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Elementary abelian operator groups

Fletcher Gross

Suppose G 1is a finite solvable p'-group admitting the
elementary abelian p-group A4 as an operator group. If

n = max{nilpotent length of CG(X) | x € A#} and |4]| = p”+2 .

then the nilpotent length of G is =n .

1. Introduction

Suppose A 1is an elementary abelian p-group of order pm acting as

an operator group on the finite p'-group G . If m =3 and CG(X) is

nilpotent for each non-identity element X in A , then Ward -[8] showed
that G is nilpotent. More recently, Ward [9] proved that if G 'is

solvable, m = 4 | and the derived group of CG(X) is nilpotent for each

non-identity element X in A , then G' is nilpotent. The principal
result (Theorem 3.1) of the present paper asserts that if G is solvable,

n 1is the maximum of the nilpotent lengths of CG(X) where X runs

through the non-identity elements of A , and m 2 n + 2 , then the
nilpotent length of G is n . Using this result, an easy argument shows

that if G is solvable, CG(X) is supersolvable for each non-identity

element X in A , and m = k4 , then G 1is super-solvable. Examples are
given showing the necessity of the inequalities m =2 n + 2 and m 2 4 in

these results.

These theorems depend on & rather complicated technical result
(Theorem 2.k4) proved in 82 about the upper nilpotent series of a finite

solvable group G which admits an operator group A where
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(IG|, IAI) =1 . The main results are proved in §3 and examples are given
in §4.

2. Notation and preliminary results

All groups considered in this paper are finite. If G is a group,
FOFG) =1 and Fn+1(G)/Fn(G) = F(G/Fn(G)) equals the largest normal

nilpotent subgroup of G/Fn(G) . If G 1is solvable, L(G) 1is the
smallest non-negative integer n such that Fn(G) = G . The rest of the

notation agrees with [2]. We now prove a number of technical results

needed for the main theorems.

THEOREM 2.1. Suppose P is a p-group which admits the group G as
an operator group. Assume § 1is a normal p'-subgroup of G which
centralizes every G-invariant proper subgroup of P but [P, @] # 1 .
Then P <8 a special p-group and any proper G-imariant subgroups of P
are contained in P' .

Proof. This follows immediately from Theorem C of [6].

LEMMA 2.2. Let P be a p-subgroup of the group G . Assume
P =<F,y(G) but P ¥ F\(G) . Then for some prime q # p , the Sylow
q-subgroup of F,(G) <is not centralized by P .

Proof. Let H be a Hall p'-subgroup of Fl(G) . If § is a Sylow
p-group of F2(G) , then HCS(H) is a normal nilpotent subgroup of G .
Hence C_(H) = Fl(G) . This implies that [H, P] # 1 . Since H is

[v]
nilpotent, the desired result follows immediately.

LEMMA 2.3. Let G be a solvable group and H a subgroup of G .

Assume that Pis «.es P (n > 1) are subgroups of H and Pys +++» D,

are primes satisfying the following conditions:

(a) P, is a py-group if 1 =i =n;

(b) p, #p;4q if 1 =171 =2n1;

tA

(e) P, < n(p;) if 1sis=nl;
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(d) PiEFi(G) if 11 <n;

te) [P, s Py, P # 1

P_s-

Then U(H) =2 n.
Proof. Clearly Fi(H) > Fi(G) NnHz= Pi for 1 =7 <n . Suppose

1(H) <n . Then Fn_l(H) = H . Since H/Fn—z(H) is nilpotent and

(Ip,l, 1P, 11} =1, ve obtain (P> P, =F, (8 nP Now P, _

-1 ° 1

. . ?
normalizes Pn—2 and Pn—2 isa p subgroup of Fn-g(H) . Thus
[Pn, Pn—l’ Pn—é] =< Fn—3(H) n Pn—2 . Continuing in this way, we eventually
obtain
< =
[:Pn, B 1> oo Py pl] SF(H) nP =1,
which is a contradiction. Thus I(H) =2 n .

THEOREM 2.4. Suppose A s an operator group on the solvablé group
G where (4|, |G|) =1 . A4sswme 1(G) =n >0 . Then there are primes

Pys ++0» Py and A-invariant subgroups P s P, in G such that:

l’

(a) P, is a p;-group if 1 =i 2n;
(b) p; # Pie if 1<% =n-1;

(e) PiSNG(Pj) if 1s5=<1<n;

(d) P, G) if 1sis<n;

1

1A

F.(G) but P, §F, ,(

(e) [Pq»PJ =P, if 1sis=n

(f) if @ 1is an A-invariant proper subgroup of P, then

Q=F__(G);

n-1
(g) if 1 =11 =n-1 and @ <s a proper subgroup of P, which is

invariant under A L(} E} , then [Pi+1’ Qﬂ < Fi—l(G) .

