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Abstract

The morphic Abel–Jacobi map is the analogue of the classical Abel–Jacobi map one
obtains by using Lawson and morphic (co)homology in place of the usual singular
(co)homology. It thus gives a map from the group of r-cycles on a complex variety that
are algebraically equivalent to zero to a certain ‘Jacobian’ built from the Lawson homol-
ogy groups viewed as inductive limits of mixed Hodge structures. In this paper, we define
the morphic Abel–Jacobi map, establish its foundational properties, and then apply these
results to the study of algebraic cycles. In particular, we show the classical Abel–Jacobi
map (when restricted to cycles algebraically equivalent to zero) factors through the mor-
phic version, and show that the morphic version detects cycles that cannot be detected by
its classical counterpart; that is, we give examples of cycles in the kernel of the classical
Abel–Jacobi map that are not in the kernel of the morphic version. We also investigate
the behavior of the morphic Abel–Jacobi map on the torsion subgroup of the Chow group
of cycles algebraically equivalent to zero modulo rational equivalence.
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1. Introduction

The classical Abel–Jacobi map provides an important tool for investigating the structure of the
group of algebraic r-cycles on a smooth, projective complex variety X. It is a continuous homomor-
phism of abelian groups,

Φr : Zr(X)hom∼0 → Jr(X),
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from the space Zr(X)hom∼0 of r-cycles on X that are homologically equivalent to zero (i.e., whose
classes in the singular homology group Hsing

2r (X) vanish) to the rth intermediate Griffiths Jacobian
Jr(X) of X. The latter is the complex torus given as the dual of the (r + 1)-stage of the Hodge
filtration on H2r+1

sing (X, C) modulo ‘periods’:

Jr(X) = (F r+1H2r+1
sing (X, C))∗/Hsing

2r+1(X, Z),

where F • is the Hodge filtration and ‘periods’ are those elements of (F r+1H2r+1
sing (X, C))∗ coming

from classes in Hsing
2r+1(X, Z) under the map sending a closed integral chain c to the functional

η �→
∫

η
c, for η ∈ F r+1H2r+1

sing (X, C).

The original definition of the Abel–Jacobi map was given by Griffiths, in terms of integration as
follows. Suppose that γ is an r-cycle that is homologically equivalent to zero. Then there is a
(2r + 1)-dimensional integral chain c with ∂(c) = γ and we define

Φr(γ) =
(

η �→
∫

c
η

)
mod periods.

(See [Lew99, § 12] for more details.)
The aim of this paper is to define and study the ‘morphic Abel–Jacobi map’,

Φmor
r : Zr(X)alg∼0 → Jmor

r (X),

which is the analogue of the classical Abel–Jacobi map that one obtains by replacing the singular
homology and cohomology groups of a complex variety with the Lawson homology groups LrHm(−)
and morphic cohomology groups LtHn(−). (See § 2 for the definitions of the Lawson and morphic
(co)homology groups.) Here, Zr(X)alg∼0 denotes the space of r-cycles on X that are algebraically
equivalent to zero and Jmor

r (X) is the rth ‘morphic Jacobian’, which is defined analogously to
Jr(X) by using Lawson homology in place of singular cohomology. The reason that the morphic
Abel–Jacobi map is defined only on Zr(X)alg∼0, and not on the larger group Zr(X)hom∼0, comes
from the fact that the kernel of the cycle class map Zr(X) → LrH2r(X) is precisely Zr(X)alg∼0,
whereas the kernel of Zr(X)→ HBM

2r (X) is Zr(X)hom∼0.
Just as the Lawson and morphic (co)homology groups provide refinements of their singular

counterparts, so too does the morphic Abel–Jacobi map refine the classical map. In particular, we
show that the classical Abel–Jacobi map (when restricted to cycles algebraically equivalent to zero)
factors as

Zr(X)alg∼0
Φmor

r−→Jmor
r (X)→ Jr(X).

Both the classical and the morphic Abel–Jacobi maps annihilate cycles rationally equivalent to zero.
Moreover, we prove that the morphic Abel–Jacobi map is surjective (a property not enjoyed by the
classical version), and we thus have a commutative triangle as follows.

CHr(X)alg∼0

Φr �������������

Φmor
r �� �� Jmor

r (X)

��
Jr(X)

(1.1)

Here, CHr(X)alg∼0 is the Chow group of r-cycles on X that are algebraically equivalent to zero
modulo rational equivalence.

To define the morphic Abel–Jacobi map, we rely on the general technique of Jannsen [Jan90]
for the construction of Abel–Jacobi-type maps in a variety of settings. The input to Jannsen’s
technique is a homology/cohomology theory for varieties equipped with a suitable extra structure.
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His technique can be used to define the classical Abel–Jacobi map; in this case, the extra structure
on the singular (co)homology groups is that of mixed Hodge structures, as provided by Deligne
[Del71, Del74]. To define the morphic Abel–Jacobi map, the extra structure comes from viewing
the Lawson homology groups as inductive limits of mixed Hodge structures. Such structures were
defined by Friedlander and Mazur [FM94b] in the projective case and later generalized by Lima-
Filho [Lim01] to all complex varieties. Section 4 of the current paper contains a detailed construction
of these inductive limits of mixed Hodge structures (IMHSs) for Lawson homology along with
proofs of the required functorality and other properties needed.

Using the factorization (1.1) and other properties of the morphic Abel–Jacobi map, we deduce
several properties about the structure of cycles algebraically equivalent to zero on a variety X. In
particular, we show that there are examples of cycles on a smooth, projective variety that vanish
under the Abel–Jacobi map but not under the morphic Abel–Jacobi map. This is accomplished by
constructing examples of varieties X for which the vertical map in (1.1) is not injective.

Thus, the morphic Abel–Jacobi map detects cycles that cannot be detected by its classical
counterpart. In fact, we provide two types of such examples. Those of the first type arise by building
on examples originally due to Nori [Nor93] and further developed by Friedlander [Fri00b], which
show that various stages of the so-called s-filtration are non-trivial. The examples of the second type
arise from examples of Schoen [Sch00] showing that there can be an infinite amount of l-torsion in
the kernel of the classical Abel–Jacobi map.

We also analyze the behavior of the morphic Abel–Jacobi map on torsion subgroups. The ex-
amples due to Schoen mentioned above show that the classical Abel–Jacobi map does not always
induce an injection from (CHr(X)alg∼0)tor (the torsion subgroup of CHr(X)alg∼0) to Jr(X)tor, as
was once conjectured. (Soulé and Voisin [SV05] have also constructed such counter-examples.) It is
an intriguing question whether the morphic Abel–Jacobi map induces an isomorphism of the form

Φmor
r |tor : (CHr(X)alg∼0)tor

?∼=−→Jmor
r (X)tor.

The map Φmor
r |tor is always onto, and we describe its kernel explicitly in Theorem 8.4. Conceivably,

the kernel is trivial for any smooth, projective variety, so that Φmor
r |tor is an isomorphism for all

such varieties (see Corollary 8.8). In this paper, we show that for any smooth, projective variety
belonging to the class C defined in [FHW04] (which includes all curves, all toric varieties, all cellular
varieties, and all varieties built from these via localization, blowing up, or forming vector bundles),
the kernel of Φmor

r |tor vanishes; see Example 8.9. We also prove, in Theorem 8.11, that Φmor
r |tor is an

isomorphism for any complex projective variety that can be defined over a number field, provided
that one assumes a common conjecture (namely, Conjecture 8.10) pertaining to the image of the
higher Chow groups in Borel–Moore homology.

As mentioned, it was once conjectured that the classical Abel–Jacobi map is injective on torsion.
The recent counter-examples of this conjecture also cast doubt on the related conjecture that the
classical Abel–Jacobi map is universal among all ‘regular’ maps from Zr(X)alg∼0 to abelian varieties.
(See Conjecture 7.2 for a careful formulation.) The morphic Abel–Jacobi map suggests two ways
of producing counter-examples to this conjecture. First, as we prove in Corollary 5.9 by using the
properties of the morphic Abel–Jacobi map, the classical Abel–Jacobi map factors as

CHr(X)alg∼0

Φr
�������������������

�� �� J (Nr+1H
sing
2r+1(X, Z(r)))

��
Jr(X)

(1.2)

where Nr+1 refers to the subgroup of classes supported in dimension r + 1 and the upper-right
group is the ‘Jacobian’ of the mixed Hodge structure Nr+1H

sing
2r+1(X, Z(r)). A counter-example to
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the universality of the classical Abel–Jacobi map would arise if the vertical map in (1.2) fails to
be injective, and it is conceivable that this map is not injective for certain varieties constructed
by Kollár [BCC92]; see Remark 5.10. Second, the fact that the vertical arrow in (1.1) can have a
kernel suggests another possible source for counter-examples to the universality of the Abel–Jacobi
map. Namely, such counter-examples would arise if the kernel of Jmor

r (X)→ Jr(X) were to admit
a finite-dimensional quotient, in an appropriate sense; see Theorem 7.4. Constructing an actual
counter-example in either of these two ways, however, remains elusive.

We now describe the organization of this paper. Section 2 recalls various basic definitions, such
as that of Lawson homology and morphic cohomology. In § 3 we formalize what we mean by an
IMHS and establish a few basic properties. Section 4 defines the IMHS for Lawson homology,
establishes various functorial properties that are needed, and proves the compatibility of the IMHS
for Lawson homology with that of singular Borel–Moore homology. The results of this section build
on the foundational results of Friedlander–Mazur [FM94b] and Lima-Filho [Lim01], but much of the
material here is new. In § 5 we define the morphic Abel–Jacobi map and establish is foundational
properties.

Starting with § 6, we apply the morphic Abel–Jacobi map to the study of algebraic cycles. In
this section we establish the examples mentioned above of cycles that vanish under the classical
Abel–Jacobi map but not under the morphic version. In § 7 we indicate how the morphic Abel–
Jacobi map might lead to the construction of a counter-example to the conjectured universality
of the classical Abel–Jacobi map. Section 8 contains a description of the behavior of the morphic
Abel–Jacobi map on the subgroup of torsion cycles, as discussed above.

2. Basics of Lawson homology

All varieties in this paper are assumed to be quasi-projective complex varieties. For such a variety
U and abelian group A, we write

Hn
sing(U,A), Hsing

n (U,A), and HBM
n (U,A)

for the singular cohomology, singular homology, and singular Borel–Moore homology of Uan with
coefficients in A. Here Uan refers to the complex points of U equipped with the ‘analytic’ (or ‘strong’)
topology. When A = Z, we omit it from the notation.

The Lawson homology groups of a variety are obtained by topologizing the collection of cycles
on the variety and then taking homotopy groups. In detail, if X is a projective (complex) variety,
define Cr,e(X) to be the Chow variety that parameterizes degree e, dimension r effective cycles on
X. (Here, degree is defined in terms of a chosen embedding X ⊂ Pn.) Let Cr(X) =

∐
e Cr,e(X),

an abelian monoid object in the category of ind-varieties under the operation of addition of cycles.
We also let Cr(X) denote the topological abelian monoid

∐
e Cr,e(X)an and we let Zr(X) denote

the ‘naive’ topological group completion of the topological abelian monoid Cr(X). For an arbitrary
variety U , we define the topological abelian group Zr(U) by choosing a projective closure U ⊂ X
with closed complement Y , and then setting

Zr(U) = Zr(X)/Zr(Y ).

It is not hard to see that the topology on Zr(U) is independent of the choice of projective closure
[Lim93].

Definition 2.1. The Lawson homology groups of a complex variety U with coefficients in an abelian
group A are

LrHn(U,A) := πn−2r(Zr(U), A).
We set LrHn(U) = LrHn(U, Z).
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There is an associated cohomology theory, called morphic cohomology, defined by

LtHm(X,A) = π2t−m(Z0(X, Pt)/Z0(X, Pt−1), A),

where Z0(X, Pt) denotes the collection of cycles on X × Pt that are finite over X, topologized
as in [Fri98]. In this paper, we focus almost entirely on Lawson homology and not on morphic
cohomology (despite the fact that we refer to the main object of study as the morphic Abel–Jacobi
map). The existence of morphic cohomology and its relation to Lawson homology is, however,
useful for understanding Lawson homology. In particular, many of the formal properties of Lawson
homology are summarized by the following statement.

