ON A THEOREM OF LIOUVILLE IN FIELDS OF POSITIVE CHARAGTERISTIC

K. MAHLER

A classical theorem of J. Liouville ${ }^{1}$ states that if z is a real algebraic number of degree $n \geq 2$, then there exists a constant $c>0$ such that

$$
\left|z-\frac{a}{b}\right| \geq \frac{c}{|b|^{n}}
$$

for every pair of integers a, b with $b \neq 0$.
This theorem has an analogue in function fields. Let k be an arbitrary field, x an indeterminate, $k[x]$ the ring of all polynomials in x with coefficients in $k, k(x)$ the field of all rational functions in x with coefficients in k, and $k\langle x\rangle$ the field of all formal series

$$
z=a_{f} x^{f}+a_{f-1} x^{f-1}+a_{f-2} x^{f-2}+\ldots
$$

in x where the coefficients $a_{f}, a_{f-1}, a_{f-2}, \ldots$ are in k. Thus $k(x)$ is the quotient field of $k[x]$ and a subfield of $k\langle x\rangle$.

A valuation $|z|$ in $k<x\rangle$ is now defined by putting $|0|=0$; but $|z|=e^{f}$ if $z=a_{f} x^{f}+a_{f-1} x^{f-1}+a_{f-2} x^{f-2}+\ldots$ and $a_{f} \neq 0$. If z lies in $k[x]$, then $\log |z|$ is simply the degree of \boldsymbol{z}.

With this notation, the analogue to Liouville's theorem states:
Theorem 1. If the element z of $k\langle x\rangle$ is algebraic of degree $n \geq 2$ over $k(x)$, then there exists a constant $c>0$ such that

$$
\left|z-\frac{a}{b}\right| \geq \frac{c}{|b|^{n}}
$$

for all pairs of elements a and $b \neq 0$ of $k[x]$.
Proof. Denote by

$$
f(y)=a_{0} y^{n}+a_{1} y^{n-1}+\ldots+a_{n}, \quad \text { where } a_{0} \neq 0
$$

a "polynomial in y with coefficients in $k[x]$ which is irreducible over $k(x)$ and vanishes for $y=z$; further put

$$
\left.\begin{array}{rl}
g(y)=a_{0} y^{n-1}+\left(a_{0} z+a_{1}\right) y^{n-2}+ & \left(a_{0} z^{2}\right.
\end{array}+a_{1} z+a_{2}\right) y^{n-3}+\ldots .+\left(a_{0} z^{n-1}+a_{1} z^{n-2}+\ldots+a_{n-1}\right) . ~ \$
$$

Received April 28, 1949.
${ }^{1}$ C.R. Acad. Sci. Paris, vol. 18 (1844), 883-885, 910-911.

Then

$$
\frac{f(y)}{y-z}=\frac{f(y)-f(z)}{y-z}=g(y)
$$

identically in y, and therefore

$$
y-z=\frac{f(y)}{g(y)}
$$

Put

$$
\max \left(\left|a_{0}\right|,\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right)=c_{1}, \max (1,|z|)=c_{2}
$$

and take

$$
y=\frac{a}{b}
$$

where a and $b \neq 0$ are in $k[x]$.
If

$$
\left|\frac{a}{b}\right|>c_{2}=|z|
$$

then

$$
\begin{equation*}
\left|z-\frac{a}{b}\right|=\left|\frac{a}{b}\right|>c_{2} \geq \frac{c_{2}}{|b|^{n}}, \quad \text { since }|b| \geq 1 \tag{1}
\end{equation*}
$$

Next let

$$
\left|\frac{a}{b}\right| \leq c_{2}
$$

so that

$$
\left|g\left(\frac{a}{b}\right)\right| \leq c_{1} c_{2}^{n-1}
$$

The expression

$$
b^{n} f\left(\frac{a}{b}\right)=a_{0} a^{n}+a_{1} a^{n-1} b+\ldots+a_{n} b^{n}
$$

lies in $k[x]$ and does not vanish since $f(y)$ is irreducible and at least of the second degree. Therefore

$$
\left|b^{n} f\left(\frac{a}{b}\right)\right| \geq 1,\left|f\left(\frac{a}{b}\right)\right| \geq|b|^{-n}
$$

whence

$$
\begin{equation*}
\left|z-\frac{a}{b}\right|=\left|\frac{f\left(\frac{a}{b}\right)}{g\left(\frac{a}{b}\right)}\right| \geq \frac{1}{c_{1} c_{2}{ }^{n-1}|b|^{n}} \tag{2}
\end{equation*}
$$

If we now put

$$
c=\min \left(c_{2}, \frac{1}{c_{1} c_{2}{ }^{n-1}}\right),
$$

then the assertion of the theorem is contained in (1) and (2).