Proof. If »n =1, simply let P) be a minimal A-invariant subgroup

of G . Suppose next n =2 . Let p, be a prime dividing |G/F (G)] .
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By [3, Corollary 2, p. 124], there is an A-invariant Sylow pp-subgroup P
in G . Let P, be minimal with respect to: P, =P , P, ¥ F1(G) , and
P, 1is A-invariant. By Lemma 2.2, there is a prime p) # pp such that

P, does not centralize the Sylow pj-subgroup of F;(G) . Choose P; to
be minimal with respect to: P; is a p;-subgroup of F;(G) ,

n,(p)) 2P, , P, is A-invariant, and [P, P] #1 . Since

(Py, P, P;] = [Py, P;] from [3] and [P}, P,] is A-invariant and
normalized by Py , we must have [Pp, P;] = P; . This proves the theorem

for n <2 . We now assume 7 >2 and proceed by induction on n .

By [3], there is an A-invariant Carter subgroup C of Fy(G) . Let
N =10,C). ¥nPF,(G) =C and, by the Fitting argument, G = FQ(G)IV .

Since F,(G)/F1(G) 1is nilpotent, F,(G) = F1(G)C . Suppose now
24 =n. Then from G = Fy(GN follows F (G) = F (G)(F, (C)nN) .

Since Z(Fi(G)/Fz(G)) =i-2 and F(G) n N F,(G) =CsF(N) ,wve find
that Z(Fi(G)nN] <=¢ -1. Hence Fi(G) nN= Fi—l(N) . Conversely,

F. (N)F.(G) 1is normal in NF2(G) = (¢ and

=12
L(F,_(NF,(6)) = L(F,_(NCF (6) = L(F,_,(NF (G)) =4 .

This implies that Fi—l(N) < F.(G) n N . Hence Fi(G) nN= Fi— N) for

i 1§
2 <4 =m. A consequence of this is that I(N) =n -1 .

By induction, there are primes qys - and A-invariant

* Ay

subgroups & . Qn—l in VN satisfying (a) through (g) for N . For

R
3=i=n,let p.=gq

and P. = ¢ From the fact that

i-1 7 7-1

Fj(G) nN= Fj-l(N) for 2 <j <n , it follows that P3, ---» P satisfy
the required conditions with respect to G . It remains to chose Pl and
P2 .

Now Pj3 = Fp(N) < F5(G) but P3 § F1(N) = Fp(G) n N . Lemma 2.2
applied to G/F)(G) yields that for some prime p; # p3 s P3 does not
centralize the Sylow py-subgroup of F,(G)/F\{G) . Now F,(G) = F1(G)C
and C 1is nilpotent. Thus if S 1is the Sylow pp-subgroup of C , § is
invariant under AP ... P~ and [5, P3] £ F1(G) . Let P, be minimal
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with respect to: P2 =S5, P2 is invariant under AP3 Pn , and

[P, P:;l £F (G) . since [P,, P3] is invariant under AP, ... P~ and

[Pa, P3, P3] = [P , P:;J , £3], wve must have [P s P3] = P2 . It now only

remains to choose: Pl .
P, < Fo(G) but P, ¥ F}(G) . Hence there is a prime p; # p, such
that P, does not centralize the Sylow p;-subgroup of F;(G) . Then

there is a group p; which is minimal with respect to: P; is a

p,-subgroup of Fl(G) » P, 1is invariant under 4P, ... P, and
[Pl, P2] # 1 . Since [P N P2] is invariant under AP2 Pn and
[p., P,, P2:[ = [Pl, P2] # 1 , ve must have [Pl, P2] =P . P, . P,

now satisfy (a) through (g) and the theorem is proved.

COROLLARY  2.5. In Theorem 2.4, let @, = Pi/(PinFi_l(G)) for
l1=i1=n., Then q, is elementary abelian and is transformed irreducibly
by A. If 1=1%1<n1l, then a; i8 a special p ;-group and any proper

subgroups of e which are imwariant under A | P, are contained in
A%
QL

1

Proof. This follows from Theorem 2.1 and from (f) and (g) in Theorem
2.4,

LEMMA 2.6. Suppose G, 4, n, P, and p; for 1 =41 =n have the

same meaning as in Theorem 2.4. Assume that every A-invariant proper
subgroup of G has nilpotent length <n . For 1=1 =n, let