Theorem 2.2 (Friedlander [Fri00a]). Lawson homology and morphic cohomology form twisted
duality theory in the sense of Bloch–Ogus.

In particular, associated to any projective morphism p : X → Y , there is a pushforward map

p∗ : LrHn(X)→ LrHn(Y ),

associated to any flat morphism f : X → Y of relative dimension e, there is a pullback map

f∗ : LrHn(Y )→ Lr+eHn+2e(X),

and given a closed subvariety Y ⊂ X with open complement U , there is a long exact ‘localization’
sequence

· · · → LrHm(Y )→ LrHm(X)→ LrHm(U)→ LrHm−1(Y )→ · · · . (2.3)

Moreover, Lawson homology is homotopy invariant in that pullback along a vector bundle (or a
torsor of such) induces an isomorphism, and there is a Poincaré duality isomorphism

LrHn(X)
∼=−→Ld−rH2d−n(X)

whenever X is smooth of pure dimension d.
Correspondences act on the Lawson homology groups, even on the level of cycle spaces. Namely,

for projective varieties X and Y , define Zs(X,Y ) to be the group completion of the (discrete) abelian
monoid Hom(X,

∐
e Cs,e(Y )). When X is smooth, Zs(X,Y ) may be identified with the group of cycles

on X × Y that are equidimensional of relative dimension s over X (see [FL92, 1.5]). Given a map
Γ : X → Cs,e(Y ), we have an induced map Cr(X) → Cr(Cs,e(Y )) which can be composed with the
‘trace map’

Cr(Cs,e(Y ))→ Cr+s(Y )

of [FL92, 7.1] to obtain the continuous map

Cr(X)→ Cr+s(Y )

of topological abelian monoids. Taking group completions and then homotopy groups gives the
homomorphism

Γ∗ : LrHn(X)→ Lr+sHn+2s(Y ).

This definition is extended to an arbitrary Γ ∈ Zs(X,Y ) by linearity.
There are maps from Bloch’s higher Chow groups [Blo86] to the Lawson homology groups,

CHr(X,n)→ LrH2r+n(X),

and these maps are natural for pushforwards along projective morphisms and pullbacks along flat
morphisms [FG93]. Moreover, the composition

CHr(X,n)→ LrH2r+n(X)→ HBM
2r+n(X)
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is the usual map from Bloch’s groups to Borel–Moore homology. When n = 0, the map CHr(X)→
LrH2r(X) is surjective and we have

LrH2r(X) ∼= Zr(X)/Zr(X)alg∼0, (2.4)

where Zr(X) denotes the discrete group of r-cycles on X and Zr(X)alg∼0 denotes the subgroup of
cycles algebraically equivalent to zero [Fri91].

The connection of Lawson homology with singular homology builds on the following basic result.
(We reprove this result in the category of mixed Hodge structures in Theorem 4.21 below.)

Proposition 2.5 (Friedlander [Fri91]). For any variety X and integers n and r, we have an
isomorphism

L0Hn(X) ∼= HBM
n (X)

that is natural with respect to pushforwards along projective morphisms, pullbacks along flat
morphism, and the boundary maps in a long exact localization sequence. When X is projective,
this isomorphism comes from the identification of Z0(X) with the group completion of the infinite
symmetric product of Xan and the Dold–Thom theorem.

To relate the higher Lawson homology groups with singular homology, one uses the s-map, first
defined in [FM94b]. For any X, the s-map

s : LrHm(X)→ Lr−1Hm(X)

may be defined using the composition of

L0H2(P1)× LrHn(X)→ LrHn+2(P1 ×X)→ LrHn+2(A1 ×X)
∼=←−Lr−1Hn(X),

in which the first map is given by external product of cycles, together with a choice of generator for
L0H2(P1) ∼= Hsing

2 (P1) ∼= Z. In particular, by composing the s map and using Proposition 2.5, we
obtain maps

LrHn(X)→ HBM
n (X). (2.6)

Moreover, the s-map and hence the map (2.6) are natural with respect to pushforwards along
projective morphisms, pullbacks along flat morphism, and the boundary maps in a long exact
localization sequence.

Suslin’s conjecture for Lawson homology is an analogue of the Beilinson–Lichtenbaum conjec-
ture, and it provides a conjectural framework for understanding the nature of Lawson homology.
(See [FHW04] for a more detailed discussion.)

Conjecture 2.7 (Suslin’s conjecture for Lawson homology). For any abelian group A and quasi-
projective variety Y of dimension d, the map

LsHn(Y,A)→ HBM
n (Y,A)

is an isomorphism for n � d + s and a monomorphism for n = d + s− 1.

From the validity of this conjecture, one would deduce that the image of

LsHn(Y,A)→ HBM
n (Y,A)

is Nn−sH
BM
n (Y,A) for all Y , n, and s. Here, N• denotes the niveau filtration:

NkH
BM
n (Y,A) :=

∑
V ⊂Y

dim(V )�k

im(HBM
n (V,A)→ HBM

n (Y,A)).

Since we will need it later, we now state and prove an (easy) special case of Suslin’s conjecture.
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Proposition 2.8. For a projective variety Y and abelian group A, the image of

LrHn(Y,A)→ Hsing
n (Y,A)

is contained in Nn−rH
sing
n (Y,A). When n = 2r + 1, we have a surjection

LrHn(Y,A) � Nr+1H
sing
2r+1(Y,A).

For any quasi-projective variety V , if dim(V ) � r + 1, then the map

LrH2r+1(V,A)
∼=−→Nr+1H

BM
2r+1(V,A) = HBM

2r+1(V,A)

is an isomorphism.

Proof. The first assertion is given by [FM94a, 4.3]. The surjectivity of LrH2r+1(Y,A) → Nr+1

Hsing
2r+1(Y,A) follows by naturality for pushforwards from the final assertion.
If U is a smooth variety of dimension at most r +1, then the map LrH2r+1(U,A)→ HBM

r (U,A)
is isomorphic, via Poincaré duality, to the map

L1H1(U,A)→ H1
sing(U,A),

which is seen to be an isomorphism by using [FL92, 9.3] and the five lemma. For an arbitrary
variety V with dim(V ) � r + 1, let Vs ⊂ V be the singular locus and set U = V − Vs. Since U
is smooth, the map LrH2r+1(U,A) → HBM

2r+1(U,A) is an isomorphism. Since dim(Vs) � r, we have
LrH2r+1(Vs, A) = 0 = HBM

2r+1(Vs, A) and LrH2r(Vs, A) = Zr(Vs)⊗A = HBM
2r (Vs, A). The result now

follows by naturality for localization sequences and the five lemma.

3. Inductive limits of mixed Hodge structures

We refer the reader to [BZ90] for the definition and properties of a mixed Hodge structure (MHS).
The Lawson homology groups are, in general, not finitely generated, and thus cannot be enriched

to MHSs (which are, by definition, finitely generated). Rather, as established by Friedlander–Mazur
[FM94b] and Lima-Filho [Lim01], they are filtered inductive limits of MHSs. (We review their
constructions in the next section.)

Definition 3.1. An IMHS is a countable inductive limit of MHSs with bounded filtration lengths.
That is, an IMHS is a system of MHSs {Hα}α∈I indexed by a filtered category I with countably
many objects, such that there exist integers M < N so that WM ((Hα)Q) = 0, WN ((Hα)Q) = (Hα)Q,
FN ((Hα)C) = 0, and FM ((Hα)C) = (Hα)C for all α ∈ I. A morphism of IMHSs is a morphism of
filtered systems of MHSs, and we write IMHS also for the abelian category of all IMHSs.

Given an IMHS {Hα}α∈I , define the abelian group H := lim−→α
Hα and define filtrations Wn(HQ)

= lim−→α
Wn((Hα)Q) and F q(HC) = lim−→α

F q((Hα)C). Since Wm and F q are exact functors on MHS
(the abelian category of MHSs), the triple (H,W•, F •) satisfies all of the axioms of an MHS except,
of course, that H need not be finitely generated. Note that the image of the canonical map Hα → H,
with the induced filtrations, coincides with Hα/(ker(Hα → Hβ)) for some α→ β in I, and thus this
image is an MHS. We see, then, that an IMHS is equivalent to a triple (H,W•, F •), where H is a
countable abelian group, W•(HQ) and F •(HC) are finite, complete filtrations satisfying

GrW
n (HC) =

⊕
p+q=n

Hp,q

where

Hp,q = F pGrW
p+q(HC) ∩ F

q
GrW

p+q(HC),
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and such that every finitely generated subgroup of H is contained in a finitely generated subgroup
H ′ so that (H ′,W•|H′

Q
, F •|H′

C
) is an MHS.

We refer the reader to [Hub93] for the general properties of ind-categories associated to abelian
categories. In particular, we use that

ExtnIMHS(Z(0),H) = lim−→
α

ExtnMHS(Z(0),Hα)

where Hα ranges over all finitely generate sub-IMHSs of H (i.e. over all sub-IMHS that are actually
MHSs). In particular, we have

ExtnIMHS(Z(0),H) = 0, if n � 2,

for any IMHS H, since this vanishing holds for MHSs by [Bĕı86].

Definition 3.2. For a IMHS H, define

Γ(H) = HomIMHS(Z(0),H)

and
J (H) = Ext1IMHS(Z(0),H).

Since Γ(H) = lim−→α
Γ(Hα), we have Γ(H) = H ∩W0(HQ) ∩ F 0(HC).

Proposition 3.3 (cf. [Car80, Jan90]). For a IMHS H, we have

J (H) ∼= W0(HC)
W0(H) + F 0W0(HC)

.

That is, J (H) is the quotient of the complex vector space W0(HC)/F 0W0(HC) by the action of
W0(H) := ker(H → HQ/W0(HQ)).

In particular, if W0(HQ) = HQ, then we have an exact sequence

0→ Γ(H)→ H → HC/F
0(HC)→ J (H)→ 0

and the torsion subgroup of J (H) is

J (H)tor ∼= (H/Γ(H)) ⊗Q/Z ∼= coker(Γ(H)⊗Z Q/Z→ H ⊗Z Q/Z).

If H is pure of weight −1, then

J (H) ∼= H−1,0 ⊕H−2,1 ⊕ · · ·
H

∼= H ⊗ R/Z

and

J (H)tor ∼= H ⊗Q/Z.

If H is pure of weight −1 and finitely generated (i.e. actually an MHS), then J (H) is a complex
torus.

Proof. For an MHS H, Jannsen [Jan90], building on results of Carlson [Car80], established the
formula

J (H) =
W0(HC)

W0(H) + F 0W0(HC)
.

If W0(HQ) = HQ, then we clearly have an exact sequence

0→ Γ(H)→ H → HC
F 0(HC)

→ J (H)→ 0,

and the formula for J (H)tor follows from the long exact sequence for Tor∗(−, Q/Z). If H is an MHS
of pure of weight −1, then W0(HC) = HC =

⊕
p Hp,−p−1 and so HC/F

0(HC) = H−1,0⊕H−2,1⊕· · · .
Since Hp,−p−1 = H−p−1,p, we have HC/F

0(HC) ∼= HR as abelian groups.
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The corresponding formulas for IMHSs follow by taking filtered inductive limits, using that W0

and F 0 are exact functors.

