinear function. Let Y be a locally convex space, S C Y
a closed convex cone and g : X + Y S-sublinear (that is, g(tx) = tg(x)
for t 20 and -g(tx+t(1-t)y) + tg(x) + (1-t)gly) € S for 0=t =1,
r, Yy € X ]. We assume that g is such that y'g 1is lower semicontinuous
on X for each y' € S* (weakly S*-lower semicontinuous in Glover's

terminology). Glover's result ([3], Theorem 1) is given by
THEOREM 4. Let x' € X' . The following conditions are equivalent:

(1) -glx) € S implies that flz) =(x', x) ;

(8) x' € 3f(0) + U 3(s'g)(0) .
s'es*

Proof. If Q = g_l(—S) , then (7) is equivalent to the fact that O
is a solution of the convex program: min{(f-x’)(x) : =z € Q} . By
Pshenichnyi's condition, since 3(f-x’)(0) = 3f(0) - =’ , (7) is equivalent
to (Bf(O)—x’) NnF(Q,0)*#0. But f is a convex cone so F(Q, 0) = Q ,

and by Lemma 1 of [3], F(Q, 0)*=- U 3(s'g)(0) . Thus, by
s'eS*

Pshenichnyi's condition, (7) and (8) are equivalent.
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