In the case of a real algebraic number of degree $n \geq 3$, Liouville's theorem is not the best-possible, and it was first improved by A. Thue, ${ }^{2}$ who showed that, for every $\epsilon>0$, there is a constant $c(\epsilon)>0$ such that

$$
\left|z-\frac{a}{b}\right| \geq \frac{c(\epsilon)}{|b|^{\frac{n}{2}+1+\epsilon}}
$$

for all pairs of integers a and $b \neq 0$. Still better inequalities were given by C. L. Siegel ${ }^{3}$ and F. J. Dyson. ${ }^{4}$ A similar improvement is possible in the case of the analogue of Liouville's theorem for algebraic functions, if the constant field k is the field of all complex numbers, or, more generally, any field of characteristic 0 , as was proved by B. P. Gill. ${ }^{5}$

It is then of some interest to note that the analogue of Liouville's theorem for algebraic functions cannot be improved if the ground field k is of characteristic p where p is a positive prime number. Indeed, the following result holds.

Theorem 2. Let k be any field of characteristic p, x an indeterminate, and z the element

$$
z=x^{-1}+x^{-p}+x^{-p^{2}}+x^{-p^{3}}+\ldots
$$

of $k\langle x\rangle$. Then z is of exact degree p over $k(x)$, and there exists an infinite sequence of pairs of elements a_{n} and $b_{n} \neq 0$ of $k[x]$ such that

$$
\left|z-\frac{a_{n}}{b_{n}}\right|=\left|b_{n}\right|^{-p}, \lim _{n \rightarrow \infty}\left|b_{n}\right|=\infty .
$$

Proof. If a, b, c, \ldots are elements of $k\langle x\rangle$, then

$$
(a+b+c+\ldots)^{p}=a^{p}+b^{p}+c^{p}+\ldots,
$$

by a well-known property of fields of characteristic p. Hence, in particular,

$$
z=x^{-1}+\left(x^{-p}+x^{-p^{2}}+x^{-p^{2}}+\ldots\right)=x^{-1}+\left(x^{-1}+x^{-p}+x^{-p^{2}}+\ldots\right)^{p}
$$

and so z is a root of the algebraic equation ${ }^{6}$

$$
\begin{equation*}
z^{p}-z+x^{-1}=0 \tag{3}
\end{equation*}
$$

of degree p over $k(x)$.

$$
\text { Put, for } n=1,2,3, \ldots,
$$

$$
a_{n}=x^{p^{n-1}}\left(x^{-1}+x^{-p}+\ldots+x^{-p^{n-1}}\right), \quad b_{n}=x^{p^{n-1}}
$$

[^0]so that
$$
\left|b_{n}\right|=e^{p^{n-1}} \text {, and }\left|z-\frac{a_{n}}{b_{n}}\right|=\left|x^{-p^{n}}+x^{-p^{n+1}}+\ldots\right|=e^{-p^{n}}=\left|b_{n}\right|^{-p}
$$

The assertion will therefore be proved if we can show that z is of exact degree p. But, by Theorem $1, z$ cannot be of lower degree than p, unless it is of degree 1 and lies in $k(x)$. Suppose then that

$$
z=\frac{A}{B},
$$

where A and $B \neq 0$ are elements of $k[x]$. Since the fractions a_{n} / b_{n} are all different,

$$
\frac{a_{n}}{b_{n}} \neq z, A b_{n}-a_{n} B \neq 0,\left|A b_{n}-a_{n} B\right| \geq 1,
$$

for all sufficiently large n. But then

$$
\left|b_{n}\right|^{-p}=\left|z-\frac{a_{n}}{b_{n}}\right|=\left|\frac{A}{B}-\frac{a_{n}}{b_{n}}\right|=\left|\frac{A b_{n}-a_{n} B}{B b_{n}}\right| \geq \frac{1}{|B|\left|b_{n}\right|}
$$

whence

$$
|B| \geq\left|b_{n}\right|^{p-1}
$$

contrary to the fact that

$$
\lim _{n \rightarrow \infty}\left|b_{n}\right|=\infty .
$$

It would be of interest to investigate whether the analogue of Liouville's theorem remains still the best-possible for elements $k\langle x\rangle$ not in $k(x)$ which are of a degree less than p over $k(x)$.

Institute for Advanced Study, Princeton, N.J.

[^0]: ${ }^{2}$ Norske Vid. Selsk. Scr. (1908), Nr. 7.
 ${ }^{3}$ Math. Zeit., vol. 10 (1921), 173-213.
 ${ }^{4}$ Acta Math., vol. 79 (1947), 225-240.
 ${ }^{5}$ Ann. of Math. (2) 31 (1930), 207-218.
 ${ }^{6} \mathrm{I}$ am indebted to E. Artin for the remark that z is algebraic if k is of characteristic p. If k is of characteristic 0 , then z is, of course, transcendental over $k(x)$.