For example, letting H = Hsing
2r+1(X, Z(r)) for a projective variety X, viewed as an MHS in the

usual manner, we obtain
Jr(X) := J (H) = HC/(H + F 0(HC)),

the rth intermediate Griffiths Jacobian of X. (This definition coincides with that given in the
introduction up to natural isomorphism.) If X is smooth, then H is pure of weight −1 so that
Jr(X) is a complex torus isomorphic to Hsing

2r+1(X, R)/Hsing
2r+1(X, Z). Letting r = dim(X) − 1 and

applying Poincaré duality, we have

Jdim(X)−1(X) ∼= H1
sing(X, R)/H1

sing(X, Z) = Pic0(X),

recovering the classical Picard variety of X.
Since ExtnIMHS = 0 for n � 2, associated to a short exact sequence

0→ H ′ → H → H ′′ → 0

of IMHSs, we have the six-term exact sequence

0→ Γ(H ′)→ Γ(H)→ Γ(H ′′)→ J (H ′)→ J (H)→ J (H ′′)→ 0

of abelian groups. In particular, J (−) is a right exact functor from IMHS to abelian groups. In fact,
if we topologize J (H) by declaring W0(HC) � J (H) to be a quotient map of topological spaces,
where W0(HC) is topologized by viewing it as a filtered colimit of finite-dimensional subspaces, then
J (−) takes IMHSs to topological abelian groups and it takes surjections of IMHSs to quotients in
the category of topological abelian groups.

Abel–Jacobi maps, both the classical versions and the morphic versions we discuss in this paper,
are obtained from the boundary map Γ(H ′′)→ J (H ′) in the above six-term exact sequence [Jan90,
9.2]. Since we will need it later, we show that the restriction of this boundary map to torsion
subgroups admits an alternative description.

Lemma 3.4. Suppose that

0→ H ′ → H → H ′′ → 0 (3.5)

is a short exact sequence of IMHSs such that W0(H ′
Q) = H ′

Q, W0(HQ) = HQ, and W0(H ′′
Q) = H ′′

Q.
Then the restriction of the boundary map coming from the long exact sequence for Ext∗IMHS(Z(0),−)
to torsion subgroups,

Γ(H ′′)tor → J (H ′)tor ∼= (H ′/Γ(H ′))⊗Q/Z,

coincides with the composition of

Γ(H ′′)tor � H ′′
tor → H ′ ⊗Q/Z � (H ′/Γ(H ′))⊗Q/Z,

where the second map comes from the long exact sequence for Tor∗(−, Q/Z) applied to (3.5) regarded
as a short exact sequence of abelian groups.

Proof. Observe that we have a diagram of abelian groups with exact rows

0 �� H ′

��

�� H ��

��

H ′′

��

�� 0

0 �� H ′
C/F

0(H ′
C) �� HC/F

0(HC) �� H ′′
C/F

0(H ′′
C) �� 0

(3.6)

and that the kernels of the vertical maps are Γ(H ′), Γ(H), and Γ(H ′′) and the cokernels of these
maps are J (H ′), J (H), and J (H ′′). An examination of the proof of Proposition 3.3 found in

917

https://doi.org/10.1112/S0010437X07002278 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07002278


M. E. Walker

[Car80, Jan90] reveals that the boundary map

Γ(H ′′)→ J (H ′) ∼= H ′
C/(H

′ + F 0(H ′
C))

appearing in the long exact sequence for Ext∗IMHS(Z(0),−) applied to (3.5) coincides with the map
given by the snake lemma applied to (3.6). A diagram chase shows that restriction of the latter
map to torsion subgroups coincides with the boundary map in the long exact sequence for
Tor∗(−, Q/Z) applied to (3.5).

4. IMHSs for Lawson homology

The material of this section comprises the technical heart of this paper. We establish that the
Lawson homology groups are IMHSs in a sufficiently functorial manner so as to allow us to define
the morphic Abel–Jacobi map and to establish the properties we seek. We also show that the maps
from Lawson homology to Borel–Moore homology are morphisms of IMHSs, which will allow us to
compare the morphic Abel–Jacobi map with its classical counterpart.

Some of these goals have already been achieved by Friedlander–Mazur [FM94b], who showed
how to endow the Lawson homology groups of a projective variety with IMHSs, and by Lima-Filho
[Lim01], who extended Friedlander–Mazur’s construction to quasi-projective varieties. The results
of Friedlander–Mazur and Lima-Filho do not, however, provide all of the naturality properties
enjoyed by these IMHSs that we need. They also do not establish the compatibility of the IMHSs
for Lawson and Borel–Moore homology in full generality. (Friedlander–Mazur do establish this for
smooth, projective varieties [FM94b, 4.5], but pose such compatibility in the general case as an
open question [FM94b, § 3.5].) This rather lengthy and technical section is therefore required.

The basic idea, due to Friedlander–Mazur, for showing the Lawson homology groups of a projec-
tive variety X are IMHSs is to use that Cr(X) is a countable disjoint union of projective varieties and
that the homology groups of a projective variety are MHSs by the work of Deligne [Del74]. More-
over, the Hurewicz map LrH2r+q(X) = πq(Cr(X)+) → Hsing

q (Cr(X)+) is injective and, in fact, the
Milnor–Moore theorem shows that one may identify LrH2r+q(X, Q) with the kernel of a morphism
of (rational) IMHSs. Hence, LrH2r+q(X) acquires the structure of an IMHS. Lima-Filho [Lim01]
extended this idea by using that the Lawson homology groups of a quasi-projective variety U may
be realized using a ‘triple bar construction’ involving Cr(Y ) and Cr(X), where X is a projective
closure of U and Y = X − U .

We more-or-less follow Lima-Filho’s construction in this section. In particular, if X is projective,
then we have an isomorphism

LrH2r+n(X) ∼= πn+1(BCr(X))

(see [FG93] and [Lim93]), where BM denotes the usual bar construction of an abelian monoid
M (see below for a precise definition). It is easy to see BCr(X) is a countable inductive limit of
simplicial projective varieties (cf. [Lim01, § 5]). We thus may employ the following fundamental
result of Deligne.

Theorem 4.1 (Deligne). The homology groups of a simplicial variety V•

Hq(V•, Z) = Hq(|V•|, Z)

are naturally MHSs (i.e. morphisms of simplicial varieties induce morphisms of MHSs) in such a
way that if V• = V is the constant simplicial variety associated to a smooth, projective variety V ,
then the MHS coincides with the classical one.

Consequently, the homology groups of a countable inductive limit of simplicial varieties are
naturally IMHSs.
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Proof. See [Del74]. In the case of a countable inductive limit of simplicial varieties, the condition
that the filtrations be of bounded length holds since Hsing

q (V•) depends only on Hq(d �→ Hsing
p (Vq))

for finitely many p and q by [Del74, 8.3.5] and there are uniform bounds for the weights and Hodge
types of Hsing

p (Vq) by [Del74, 8.2.4].

We will need the following lemma. The rather technical hypotheses are proved to hold in the
cases that we will need them by the results of [Lim93].

Lemma 4.2. Suppose that M• is a countable filtered inductive limit of simplicial projective vari-
eties and that there is a pairing M• ×M• → M• (of simplicial ind-varieties) making M• into an
abelian monoid. Assume that the map M• → M+• , where M+

n denotes the naive topological group
completion of the topological abelian monoid Man

n , is a homotopy equivalence. Then the Hurewicz
map πq(M•)→ Hsing

q (M•) is naturally a split injection.

If M• is connected, then upon tensoring with Q the image of the Hurewicz map is the kernel of
the map

Hsing
q (M•, Q)

φ2−2−→Hsing
q (M•, Q),

where φ2 is the map induced by multiplication by 2 on M•. In particular, πq(M•) is an IMHS in
such a way that the Hurewicz map is an injection of IMHSs.

Proof. The space |M•| is a topological abelian monoid, since geometric realizations commute with
products. The first assertion is thus well known (cf. [Lim01, 5.9]), and holds more generally, but we
describe a natural splitting of the Hurewicz map here because it will be used again. The hypothesis
shows that it suffices to give a spitting of

πq(|M+
• |)→ Hsing

q (|M+
• |).

This map is given by applying πq to the map of multi-simplicial sets

Sing•(M
+
• )→ Z Sing•(M+

• ),

which admits a natural splitting since Sing•(M+• ) is a multi-simplicial abelian group.
The Milnor–Moore theorem [MM65] gives us that Hsing

∗ (M•, Q) is isomorphic as a Hopf algebra to
SQ(π∗(M•, Q)), where SQ(V ) denotes the symmetric algebra of a graded vector space V . In general,
the multiplication and comultiplication maps making SQ(V ) into a Hopf algebra are induced by the
addition map V ⊕ V → V and diagonal map V � V ⊕ V , respectively. The map φ2 is induced by
the composition of V � V ⊕ V → V and hence we see that φ2 acts as multiplication by 2n on the
summand Sn

Q(π∗(M•, Q)). In particular, the kernel of φ2−2 is S1
Q(π∗(M•, Q)) = π∗(M•, Q). Finally,

multiplication by 2 is trivially a morphism of IMHS and φ2 is also, since it arises from a countable
inductive limit of morphisms of simplicial varieties [Del74, § 8.3].
Definition 4.3. For a projective variety X, we endow the Lawson homology groups of X with
IMHSs by using Lemma 4.2, Theorem 4.1, and the identification

LrH2r+n(X) ∼= πn+1|B(Cr(X))|.
To extend this definition to all quasi-projective varieties, we use the basic idea due to Lima-

Filho of choosing projective closures and using a ‘triple bar construction’, but we cast the triple bar
construction in terms of mapping cones. The reason that this is a useful perspective is that Deligne
uses mapping cones of simplicial varieties to endow relative cohomology groups with MHSs, and
thus the use of mapping cones will enable us to compare the IMHS of Lawson homology with that
of Borel–Moore homology.

Suppose that C is any category having finite coproducts 
 and a final object ∗. We will use what
follows when C consists of abelian monoids (perhaps with additional structure), when C consists
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of varieties, or when C consists of pointed varieties (i.e. the category consisting of varieties with a
specified C-point and in which morphisms preserve the basepoint). In the first case, 
 = ⊕ and
∗ = 0, in the second case, 
 is disjoint union and ∗ = SpecC, and in the final case, 
 is given
by wedge product ∨ and ∗ = Spec C. The use of the last case is really a matter of bookkeeping,
and in all of the applications the pointed varieties we consider are given as Y+ := Y

∐ ∗ for some
(unpointed) variety Y .

For a general category C of this type, if u : Y• → X• is a morphism of simplicial objects in C,
define cone�(u) = cone(u) to be the simplicial object in C with

cone(u)n = ∗ 
 Y0 
 · · · 
 Yn−1 
Xn.

The face and degeneracy maps are defined so that X• ⊂ cone(u)• and ∗ ⊂ cone(u)• are inclusions
of simplicial objects, and for yj ∈ Yj ⊂ cone(u)n and 0 � i � n, we have

di(yj) =




dY
i (yj), if i � j,

yj, if i > j and j < n− 1,
u(yn), if i = n and j = n− 1.

(4.4)

If i = j = 0, we interpret dY
0 (y0) to mean ∗. By way of illustration, if C is the category of abelian

groups (or any abelian category), then we have

N (cone⊕(Y• → X•)) ∼= cone(N (Y•)→ N (X•)),

where N denotes the equivalence of categories taking a simplicial abelian group to its normalized
chain complex and the cone on the right is the usual mapping cone for a map of complexes.

If C is the category of abelian monoids, one may readily verify that

cone⊕(u) = B(0, Y•,X•), (4.5)

where the right-hand side is May’s ‘triple bar construction’ [May75] with Y• acting on X• in the
obvious manner via u. In particular, we have

cone⊕(Cr(X)→ 0) = B(0, Cr(X), 0) = B(Cr(X)). (4.6)

Note that, by convention, if Y is an object of a category C, we regard Y as a constant simplicial
object in C as needed.

Clearly the process of taking cones may be iterated so that one can talk about the cone of
a commutative square of simplicial objects. For example, if X is a projective variety and Y ⊂ X
is a closed subvariety, we have

cone⊕



Cr(Y )

��

⊂ �� Cr(X)

��
0 �� 0


 = B(B(0, Cr(Y ), Cr(X))). (4.7)

Proposition 4.8 (Lima-Filho [Lim93]). If Y is a closed subvariety of a projective variety X, we
have

LrH2r+n(X − Y ) ∼= πn+1(B(B(0, Cr(Y ), Cr(X)))).