T, =P, nF, (6), @ =P/T, ,and C;=0,(Q) . Then G=PP,...P

and [Pj’ci] =1 i1f 121 =j=n.
Proof. P1P2 Pn is A-invariant and, from Lemma 2.3,

i(p

1P2 Pn) > n . Hence P1P2 Pn =G . Let Hi = CPi(Ci) . Since

¢; 2C, H,  is A-invariant. From (p;/7;, ¢;] =1 ana

1
(I2;1, lc;l) =1 foliows H,T, =P, . Since H is A-invariant,
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T =F_ _(G), and Pnﬁpn_

. el G) , Theorem 2.4 (f).implies that H =P

1( n’
Assume now 1 =<7 <2z and [?3, Ci+l] =1 if i+l =jsn.
[Pi, c., P <

o Pray (6) ana [P, P, C-;) = [p,, ¢ sF,_,(G) . The

Fia

3 Subgroups Lemma yields [Pi+l’ C.o F%] < Fi-l(G) . It follows from this

that [Py, C;] = ¢p (@) . Let kx=¢y, (g) . Then KF, ,(G) is
1+1 1+1

normalized by Fi_l(G)P.P. e« P =G . Since KF,_

1 7+l n (G)/Fi—l(c) is

1
nilpotent, we must have X = Fi(G) . A consequence of this is that
[Pi+l’ Ci] = Ti+l . Hence Ci < Ci+l . Then .[Pj’ ci] =1 if

i+l = j = n . It follows from this that Hi is normalized by

Pi+1Pi+2 -+« P_ . Theorem 2.4 (g) now implies that either H, =P, or
[PA.+1, Hi] = F; ,(G) . Since P, =HJT, , T, <F, (G), and

[Pi+l’ E%] £ Fi-l(c) » We canndt have [Pi+l’ Hi] = Fi-l(G) . Thus

Hi = P% and the lemma is proved.

3. The main results
Throughout this section we assume A is an elementary abelian group
of order pm > 1 which acts as an operator group on the p'-group G .
THEOREM 3.1. 4ssume G s solvable and let
n= max{Z(CG(X)) [ x ¢ A#} . If m=n+2, then 1(G) =n .
Proof. GSuppose G is a counter-example of minimal order. Then if X
is an A-invariant proper subgroup of G , we must have I(H) =n . Also

if H 1is an A-invariant non-identity normal subgroup of G , then
1(G/H) <n . This implies that 1(G) =n+ 1.

Let P, ..., P be the A-invariant subgroups of (G guaranteed by

1 n+l
Theorem 2.4. Let T, =P, nF, (), @ =P,/T, ,and C; =C, (@;) for
1<i=<ntl . Now C (X) is A-invariant for X € A# . Using
Qn+l

Corollary 2.5, we see that X € A# implies CQ (X) =1 or Qn+1 .

n+l
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Hence if B is a complement to Cn+ in A4 , we see that

n+l 1
# -
<CQn+1(X) | X ¢ Bn+l =1 . Hence, by [4, Theorem 6.2.4], Bn+l must be
cyclic. This implies IA : Cn+1' =p.
- . -
By Lemma 2.6, Ci = Ci+l if 1 =1 £n . Let Bi be a complement of
#d

C. in C. . Let X €B. and R=C, (X). R is A-invariant and is
1 1+1 7 Qi

also invariant under CP (x) = F3 for 1 < j < n+l . (CP,(X) = E} from

d d
Lemma, 2.6.I Corollary 2.5 implies that R 1is one of the groups 1, Q%,
or Qi . R # Qi since X f Ci . Hence we have shown that

<C (Xx) I X ¢ B#> =@, # Q. . From [4, Theorem 6.2.4] it follows that B.
Qi 7 7 7 1

is cyclic. Hence Ici+l : Cil =p .

2

From |4 : Cn+l| <p., |4]| = pn+ , and |C : Ci' =p for

T+l
1=4<1=n, vwe obtain ]Ci| > p1 for 1<% <n . Hence there is a

non~-identity element X in C Then Lemma 2.6 implies that [Pi’ Xj =1

.
for 1 =<7 = n+l . Hence CG(X) =G . But 1(G)=n+1 and

Z(CG(Y)) =n for all Y ¢ A# . This contradiction finishes the proof.

LEMMA 3.2. Assume m =2 3 and CG(X) is abelian for all X € A# .

Then G 18 abelian.

Proof. Let (G be a minimal counter-example. Then if H is an
A-invariant non-identity normal subgroup of G , G/H must be abelian. It
follows from this that G' is a minimal A-invariant normal subgroup of
G . From [8], G is nilpotent. Since G' n Z(G) # 1 , we must have
G' = 2(G) . Then any subgroup of G' is normal in G . This implies that
A transforms G' irreducibly. Thus CG,(X) =1 or =(G' for each

X € A# . Let C = CA(G’) and let B be a complement to C in A . Then
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<CG’(X) | x € B#> =1 . Hence B must be cyclic and so |C| = p2 .