Clearly, B(B(0, Cr(Y ), Cr(X))) is a connected, simplicial monoid and it is not difficult to see that
it is a countable inductive limit of simplicial varieties (cf. [Lim01, § 5]). By [Lim93, 4.5] the remaining
technical hypothesis required in Lemma 4.2 is also satisfied, so that we can make the following
definition.
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Definition 4.9. For a quasi-projective variety U , we endow its Lawson homology groups with
IMHSs as follows. Choose a projective closure X of U and let Y = X − U be the reduced closed
complement. Using Proposition 4.8 and Lemma 4.2, let LrH2r+n(U) be an IMHS so that it is a
sub-IMHS of Hsing

n+1(B(B(0, Cr(Y ), Cr(X)))).

Remark 4.10. The construction we used in this definition is similar, but not identical, to that
given by Lima-Filho [Lim01]. The two constructions do, in fact, yield the same IMHSs for Lawson
homology, but we do not prove that here.

Proposition 4.11. The IMHS for Lawson homology is independent of the choice of projective clo-
sure. Pushforwards along projective morphisms, pullbacks along flat morphisms, and the boundary
maps in long exact localization sequences such as (2.3) are all morphisms of IMHSs.

Proof. To prove independence of choice, it suffices to consider the situation in which U ⊂ X and
U ⊂ X ′ are two such closures, with closed complements Y and Y ′, and such that there is a morphism
p : X ′ → X inducing the identity on U and mapping Y ′ to Y . Then the maps p∗ : Cr(X ′)→ Cr(X)
and p∗ : Cr(Y ′)→ Cr(Y ), given by the pushforward of cycles, induce a map

p∗ : B(B(0, Cr(Y ′), Cr(X ′)))→ B(B(0, Cr(Y ), Cr(X)))

of inductive limits of simplicial varieties. By Deligne’s theorem (Theorem 4.1), we see that the
induced map on homology groups is a morphism (in fact, an isomorphism) of IMHSs which thus
restricts to an isomorphism of IMHSs on homotopy groups.

Functorality for pushforwards is proved by a slight generalization of this argument. Namely, sup-
pose that p : U → V is a projective morphism. Then we can construct projective compactifications
U ⊂ U and V ⊂ V with closed complements U∞ and V∞ such that p extends to a morphism U → V
that sends U∞ to V∞. Then there is an induced map

p∗ : B(B(0, Cr(U∞), Cr(U)))→ B(B(0, Cr(V∞), Cr(V )))

of inductive limits of simplicial varieties. The map on homotopy groups coincides with the usual
pushforward map p∗ : LrHn(U) → LrHn(V ) in Lawson homology, which is thus a morphism of
IMHSs.

To prove functorality for flat morphisms, if suffices to consider the case where U and V are
connected and that π : U → V is flat of relative dimension e. We can construct projective closures
U ⊂ U and V ⊂ V , with closed complements U∞ and V∞, such that π extends to a morphism
π : U → V such that π−1(U) = V . By the platification par eclatement theorem [RG71], we can
take blow-ups and proper transforms, without affecting U , V , or π, so that π becomes flat, also of
relative dimension e. The flat pullback map π∗ : LrHn(V ) → Lr+eHn+2e(U) in Lawson homology
is given by taking homotopy groups of

B(B(0, Cr(U ), Cr(U∞))) π∗−→B(B(0, Cr(V ), Cr(V∞))),

which is a morphism of inductive limits of simplicial varieties.
To show that the boundary map in the long exact localization sequence is a morphism of IMHSs,

by replacing X with a projective closure X and Y with X − U , and using naturality for pullbacks
along open immersions, we may assume without loss of generality that X is projective. The map of
commutative squares


0 ��

��

Cr(Y )

��
0 �� 0


→




0 ��

��

Cr(X)

��
0 �� 0


→



Cr(Y )

��

⊂ �� Cr(X)

��
0 �� 0


→



Cr(Y )

��

�� 0

��
0 �� 0




921

https://doi.org/10.1112/S0010437X07002278 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07002278


M. E. Walker

gives a fibration sequence upon taking mapping cones and hence, using (4.6) and (4.7), we have a
fibration sequence

B(Cr(Y ))→ B(Cr(X))→ B(B(0, Cr(Y ), Cr(X)))→ B(B(Cr(Y )))

that gives the long exact localization sequence in Lawson homology. In particular, the map LrHn(U)
→ LrHn−1(Y ) is induced by a map of inductive limits of simplicial varieties and is thus a morphism
of IMHSs.

Note, in particular, that the Lawson homology groups L0Hn(U) are IMHSs. On the other hand,
we know L0Hn(U) ∼= HBM

n (U) (so that, in particular, L0Hn(U) is finitely generated and thus
actually an MHS) and Deligne endows the groups HBM

n (U) with MHSs [Del74]. Obviously, one
would expect these MHSs to coincide, and this is the content of Theorem 4.21 below. This result
is proved for U smooth and projective by Friedlander–Mazur [FM94b]. To set up this theorem, we
need to review and reinterpret the Dold–Thom isomorphism.

For a pointed CW complex T = (T, t), let SPn(T ) = T×n/Σn be the n-fold symmetric prod-
uct of T . Let SPn(T ) � SPn+1(T ) be the map given by ‘addition by t’ and define SP∞(T ) =
lim−→n

SPn(T ), using these transition maps. Then SP∞(T ) is a topological abelian monoid and we
let SP∞(T )+ denote its ‘naive’ topological group completion. Note that SP∞(T+) ∼= ∐

n SPn(T )
and if X is a projective variety, we have

SP∞(Xan
+ ) ∼= C0(X).

By [Lim01, 4.5], SP∞(T )+ is homotopy equivalent to ΩBSP∞(T ), the homotopy theoretic group
completion of SP∞(T ). The Dold–Thom theorem [DT58] asserts that there is a natural isomorphism

ΨT
n : πn(SP∞(T )+)

∼=−→Hsing
n (T, t)

such that the composition of

πn(T ) i∗−→πn(SP∞(T )+)
∼=−→Hsing

n (T, t),

where i : T ⊂ SP∞(T ) is the evident inclusion, is the Hurewicz map. More generally, the Dold–
Thom theorem provides a natural isomorphism

Ψ(T,S)
n : πn(SP∞(T )+/SP∞(S)+)

∼=−→Hsing
n (T, S)

where S ⊂ T is a CW-subcomplex. (See [FM94b, Appendix B] for an explicit description of the
Dold–Thom map.) We need the following description of the inverse of the Dold–Thom map.

Proposition 4.12. For a finite, pointed CW complex T , the composition of

Hsing
q (T, t) i∗−→Hsing

q (SP∞(T )+, t)
p
�πq(SP∞(T )+),

where p denotes the splitting of the Hurewicz map hSP (T )+ : πq(SP∞(T )+) � Hsing
q (SP∞(T )+, t)

given as in the proof of Lemma 4.2, is the inverse of the Dold–Thom isomorphism. Moreover, we
have hSP (T )+ ◦ p ◦ i∗ = i∗.

Proof. We prove, more generally, that if S ⊂ T is a subcomplex, then the composition of

Hsing
q (T, S) i∗−→Hsing

q (SP∞(T )+/SP∞(S)+)
p
�πq(SP (T )+/SP (S)+) (4.13)

is the inverse of the Dold–Thom isomorphism. One may readily verify that this composition is given
by applying πq to the map of simplicial abelian groups

Z Sing•(T )/Z Sing•(S) i∗−→Sing•(SP∞(T )+)/Sing•(SP∞(S)+) (4.14)
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induced by the inclusion simplicial sets i∗ : Sing•(T ) ⊂ Sing•(SP∞(T )+) and using that
Sing•(SP∞(T )+) is a simplicial abelian group. In particular, the composition of (4.13) is natu-
ral for pairs. Since the Dold–Thom isomorphism is natural for pairs too, we may reduce to the
case where T = Sn and S = ∗. In this case, the Hurewicz map hSn : πq(Sn)

∼=−→Hsing
q (Sn, ∗) is an

isomorphism and we have ΨSn

q ◦ p ◦ i∗ ◦hSn = ΨSn

q ◦ p ◦hSP (Sn)+ ◦ i∗ = ΨSn

q ◦ i∗ = hSn , which shows
that p ◦ i∗ is the inverse of ΨSn

q .
The equation hSP (T )+ ◦ p ◦ i∗ = i∗ follows from the fact that p ◦ i∗ is induced by the map

(4.14).

The role of cones of maps of simplicial varieties arises from the following result, essentially due
to Deligne.

Theorem 4.15 (Deligne). If Y•
u−→X• is a morphism of simplicial, pointed varieties, then we have

a long exact sequence in the category of MHSs

· · · → Hsing
q (Y•, ∗)→ Hsing

q (X•, ∗)→ Hsing
q (cone∨(u), ∗)→ Hsing

q−1(Y•, ∗)→ · · · .
Proof. This is essentially the content of [Del74, 8.3.9], except that Deligne considers unpointed
simplicial varieties and uses cohomology rather than homology. The former difference is superficial
(although, it should be noted that Deligne’s result is slightly in error since he does not use reduced
homology for the relative term as he ought to) and one deduces that the maps above are morphisms
of MHSs by taking Q-linear duals of the corresponding sequence in cohomology.

For a simplicial pointed variety W•, we define its suspension to be

Σ∗(W•) := cone∨(W• → ∗).
If Y• is a simplicial (unpointed) variety, define

Σ(Y•) := Σ∗((Y•)+) = cone∨((Y•)+ → ∗).
In detail, Σ(Y•)n = Y0 
 · · · 
 Yn−1 
 ∗ with face maps as in (4.4) but with u(yn) = ∗. It follows
from Theorem 4.15 that we have an isomorphism of MHSs

H̃sing
q (Σ(Y•), Z) ∼= Hsing

q (Y•, Z). (4.16)

For pointed varieties V and W , we have SP∞(V ∨W ) ∼= SP∞(V )⊕SP∞(W ) and SP∞(∗) = 0,
so that SP∞ defines a functor from the category of pointed varieties to the category of abelian
topological monoids that preserves coproduct and final objects. Moreover, for a morphism W•

u−→Y•
of simplicial, pointed varieties, we have a natural isomorphism

SP∞(cone∨(W• → V•)) ∼= cone⊕(SP∞(W•)→ SP∞(V•)), (4.17)

(where SP∞ is defined on a simplicial, pointed variety by applying it degreewise), and hence a
canonical map

cone∨(W• → V•)→ cone⊕(SP∞(W•)→ SP∞(V•)), (4.18)

induced by the inclusions of the form Y ⊂ SP∞(Y ). In particular, we have an isomorphism

SP∞(Σ∗(W•)) ∼= B(SP∞(W•)).

and a canonical simplicial map

Σ∗(W•)→ B(SP∞(W•)). (4.19)

The following corollary is a version of the Dold–Thom theorem for simplicial projective varieties.
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Corollary 4.20. For a simplicial, pointed, projective variety W•, let θW• denote the composition
of

Hsing
q (Σ∗(W•), ∗)→ Hsing

q (B(SP∞(W ))) � πq(B(SP∞(W )))

where the first map is induced by (4.19) and the second map is the splitting of the Hurewicz map
given by Lemma 4.2. Then θW• is a natural isomorphism of MHSs.

Proof. We can replace SP∞(W•) with SP∞(W•)+ by [Lim01]. The map (4.19) induces a map of
spectral sequences from

Ep,q
1 = H̃sing

p (W0 ∨ · · · ∨Wq−1) =⇒ H̃sing
p+q (Σ∗(W•))

to

Ep,q
1 = πp(SP (W0)+ ⊕ · · · ⊕ SP (Wq−1)+) =⇒ πp+q(B(SP (W•)+)),

which is an isomorphism on E1-terms (Proposition 4.12), and thus θW• is an isomorphism. This
proposition also gives us that the composition of

Hsing
q (Σ∗(W•), ∗)θW•−→πq(B(SP∞(W•)))

h−→Hsing
q (B(SP∞(W•)))

coincides with the map

Hsing
q (Σ∗(W•))→ Hsing

q (B(SP∞(W•)))
induced by (4.19). The latter map is a morphism of MHSs since it comes from a map of simplicial
varieties and the map h is a morphism of MHSs by construction. Since h is injective, it follows that
θW• is a morphism of MHSs as well.

Theorem 4.21. For a quasi-projective variety U , the isomorphism

HBM
q (U, Z) ∼= LqHq(U)

coming from the Dold–Thom theorem is an isomorphism of MHSs. Moreover, it is natural for
pushforwards and pullbacks, and it commutes with the boundary maps in a localization long exact
sequence.

Proof. Choose a projective closure X of U with reduced closed complement Y , and let W• =
cone∨(Y+ � X+) = cone�(Y � X). We have isomorphisms

Hsing
q+1(Σ∗(W•), ∗) ∼= Hsing

q (W•, ∗) ∼= HBM
q (U),

which serve to define the MHS for HBM
q (U) (see [Del74]). Corollary 4.20 gives an isomorphism of

MHS

Hsing
q+1(Σ∗(W•), ∗)

∼=−→πq(B(SP∞(W•)))
and we have an isomorphisms of MHSs

πq(B(SP∞(W•))) ∼= πq(B(B(0, C0(Y ), C0(X))))

coming from the isomorphisms of simplicial varieties (4.5) and (4.17). Finally, the isomorphism

πq(B(B(0, C0(Y ), C0(X)))) ∼= L0Hq(U)

of Proposition 4.8 serves to define the MHS for L0Hq(U).
The naturality assertions are proven just as in the proof of Proposition 4.11, using the natural

map (4.18) and Deligne’s theorem (Theorem 4.15).

The following theorem summarizes all the properties of the IMHS for Lawson homology that
will be needed in the rest of this paper.
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Theorem 4.22 (cf. [FM94b, Lim01]). The Lawson homology groups of any quasi-projective complex
variety may be equipped with IMHSs such that the following properties hold.

(1) Pushforward along projective morphisms, pullbacks along flat morphisms, and the boundary
maps in a long exact localization sequence are morphisms of IMHSs.

(2) The non-trivial weights w of LrHn(U) satisfy 2r − n � w � 0 and the non-trivial Hodge
numbers (p, q) satisfy 2r − n � p, q � 0.

(3) For a quasi-projective variety U , the s map

s : LrHn(U)→ Lr−1Hn(U)(−1)

is a morphism of IMHSs. That is, the s-map induces maps

s : Wm(LrHn(U, Q))→Wm+2(Lr−1Hn(U, Q))

and

s : F p(LrHn(U, C))→ F p+1(Lr−1Hn(U, C)).

(4) For any U , there is a morphism of IMHSs

LrHn(U)→ HBM
n (U, Z(r))

that is compatible with pushfoward along a projective morphism, pullback along a flat mor-
phism, and the boundary map in a long exact localization sequence.

(5) For projective varieties X and W , recall that Ze(X,W ) is the group completion of the (discrete)
abelian monoid Hom(X, Ce(W )) and that associated to any Γ ∈ Ze(X,W ), there is a continuous
map Γ∗ : Zr(X)→ Zr+e(W ) and hence an induced map

Γ∗ : LrHn(X)→ Lr+eHn+2e(W )

on Lawson homology groups. This map is a morphism of IMHSs.
More generally, if Y ⊂ X and T ⊂ W are closed subschemes, with open complements U and
V , such that the image of Zr(Y ) under Γ∗ is contained in Zr(T ), then there is an induced
continuous map Γ∗ : Zr(U)→ Zr(V ) of topological abelian groups and hence an induced map
on homotopy groups Γ∗ : LrHn(U)→ LrHn(V ). All of the maps in the infinite ladder

· · · �� LrH2r+n(Y )

Γ∗
��

�� LrH2r+n(X) ��

Γ∗
��

LrH2r+n(U) ��

Γ∗
��

LrH2r+n−1(Y )

Γ∗
��

�� · · ·

· · · �� LrH2r+n(T ) �� LrH2r+n(W ) �� LrH2r+n(V ) �� LrH2r+n−1(T ) �� · · ·
are morphisms of IMHSs.

Proof. Property (1) is the content of Proposition 4.11.
By definition LrHn(U) is a sub-IMHS of Hsing

2n−r+1(Y•), where Y• is an inductive limit of simplicial
projective varieties and Y0 = Spec C. To prove (2), it therefore suffices to establish that these bounds
on the weights and Hodge type hold for Hsing

2n−r−1(W•), where W• is any simplicial projective variety
with W0 = SpecC. These bounds follow from [Del74, 8.2.4 and 8.3.5].

Property (3) is established by Lima-Filho [Lim01], but since he uses a different construction
for the IMHSs for Lawson homology, we reproduce a version of his proof in our context. Choose a
projective closure X of U with closed complement Y . Recall that the s map in Lawson homology
comes from the pairing

L0H2(P1)× LrHn(U)→ LrHn+2(P1 × U)→ LrHn+2(A1 × U)
∼=←−Lr−1Hn(U),
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by choosing a generator s of L0H2(P1) ∼= Z(1). It thus suffices to prove this pairing is a pairing of
IMHSs. Since flat pullback is a morphism of IMHSs, it suffices to show that the external product
pairing

LsHm(W )⊗ LrHn(U)→ Ls+rHm+n(V × U)
is a morphism of IMHSs for an arbitrary projective variety W . (In fact, the hypothesis that W be
projective is not necessary.) This pairing is induced by a pairing of simplicial objects comprised of
maps of the form

Cs(W )× Cr(T )→ Cs+r(W × T ),
with T = X or T = Y , along with pairings of the form

πi(B(Cs(W )))⊗ πj(B(Cr(T )))→ πi+j(B(Cs(W ))×B(Cr(T ))).

The latter pairing injects (in the category IMHS) into

Hsing
i (B(Cs(W )))⊗Hsing

j (B(Cr(T )))→ Hsing
i+j (B(Cs(W ))×B(Cr(T ))),

which is a morphism of IMHSs by [Del74, 8.2.10].
Property (4) follows from property (3) and Theorem 4.21.
We establish property (5) by assuming, as we may, that X is connected and that Γ is given by

a single morphism X → Ce,d(W ). The map on Lawson homology is then induced by the collection
of morphisms of varieties

Cr,d′(X)→ Cr+e,d′+d(X),
as described in § 2, giving a morphism Cr(X) → Cr+e(W ). Our assumption about Y and T gives a
commutative square

Cr(Y )

��

�� Cr(T )

��
Cr(X) �� Cr(W )

and this square induces the commutative diagram of simplicial objects

B(Cr(Y ))

��

�� B(Cr(X))

��

�� B(B(0, Cr(X), Cr(Y )))

��

�� B(B(Cr(Y )))

��
B(Cr(T )) �� B(Cr(W )) �� B(B(0, Cr(W ), Cr(T ))) �� B(B(Cr(Y )))

and hence the induced commutative ladder obtained by taking homotopy groups consists entirely
of morphisms of IMHSs.

5. The morphic Abel–Jacobi map

Jannsen [Jan90] has established a technique for constructing Abel–Jacobi type maps in a quite
general setting. In particular, his technique applies to our situation, leading to the definition of the
morphic Abel–Jacobi map.

In detail, suppose that X is a quasi-projective variety and fix an integer r � 0. For each closed
subvariety Y ⊂ X of dimension r with open complement U , localization for Lawson homology gives
the exact sequence

LrH2r+1(Y )→ LrH2r+1(X)→ LrH2r+1(U)→ LrH2r(Y )→ LrH2r(X)

of IMHSs by Theorem 4.22. Since LrH2r+1(Y ) = 0, LrH2r(Y ) is the free abelian group of integral
components of Y of dimension r, and LrH2r(X) = CHr(X)/CHr(X)alg∼0, we obtain the short
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exact sequence

0→ LrH2r+1(X)→ LrH2r+1(U)→ ZY
r (X)alg∼0 → 0, (5.1)

where ZY
r (X) denotes the group of r-cycles on X supported on Y and ZY

r (X)alg∼0 denotes the
subgroup of such cycles that are algebraically equivalent to zero on X. This sequence is a short
exact sequence of IMHSs and ZY

r (X)alg∼0 has the trivial Hodge structure. Thus, the boundary map
in the long exact sequence for Ext∗IMHS(Z(0),−) determines a map

ZY
r (X)alg∼0 → Ext1IMHS(Z(0), LrH2r+1(X)) = J (LrH2r+1(X)).

Explicitly, an element in ZY
r (X)alg∼0 coincides with a morphism Z(0)→ ZY

r (X)alg∼0 of IMHSs and
pulling back (5.1) along this morphism give an extension of IMHSs of the form

0→ LrH2r+1(X)→ E → Z(0)→ 0.

Definition 5.2. For a quasi-projective complex variety X and integer r � 0, define the rth morphic
Jacobian to be

Jmor
r (X) = J (LrH2r+1(X)) = Ext1IMHS(Z(0), LrH2r+1(X)),

and define the rth morphic Abel–Jacobi map

Φmor
r : Zr(X)alg∼0 → Jmor

r (X)

to be the map induced from the maps ZY
r (X)alg∼0 → Ext1IMHS(Z(0), LrH2r+1(X)) above by taking

the filtered colimit over all dimension r closed subschemes Y ⊂ X.

If X and W are projective varieties, an equidimensional correspondence Γ ∈ Zs(X,W ) induces
a morphism of IMHSs

Γ∗ : LrH2r+1(X)→ Lr+eH2(r+e)+1(W ),

by Theorem 4.22(5). Since J (−) is a functor on the category of IMHSs, we thus obtain the map

Γ∗ : Jmor
r (X)→ Jmor

r+e (W ).

Theorem 5.3. The morphic Abel–Jacobi mapping is functorial for equidimensional correspondences
between projective varieties. That is, if X and W are projective varieties and Γ ∈ Ze(X,W ), then
the diagram

Zr(X)alg∼0

Γ∗
��

�� Jmor
r (X)

Γ∗
��

Zr+e(W )alg∼0
�� Jmor

r+e (W )

commutes.

Proof. Fix a subvariety Y ⊂ X of dimension at most r. Then the image of the subgroup Zr(Y ) ⊂
Zr(X) under Γ∗ : Zr(X) → Zr+e(W ) is contained in Zr+e(T ) for some subvariety T ⊂ W of
dimension at most r + e. Thus, we have a commutative diagram

Zr(Y )

⊂
��

Γ∗ �� Zr+e(T )

⊂
��

Zr(X)

��

Γ∗ �� Zr+e(W )

��
Zr(U)

Γ∗ �� Zr+e(V )
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where U = X − Y , V = W − T , and the map on the bottom is defined by the identities Zr(U) =
Zr(X)/Zr(Y ) and Zr(V ) = Zr(W )/Zr(T ).

Taking homotopy groups for this diagram gives a commutative ladder of IMHSs by Theorem 4.22,
and upon taking limits over pairs Y, T with Γ∗(Zr(Y )) ⊂ Zr(T ), we arrive at the following commu-
tative diagram of IMHSs.

0 �� LrH2r+1(X)

Γ∗
��

�� lim−→Y
LrH2r+1(X − Y )

��

�� Zr(X)alg∼0

Γ∗
��

�� 0

0 �� Lr+eH2r+2e+1(W ) �� lim−→T
Lr+eH2r+2e+1(W − T ) �� Zr+e(W )alg∼0

�� 0

The result is now evident by the functorality of the long exact sequence for Ext∗IMHS(Z(0),−).