Since ¢ 1is not cyelic, G = <cG(x) | X ¢ c#> . Let X, Y ¢ ot s

H = CG(X) ,and K = CG(Y) . H and K are both abelian and

[, 8, <X)] =[G, (X)) =1 and [¢X), H, K] =1 . The 3 Subgroups Lemma
implies [X, {X), H} =1 . Now K is A-invariant and so

kK = [k, (X)]CK(X) .  But CK(X) =H and H is abelian. Thus
[k, H) = [k, (X), Hl =1 . It follows that G is abelian.
THEOREM 3.3. Assume m Z k4, G <s solvable, and CG(X) is

supersolvable for all X € a* . Then G is supersclvable.

Proof. Suppose G"is a counter-example of minimal order. If H is
an A-invariant non-identity normal subgroup of G , then G/H is
supersolvable. It follows from this that D(G) = 1 and there is only one
minimal A-invariant normal subgroup of G . Therefore F(G) is an
elementary abelian g-group for some prime ¢q . From Theorem 2.1,

1(G) = 2 . Hence G/F(G) is a nilpotent ¢q'-group. Now if G/F(G) were
abelian of exponent dividing g4 - 1 , then from [/, Theorem 6.1]1, G would
be supersolvable. Thus for some prime r # q , there is an A-invariant
r-subgroup R in G such that either R is non-abelian or the exponent
of R does not divide g - 1 . Then RF(G) is an A-invariant subgroup
of G and RF(G) 1is not supersolvable. Thus BKF(G) =G .

let C = CA(R) and let B be a complement to C in A . I assert

that |B[ = p3 . Suppose to the contrary that |BI < p3 . Then |C| = p2
and so F(G) = <CF(G)(X) | ¥ ¢ C#> . Thus there would be an X € ct such

that C

F(G)(X) #1 . Now Cp(X) =R and A4 is abelian. Thus CF(G)(X)

is invariant under AR . By Maschke's Theorem, there is an AR-invariant

complement X to CF(G)(X) in F(G) . Since F(G) is abelian, X and
CF(G)(X) are normal in AF(G) = G . Since there is only one minimal

A-invariant normal subgroup in G , we must have XK =1 . Then
CF(G)(X) = F(G) which implies G = F(G)R = CG(X) is supersolvable.
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Thus |B} = p3 . Now let x € B . Cp(X) # R and so CL(X)F(G) is
a proper A-invariant subgroup of G . Thus CR(X)F(G) must be
supersolvable. It follows from this that CR(X) is abelian of exponent
dividing (g-1).. Lemma 3.2 now implies that R is abelian. Since

R = <0R(x) | X ¢ B#> , the exponent of R must divide (g-1) and the

theorem is proved.

4, Examples

1. Let A be an elementary abelian p-group of order pn+l where
nz 1 . Then by [5], there is an odd order p'-group G on which 4
operates in a fixed-point-free manner and such that 2(G) = n + 1 . If

# .
X € 4" , then CG(X) admits a fixed-point-free abelian operator group of
order p’ . By [7], this implies that Z(CG(X)) = n . Hence the

requirement m = »n + 2 is necessary in Theorem 2.1.

2. Let G Dbe a non-abelian group of order 27 and exponent 3 .

Let a and b be any elements generating G . Then there are
. x _ x -1
automorphisms x and y of G such that a =a , b =0b R
ay = a-l , and B = b . x and y generate an elementary abelian group
#

A of order 4 . CG(Z) has order 3 for all Z € A but G is not
abelian. Thus the requirement m = 3 1is necessary in Lemma 3.2.

3. Let p,q,r , and 8 be four distinet odd primes such that
q =1 (mod r8) and r =1 (mod 8) . (For example, p =5, q = 43,
r=7T ,and s =3 would be satisféctory.) Let A Ve elementary abelian
of order p3 . Using the methods of [5], it is possible to construct a

solveble group G such that:
(a) 4 acts in a fixed-point-free manner on G ;
(b) 2(G) = 3
(¢) F;(G) is an elementary sbelian g-group;

(@) Fu(G)/F1(G) is an elementary abelian r-group;
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(e) G/F,(G) 1is an elementary abelian s-group.

Now if X € A# , then CG(X) admits a fixed-point-free operator group

2
of order p~ . Thus, by [6], Z[CG(X)] =2 . From (c), (d), and (e), it
follows that CG(X) is supersolvable. However, L(G) = 3 , and so G is

not supersolvable. Thus m 2 4 is necessary in Theorem 3.3.
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