Recall that the rth intermediate Griffiths Jacobian of a projective variety X is

Jr(X) := J (Hsing
2r+1(X, Z(r)),

and it is the target of the (classical) Abel–Jacobi map:

Φr : Zr(X)hom∼0 → Jr(X).

If one repeats the above construction of the morphic Abel–Jacobi map Φmor
r using instead the groups

HBM∗ (−, Z), the singular Borel–Moore homology groups of complex varieties viewed as taking values
in MHSs, then one obtains the classical Abel–Jacobi map Φr (cf. [Car80] and [Jan90, 9.2]). By
Theorem 4.22(4), the natural map LrHn(U)→ HBM

n (U, Z(r)) is a morphisms of IMHSs, and so we
have an induced map Jmor

r (U)→ Jr(U).

Proposition 5.4. For any quasi-projective variety X, the diagram

Zr(X)alg∼0
Φmor

r ��
��

��

Jmor
r (X)

��
Zr(X)hom

Φr �� Jr(X)

commutes.

Proof. This follows immediately from Jannsen’s construction, using that we have a commutative
diagram

· · · �� LrHn(Y )

��

�� LrHn(X)

��

�� LrHn(U)

��

�� LrHn−1(Y )

��

�� · · ·

· · · �� HBM
n (Y, Z(r)) �� HBM

n (X, Z(r)) �� HBM
n (U, Z(r)) �� HBM

n−1(Y, Z(r)) �� · · ·
of IMHSs by Theorem 4.22, for any closed subscheme Y ⊂ X with open complement U .

Example 5.5. The morphic Abel–Jacobi map coincides with its classical counter-part for zero cycles
and codimension one cycles. This is conjecturally true also for codimension two cycles.

In detail, since L0Hn(X) ∼= HBM
n (X, Z(0)) as MHSs for all quasi-projective varieties U , we have

Φmor
0 = Φ0.

When X is smooth and projective, the map Φmor
0 = Φ0 coincides under Poincare duality with the

Albanese map X → Alb(X) = J (H2d−1
sing (X, Z(d))) where d = dim(X). See [Lew99, 12.11(3)] for a

description of this map in terms of integrals.
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Likewise, if U is a variety of dimension at most d and we take r = d − 1, then Proposition 2.8
gives the isomorphism

Ld−1H2d−1(U) ∼= Nn−d+1H
BM
2d−1(U, Z(d− 1)).

(Recall that NkH
BM
n denotes the subgroup of HBM

n consisting of classes supported in dimension k.)
From this, we deduce Φmor

d−1 = Φd−1 on a variety X of dimension d. If X is smooth and projective,
then using Poincare duality, we have

Jmor
d−1 (X) = Jd−1(X) = J (H1(X, Z(1))) = Pic0(X),

and the map

Φd−1 = Φmor
d−1 : Z1(X)alg∼0 → Pic0(X)

sends a codimension one cycle algebraically (equivalently, homologically) equivalent to zero to the
corresponding point on the Picard variety of X.

A special case of Suslin’s conjecture (Conjecture 2.7) predicts that the onto map

Ld−2H2d−3(X) � Nd−1H
BM
2d−3(X, Z(d − 2))

is actually an isomorphism, for any quasi-projective variety X of dimension d. The validity of this
formula would give that Φmor

d−2 and Φd−2 coincide on Zd−2(X)alg∼0, for all such X.

We see, therefore, that the cases of most interest for the morphic Abel–Jacobi map concern
dimension r cycles where 0 < r < d− 2.

Example 5.6. In particular, if we take X = C to be a possibly singular projective curve and r = 0,
then the morphic Abel–Jacobi map

Φmor
0 : Z0(C)alg∼0 → Jmor

0 (C)

coincides up to isomorphism with the classical Albanese map

Z0(C)deg=0 � J0(C) = Alb(C).

If C is smooth, then Alb(C) ∼= Pic0(C), the Jacobian variety of C, and this map is the canonical
one identifying the Jacobian variety as degree 0 zero cycles on C modulo rational equivalence. More
generally, if C̃ � C is the normalization of a singular curve C, then J0(C) is a quotient of Pic0(C̃)
by a free abelian subgroup. The map Φmor

0 = Φ0 is uniquely determined by the existence of the
commutative square of continuous surjections

Z0(C̃)deg=0
�� ��

����

Pic0(C̃)

����
Z0(C)deg=0

�� �� J0(C)

Using the facts above, we derive numerous good properties of the morphic Abel–Jacobi map.
For a smooth, projective variety X, the image of Zr(X)alg∼0 under the classical Abel–Jacobi
map is known (cf. [Lew99, § 12] and [Lie68]) to be a abelian variety (not merely a complex torus)
and is called the Lieberman Jacobian, written

J a
r (X) := Φr(Zr(X)alg∼0).
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Theorem 5.7. Let X be a (possibly singular) projective variety.

(1) Give Zr(X)alg∼0 the structure of a topological abelian group by identifying it with the con-
nected component of the identity in Zr(X). The morphic Abel–Jacobi map

Φmor
r : Zr(X)alg∼0 � Jmor

r (X)

is a surjective, continuous homomorphism of topological abelian groups. Here, Jmor
r (X) is

topologized by viewing it as a quotient of the complex vector space LrH2r+1(X)C, which itself
is topologized as a direct limit of its finite-dimensional subspaces.

(2) The morphic Abel–Jacobi map factors through cycles modulo rational equivalence, i.e. there
is a commutative diagram of the following form.

Zr(X)alg∼0
�� ��

Φmor
r �� ��������������

CHr(X)alg∼0

����
Jmor

r (X)

We also write Φmor
r for the vertical map in this diagram.

(3) We have a commutative diagram of continuous, surjective homomorphisms of topological
abelian groups

Zr(X)alg∼0
Φmor

r �� ��

Φr �� �������������
Jmor

r (X)

����
J a

r (X)

and the following commutative diagram of abelian groups

CHr(X)alg∼0
Φmor

r �� ��
��

��

Jmor
r (X)

����
J a(X)

��

��
CHr(X)hom∼0 Φr

�� Jr(X)

(4) The morphic Abel–Jacobi map on CH·(−)alg∼0 is functorial for all correspondences γ ∈
CHdim(Y )+r(Y × X), for smooth, projective varieties X and Y and integers r � 0, i.e. the
diagram

CHr(Y )alg∼0
��

γ∗
��

Jmor
r (Y )

γ∗
��

CHr+t(X)alg∼0
�� Jmor

r+t (X)

commutes, for all r.

Proof. To prove part (1), we use that the topology on Zr(X)0 is ‘generated by curves’. That is,
letting C range over all projective curves and Γ over all equidimensional correspondences Γ ∈
Zr(C,X), we define

θ :
⊕
C,Γ

Z0(C)→ Zr(X)
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to be the map that on the summand indexed by C,Γ sends c ∈ Z0(C) to Γ∗(c) ∈ Zr(X). Then
both θ and the restriction of θ to

⊕Z0(C)0 are quotient maps in the category of topological
abelian groups. To see this, recall that Z0(C) and Zr(X) are topologized as quotients of the abelian
monoids

∐
e,e′ C0,e(C)×C0,e′(C) and

∐
e,e′ Cr,e(X)×Cr,e′(X) and that θ is induced by the collection

of morphisms of the form

C0,e(C)× C0,e′(C)→ Cr,e+f (X)× Cr,e′+f ′(X)

induced from pairs of algebraic morphisms C → Cr,f(X), C → Cr,f ′(X). It follows that θ is continu-
ous, closed, and surjective. To see that θ induces a surjection from

⊕Z0(C)0 onto Zr(X)0 as well,
note that an element in the target has the form Z1−Z2 for a pair of effective cycles Z1, Z2 lying in the
same connected component of Cr,e(X) for some e. Thus, there is a curve C, closed points c0, c1 ∈ C,
and a morphism C → Cr,e(X) such that ci ∈ C maps to Zi, for i = 1, 2, so that θ(c1−c2) = Z1−Z2.

Likewise, the IMHS LrH2r+1(X) is generated by curves in the sense that⊕
C,Γ

Hsing
1 (C, Z(0)) ∼=

⊕
C,Γ

L0H1(C)→ LrH2r+1(X) (5.8)

is surjective. To see this, recall that we have

LrH2r+1(X) = π1(Zr(X)) ∼= Hsing
1 (Zr(X)) ∼= lim−→

e

Hsing
1 (Cr,e(X)).

By the Lefschetz theorem of Andreotti and Frankel [AF59], the map Hsing
1 (C)→ Hsing

1 (Cr,e(X)) is
surjective for some (possibly singular) curve C ⊂ Cr,e(X), and the inclusion C � Cr,e(X) determines
a correspondence. This shows that the image of Hsing

1 (Cr,e(X)) → LrH2r+1(X) is contained in the
image of (5.8), which establishes the claim.

Since J (−) is a left-exact functor, the induced map⊕
C,Γ

J0(C) � Jmor
r (X)

is a quotient map of topological abelian groups. Since the morphic Abel–Jacobi map is natural for
equidimensional correspondences, we have the following commutative square.⊕

C,Γ
Z0(C)0 �� ��

����

⊕
C,Γ
J0(C)

����
Zr(X)0 �� Jmor

r (X)

We know that the vertical arrows are quotients maps of topological abelian groups, and the top
arrow is surjective by Example 5.6. It follows that the bottom arrow is also a continuous surjection.

To prove part (2), we need to show that Φmor
r (γ) = 0 if γ ∈ Zr(X) is rationally equivalent

to 0. For such a γ, writing γ = γ+−γ− for effective cycles γ+, γ−, we have that γ+ can be joined to
γ− by a sequence of ‘elementary’ rational equivalences, i.e. those given by morphisms from P1

to Cr,e(X). In other words, γ will lie in the image of Γ∗ : Z0(P1)0 → Zr(X)0 for some correspon-
dence Γ ∈ Zr(P1,X). The result now follows from Theorem 5.3 since Jmor

0 (P1) = J0(P1) = 0.
Result (3) follows from Proposition 5.4 and part (2).
Every cycle class in CHdim(Y )+r(Y ×X) is linearly equivalent to an equidimensional correspon-

dence [Sus00, 3.2], and thus part (4) follows from Theorem 5.3 and part (2).

For a projective variety X, we have from Proposition 2.8 that the image of the morphism of
IMHSs

LrH2r+1(X)→ Hsing
2r+1(X, Z(r))
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is Nr+1H
sing
2r+1(X, Z(r)). Recall that for any abelian group A, the group NkH

sing
n (X,A) consists

of those classes supported on subschemes of dimension k. Note that we have NkH
sing
n (X, Q) =

NkH
sing
n (X, Q)⊗ZQ. Since Hsing

n (X, Z) is finitely generated, we have that NkH
sing
n (X, Z) is the kernel

of Hsing
n (X, Z)→ HBM

n (X − Y, Z) for a suitable closed subvariety Y . It follows that NkH
sing
n (X, Z)

is a sub-MHS of Hsing
n (X, Z). Define NkH

sing
n (X, Z(r)) = NrH

sing
n (X, Z(0)) ⊗ Z(r), a sub-MHS of

Hsing
n (X, Z(r)).
We obtain, in particular, a factorization

Jmor
r (X) � J (Nr+1H

sing
2r+1(X, Z(r))) � J a

r (X)

of the canonical map. In light of Theorem 5.7, we thus obtain the following new result about the
classical Abel–Jacobi map.

Corollary 5.9. For a projective variety X, the restriction of the classical Abel–Jacobi map to
cycles algebraically equivalent to zero factors as

CHr(X)alg∼0 � J (Nr+1H
sing
2r+1(X, Z(r))) � J a

r (X).

If X is also smooth, we have an exact sequence

H2r+1(X, Z(r))tor → (H2r+1(X, Z(r))/Nr+1H2r+1(X, Z(r)))tor

→ J (Nr+1H
sing
2r+1(X, Z(r)))→ J a

r (X)→ 0.

Proof. The exact sequence comes from the long exact sequence for Ext∗MHS(Z(0),−), using the fact
that

Γ(H) = HomMHS(Z(0),H) = Htor

for an MHS H of pure weight −1.

Remark 5.10. If X is smooth and projective, the surjection

J (Nr+1H
sing
2r+1(X, Z(r))) � J a

r (X)

is, in fact, a morphism of abelian varieties. This follows from Lemma 7.3 in § 7 below. As discussed
in § 7, the corollary thus indicates a possible counter-example to the conjectured universality of the
classical Abel–Jacobi map on CHr(X)alg∼0. Namely, if the map

H2r+1(X, Z(r))tor → (H2r+1(X, Z(r))/Nr+1H2r+1(X, Z(r)))tor

fails to be surjective for some smooth, projective variety X, then such universality fails. We know
of no such examples, but see § 7 for further discussion.

6. Using the morphic Abel–Jacobi map to detect cycles

Recall that a cycle is ‘Abel–Jacobi equivalent’ to zero if it is homologically equivalent to zero and
lies in the kernel of the classical Abel–Jacobi map (equivalently, if it lies in the kernel of the Deligne
cycle class map). Theorem 5.7 suggests that we can find cycles that are algebraically equivalent to
zero, Abel–Jacobi equivalent to zero, and yet not ‘morphic Abel–Jacobi’ equivalent to zero, meaning
not in the kernel of Φmor

r . Indeed, such cycles will exist precisely when the map

Jmor
r (X) � J a

r (X)

has a non-trivial kernel. In this section we give examples of varieties X and integers r for which this
holds by building upon examples constructed by Friedlander. Additional examples, arising from the
work of Schoen [Sch00], where the above map has a non-trivial kernel are discussed in § 8.

932

https://doi.org/10.1112/S0010437X07002278 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07002278


The morphic Abel–Jacobi map

In [Nor93], Nori developed a new and subsequently widely used technique that, among other
things, constructs non-trivial elements in the Griffiths groups of certain general complete intersec-
tions. Friedlander used Nori’s technique in establishing the following result.

Theorem 6.1 (Friedlander [Fri00b, 4.5]). Fix an integer r � 1. Suppose that W is a smooth
complete intersection in projective space, dim(W ) = 2r + 2, and the image of CHr+1(W )Q →
Hsing

2r+2(W, Q) has rank at least 2. Let Y be a sufficiently general member of a Lefschetz pencil of
codimension one complete intersections in W of sufficiently large degree. Then there exists an r-cycle
γ on Y such that

γ ∈ ker(LrH2r(Y ) sr−→L0H2r(Y ) ∼= Hsing
2r (Y ))

but

γ /∈ ker(LrH2r(Y )s
r−1−→L1H2r(Y ))⊗Q.

That is, there is a γ ∈ LrH2r(Y ) that is homologically equivalent to 0 but that remains non-zero,
even modulo torsion, in the penultimate stage of the sequence of maps

LrH2r(Y ) s−→Lr−1H2r(Y ) s−→· · · s−→L1H2r(Y ) s−→L0H2r(Y ) ∼= Hsing
2r (Y ).

We construct the examples we seek by building on those of Friedlander’s theorem.

Theorem 6.2. Pick an integer r � 2 and a variety Y , smooth of dimension 2r+1, as in Friedlander’s
theorem (Theorem 6.1). Let X = Y × C where C is a smooth, projective curve of genus at least
one. Then the kernel of

Jmor
r (X) � J a

r (X)
contains the quotient of a non-zero complex vector space by a countable subgroup; in particular,
it contains uncountable many non-torsion elements.

Proof. Recall that
Griffr(Y ) = ker(LrH2r(Y )→ L0H2r(Y )),

is the Griffiths group of r-cycles homologically equivalent to 0 modulo algebraic equivalence, and
note Griffr(Y )Q �= 0. The exterior product gives a map

× : Griffr(Y )⊗ L0H1(C)→ LrH2r+1(X)

and the composition of this map with LrH2r+1(X)→ Hsing
2r+1(X) is zero, since it coincides with the

composition of
Griffr(Y )⊗ L0H1(C)→ Hsing

2r (Y )⊗Hsing
1 (C)→ Hsing

2r+1(X).

On the other hand, the basic formulas satisfied by the cup and cap product imply that the
composition of

LrH2r(Y )⊗ L0H1(C)⊗ L1H1(C)
×⊗π∗

2−→ LrH2r+1(X)⊗ L1H1(X) ∩−→Lr−1H2r(X)
(π1)∗−→Lr−1H2r(Y )

coincides with the composition of

LrH2r(Y )⊗L0H1(C)⊗ L1H1(C)
∼=−→LrH2r(Y )⊗ L1H1(C)⊗ L1H1(C)

id⊗∪−→LrH2r(Y )⊗ L2H2(C)id⊗π∗−→ LrH2r(Y )⊗ L1H0(pt) ∩−→Lr−1H2r(Y ).

The map L1H1(C)⊗L1H1(C) ∪−→L2H2(C) is onto and the map π∗ : L2H2(C)→ L1H0(pt) ∼= Z is
an isomorphism, since C is a smooth projective curve of genus at least one. Moreover, the map

LrH2r(Y ) ∼= LrH2r(Y )⊗ L1H0(pt) ∩−→Lr−1H2r(Y )
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is the s-map. In Friedlander’s example, there are elements of Griffr(Y ) ⊂ LrH2r(Y ) that are not in
the kernel of the s-map (even tensor Q).

It follows that the image of

Griffr(Y, Q)⊗ L0H1(C, Q)→ LrH2r+1(X, Q)

is a non-zero Q-IMHS of pure weight −1 that maps to zero in Hsing
2r+1(X, Q(r)). Letting

K = ker(LrH2r+1(X)→ Hsing
2r+1(X, Z(r))),

we have that K is an IMHS having weights −1 � w � 0 and W−1(KQ) �= 0. Applying the long
exact sequence for Ext∗IMHS(Z(0),−) to the short exact sequence of IMHSs

0→ K → LrH2r+1(X)→ Nr+1H
sing
2r+1(X, Z(r))→ 0

gives the exact sequence

Nr+1H
sing
2r+1(X)tor → J (K)→ Jmor

r (X)→ J (Nr+1H
sing
2r+1(X, Z(r)))→ 0.

Here, Γ(Nr+1H
sing
2r+1(X, Z(r))) = Nr+1H

sing
2r+1(X)tor since Nr+1H

sing
2r+1(X, Z(r)) is pure of weight −1.

Since the map Jmor
r (X) � J a

r (X) factors through J (Nr+1H
sing
2r+1(X, Z(r))), we have that

J (K)/(Nr+1H
sing
2r+1(X)tor) injects into the kernel of Jmor

r (X) � J a
r (X). Finally, Proposition 3.3

shows that J (K) is the quotient of a non-trivial complex vector space (namely, KC/F
0(KC),

which is non-zero since W−1(KQ) �= 0) by a countable group (namely, the image of K), and thus
J (K)/(Nr+1H

sing
2r+1(X)tor) is also the quotient of a non-zero complex vector space by a countable

subgroup.

Corollary 6.3. For Y and r as in the theorem, there exist uncountably many non-torsion elements
in CHr(Y ) that are algebraically equivalent to 0, lie in the kernel of the Abel–Jacobi map, but do
not lie in the kernel of the morphic Abel–Jacobi map. That is,

ker(Φr) ∩ CHr(X)alg∼0/ ker(Φmor
r )

has uncountable rank.

7. On universality

Definition 7.1. For a smooth, projective complex variety X and an abelian variety A (respectively,
a complex torus A), a function

f : CHr(X)alg∼0 → A(C)

is regular (respectively, analytic) if given any smooth, connected, projective variety T of dimension
d, base point t0 ∈ T , and correspondence Γ ∈ CHr+d(T ×X), the map

T (C)t
→t−t0−→ CH0(T )alg∼0
Γ∗−→CHr(X)alg∼0

f−→A(C)

is induced by a morphism of varieties (respectively, is holomorphic).

Conjecture 7.2 (Universality of the Abel–Jacobi map; cf. [Lew99]). For a smooth, projective
complex variety X, the classical Abel–Jacobi map

Φr : CHr(X)alg∼0 � J a
r (X)

is universal among regular functions. That is, given an abelian variety A and a regular function

f : CHr(X)alg∼0 → A,
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the diagram

CHr(X)alg∼0
Φr �� ��

f
�������������

J a
r (X)

f���
�

�
�

�

A

can be completed to a commutative diagram by some (necessarily unique) morphism of abelian
varieties f .

In this section, we indicate two possible ways in which the morphic Abel–Jacobi map might lead
to a counter-example of the above conjecture. The first way has already been mentioned: namely,
as shown in Corollary 5.9, the morphic Abel–Jacobi map implies the existence of a factorization

CHr(X)alg∼0 � J (Nr+1H
sing
2r+1(X, Z(r))) � J a

r (X).

Now, the map J (Nr+1H
sing
2r+1(X, Z(r))) → J a

r (X) will have a kernel if and only if there is a non-
torsion class α ∈ H2r+1(X, Z) such that some non-zero multiple of α belongs to Nr+1H2r+1(X, Z),
but α itself does not belong to Nr+1H2r+1(X, Z). In other words, the universality conjecture will
fail for X provided that such an α exists.

We do not know of any examples of such elements, but Kollár [BCC92] (see also [SV05, § 2]) has
constructed a smooth, projective three-fold Y and a non-torsion class b ∈ Hsing

2 (Y, Z) such that b is
not algebraic (i.e. b /∈ N1H

sing
2 (Y ), Z)) but some non-zero multiple of b is algebraic. In other words,

Kollár provides a non-torsion counter-example to the ‘integral Hodge conjecture’. (The original
counter-examples to this conjecture were torsion.) Now, letting C be a smooth, projective curve of
positive genus, setting X = Y × C, and choosing c ∈ H1(C, Z) to be a generator, we can form the
external product

a = b× c ∈ Hsing
3 (X, Z).

Then a is non-zero, a non-zero multiple of a belongs to N2H
sing
3 (X), and yet there is no readily

apparent reason why a should belong to N2H
sing
3 (X).

Concerning the second kind of potential counter-example of universality, we recall the commu-
tative diagram

Zr(X)alg∼0
Φmor

r �� ��

Φr �� �������������
Jmor

r (X)

����
J a

r (X)

and the examples of Theorem 6.2 which show that Jmor
r (X) � J r

a (X) can have a kernel. This
does not immediately lead to a counter-example, because the group LrH2r+1(X) may well fail to
be finitely generated or of pure weight −1 and hence Jmor

r (X) = J (LrH2r+1(X)) is typically not
an abelian variety. The universality conjecture does, however, imply a very strong condition on the
IMHS given as the kernel of LrH2r+1(X)→ Hsing

2r+1(X, Z(r)), as we now show.

Lemma 7.3. Let X be a smooth, projective variety and suppose that

LrH2r+1(X) � H

is a quotient of IMHSs such that H is finitely generated (i.e. is an MHS) and has pure weight −1.
Then J (H) admits the structure of an abelian variety so that the composition of

CHr(X)alg∼0
Φmor

r−→Jmor
r (X) � J (H)

is regular.
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Proof. According to [Lew99, 12.23], it suffices to show that the onto map

π : CHr(X)alg∼0 � J (H)

is analytic, where J (H) acquires the structure of a complex torus via the surjection HC/F
0(HC) �

HC/(H + F 0(HC)) = J (H). Let T and Γ be as in Definition 7.1. Since the morphic Abel–Jacobi
map is natural for correspondences the composition of

T → CH0(T )alg∼0
Γ∗−→CHr(X)alg∼0 → J (H),

whose holomorphicity we seek to establish, coincides with the composition of

T → CH0(T )alg∼0
Φmor

0−→Jmor
0 (T ) Γ∗−→Jmor

r (X) � J (H).

Note that Jmor
0 (T ) = J0(T ), Φmor

0 = Φ0, and the map T → J0(T ) coincides with the classical
Albanese map by [Lew99, 12.11(3)], and thus is holomorphic. The composition of

Jmor
0 (T ) Γ∗−→Jmor

r (X) � Jr(H)

is holomorphic since it is induced from the composition of

L0H1(T ) Γ∗−→LrH2r+1(X) � H

which is a morphism of MHSs.

Theorem 7.4. If, for a smooth, projective variety X, the IMHS

KrH2r+1(X) := ker(LrH2r+1(X)→ Hsing
2r+1(X, Z(r)))

admits a quotient IMHS that is finitely generated (i.e. is an MHS), non-torsion, and of pure weight
−1, then the universality of the Abel–Jacobi map fails for X.

Proof. The existence of such a quotient KrH2r+1(X) � H ′′ implies that the surjective morphism
of IMHSs

LrH2r+1(X) � Nr+1H
sing
2r+1(X, Z(r))

factors as

LrH2r+1(X) � H � Nr+1H
sing
2r+1(X, Z(r))

for some MHS H such that H � Nr+1H
sing
2r+1(X, Z(r)) has kernel H ′′. Then

Nr+1H
sing
2r+1(X, Z(r))tor → J (H ′′)→ J (H)→ J (Nr+1H

sing
2r+1(X, Z(r)))→ 0

is exact and J (H ′′) → J (H) is not the zero map since J (H ′′) is uncountable. The result now
follows from the lemma.

8. Torsion cycles

In this section, we describe the restriction of the morphic Abel–Jacobi map to torsion subgroups,

Φmor
r |tor : (CHr(X)alg∼0)tor → Jmor

r (X)tor.

In particular, we show this map is surjective and give an explicit description of its kernel. In some
simple cases, we prove unconditionally that this map is, in fact, an isomorphism. We show it is an
isomorphism for projective varieties definable over a number field, assuming a common conjecture.
We also show in this section how the examples due to Schoen [Sch00] of varieties X for which the
group CHr(X)alg∼0 contains an infinite amount of l-torsion lead to additional examples where the
map Jr(X)mor → Jr(X) has a non-trivial kernel.
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Recall that there is a natural map

CHr(X, 1)→ LrH2r+1(X). (8.1)

The description of the kernel of Φmor
r |tor depends on the image of this map, which is not well

understood. Theorem 8.4 below characterizes the morphic Abel–Jacobi map on torsion subgroups
in terms of the image of (8.1), using the following lemma.

Lemma 8.2. For a quasi-projective variety U , the image of

CHr(U, 1)→ LrH2r+1(U)

is contained in Γ(LrH2r+1(U)).

Proof. Every class in CHr(U, 1) is supported on a closed subscheme of dimension at most r +1. By
naturality, it thus suffices to assume dim(U) � r + 1. In this case, we have that the map

LrH2r+1(U)→ HBM
2r+1(U, Z(r))

is an isomorphism of IMHSs by Proposition 2.8 and Theorem 4.22(4), and thus it suffices to prove
that the natural map

CHr(U, 1)→ HBM
2r+1(U, Z(r))

lands in Γ(HBM
2r+1(U, Z(r))). (In fact, this holds in all degrees.)

It suffices to prove this upon tensoring with Q. Let U � V be a closed embedding with V
smooth of dimension d. Then the map in question is isomorphic to

Hn
M,U(V, Q(t))→ Hn

sing,U (V, Q(t)),

where n = 2d − 2r − 1 and t = d− r and the subscripts U denote cohomology with supports. The
image of this map is contained in

Γ(Hn
sing,U(V, Q(t))) ∼= Γ(HBM

2r+1(U, Q(r)))

by [Jan90, § 8].
Remark 8.3. We guess that the assertion of Lemma 8.2 holds in all degrees, i.e. that the image of

CHr(U, n)→ LrH2r+n(U)

is contained in Γ(LrH2r+n(U)), for all r, n � 0. We know of a proof of this statement in the case
when U is projective, but omit it since it is not needed for the rest of this paper.

For a quasi-projective variety V , define

LrH2r+1(V )M := im(CHr(V, 1)→ LrH2r+1(V )).

(The subscriptM stands for ‘motivic’.) By Lemma 8.2, LrH2r+1(V )M is a sub-IMHS of LrH2r+1(V )
having trivial Hodge structure, and hence the short exact sequence of IMHSs

0→ LrH2r+1(V )M → LrH2r+1(V )→ LrH2r+1(V )/LrH2r+1(V )M → 0

induces a short exact sequence of abelian groups

0→ LrH2r+1(V )M → Γ(LrH2r+1(X))→ Γ(LrH2r+1(V )/LrH2r+1(V )M)→ 0

and an isomorphism

Jmor
r (V ) = J (LrH2r+1(V )) ∼= J (LrH2r+1(V )/LrH2r+1(V )M).
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Theorem 8.4. Let X be a projective variety and r any integer. There is a natural exact sequence

Γ(LrH2r+1(X)/LrH2r+1(X)M)⊗Q/Z→ (CHr(X)alg∼0)tor
Φmor

r−→Jmor
r (X)tor → 0,

where

Γ(LrH2r+1(V )/LrH2r+1(V )M) ∼= coker(CHr(X, 1)→ Γ(LrH2r+1(X))).

Proof. To simplify the notation, we set

H(V ) := LrH2r+1(V )/LrH2r+1(V )M,

for a quasi-projective variety V . We use a theorem of Suslin and Voevodsky [SV96, 9.1], which
implies that the natural map

CHr(V, n; Q/Z)→ LrH2r+n(V, Q/Z)

is an isomorphism for all n and V . The Suslin–Voevodsky result, together with the long exact
sequences in Chow groups and Lawson homology obtained from 0→ Z→ Q→ Q/Z → 0, yields a
short exact sequence

0→ H(V )→ H(V )Q → (CHr(V )alg∼0)tor → 0 (8.5)

and hence an isomorphism

H(V )⊗Q/Z ∼= (CHr(V )alg∼0)tor.

Let Y be a closed subvariety of X of dimension r. Using CHr(Y, 1) = 0 = LrH2r+1(Y ), ZY
r (X) =

CHr(Y ) ∼= LrH2r(Y ), and the localization sequences for Chow groups and Lawson homology, one
obtains the exact sequence of IMHSs

0→ H(X)→ H(X − Y )→ CHY
r (X)alg∼0 → 0. (8.6)

(Here CHY
r (X)alg∼0 denotes the subgroup of CHr(X) of cycles supported on Y and algebraically

equivalent to 0 on X.) The boundary map in the associated six-term exact sequence for
Ext∗IMHS(Z(0),−) has the form

CHY
r (X)alg∼0 → J (H(X)) ∼= Jmor

r (X). (8.7)

Using that

0→ LrH2r+1(X)→ LrH2r+1(X − Y )→ ZY
r (X)alg∼0 → 0

surjects onto (8.6), it follows directly from the definition of Φmor
r that (8.7) is the restriction of Φmor

r

to CHY
r (X)alg∼0 ⊂ CHr(X)alg∼0. Using now Lemma 3.4, we see that the restriction of Φmor

r to
(CHY

r (X)alg∼0)tor coincides with the composition of

(CHY
r (X)alg∼0)tor → H(X)⊗Q/Z � (H(X)/Γ(H(X))) ⊗Q/Z ∼= Jmor

r (X)tor,

where the first map is the boundary map in the long exact sequence for Tor∗(−, Q/Z) applied
to (8.6).

We now take inductive limits over all dimension r subvarieties Y of X. We have lim−→Y
CHr(X−Y )

= 0, and hence, using (8.5), we see that lim−→Y
H(X −Y ) is uniquely divisible. As a consequence, the

boundary map lim−→Y
(CHY

r (X)alg∼0)tor → H(X) ⊗Q/Z is an isomorphism.
We have shown that the restriction of Φmor

r to (CHr(X)alg∼0)tor factors as

(CHr(X)alg∼0)tor
∼=−→H(X)⊗Q/Z � (H(X)/Γ(H(X))) ⊗Q/Z ∼= Jmor

r (X)tor,

and the theorem follows.
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Corollary 8.8. If, for a given projective variety X and integer r, the cokernel of the map

CHr(X, 1)→ Γ(LrH2r+1(X))

is divisible modulo torsion, for example, if

CHr(X, 1; Q)→ Γ(LrH2r+1(X, Q))

is onto, then the morphic Abel–Jacobi map induces an isomorphism on torsion subgroups:

Φmor
r |tor : (CHr(X)alg∼0)tor

∼=−→Jr(X)tor.

Example 8.9. Recall that LrH2r+1(X) has weights −1 � w � 0, and thus the hypothesis of Corol-
lary 8.8 is met if GrW

0 (LrH2r+1(X, Q)) = 0. This holds, for example, if X is smooth and projective
and the map

LrH2r+1(X, Q)→ Hsing
2r+1(X, Q(r))

is injective. Using the results of [FHW04, § 6], we see that we have an isomorphism

Φmor
r |tor : (CHr(X)alg∼0)tor

∼=−→Jmor
r (X)tor

if X is smooth, projective, and belongs to the class C defined in [FHW04]. Moreover, in this case,
we have Jmor

r (X) = Jr(X) and Φmor
r = Φr, so that the classical Abel–Jacobi map induces an

isomorphism

Φr|tor : (CHr(X)alg∼0)tor
∼=−→Jmor

r (X)tor
for such X.

The class C includes all curves, all linear varieties (for example, all toric varieties), and all cellular
varieties, and it is closed under localization, blow-ups, and the formation of bundles, in the sense
made precise in [FHW04, 6.9].

To obtain more interesting examples of varieties satisfying the hypothesis of Corollary 8.8, we
need to assume a well-known conjecture.

Conjecture 8.10 (See, e.g., [Jan90, 5.20]). If U is a smooth, quasi-projective complex variety that
can be defined over Q, then the canonical map

CHr(U, n; Q)→ Γ(HBM
2r+n(U, Q(r)))

is a surjection for all n, r.

Theorem 8.11. Let X be a projective complex variety that can be defined over a number field.
Assume that Conjecture 8.10 holds when r = 0 and n = 2 for all smooth U definable over Q. Then
the morphic Abel–Jacobi map induces an isomorphism on torsion subgroups:

Φmor
r |tor : (CHr(X)alg∼0)tor

∼=−→Jr(X)tor.

Proof. Suppose that X is definable over a number field k. By [Jan90, 5.21], if Conjecture 8.10 holds
(for a fixed r and n), then the same statement holds for any smooth U definable over k (for the
same r and n). Let S be a (possibly singular) complex projective surface that can be defined over k
and choose a closed embedding S � PN , defined over k, with open complement U . Then one easily
sees [Jan90, 8.9] that the surjectivity of CH0(U, 2; Q)→ Γ(HBM

2 (U, Q(0))) (which we are assuming,
since U is definable over k) implies the surjectivity of

CH0(S, 1; Q)→ Γ(Hsing
1 (S, Q(0))).

We claim now that Γ(LrH2r+1(X, Q)) is generated by classes coming via equidimensional corre-
spondences Γ ∈ Zr(S,X) from classes in Γ(L0H1(S, Q)) ∼= Γ(Hsing

1 (S, Q(0))), where S ranges over
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all projective surfaces definable over k. This will prove the theorem, since the diagram

CH0(S, 1; Q)
Γ∗ ��

��

CHr(X, 1; Q)

��
L0H1(S, Q)

Γ∗ �� LrH2r+1(X, Q)

commutes. (The fact that equidimensional cycles induce maps on Chow groups and the commuta-
tivity of this square follow from the description of Chow groups in terms of equidimensional cycles
given by Suslin; see [Sus00, 2.1] and [Voe00, 4.2.9].)

To establish the claim, recall that LrH2r+1(X) = π1(Zr(X)) = Hsing
1 (Zr(X)) and that Zr(X)

is the homotopy-theoretic group completion of Cr(X). Hence, we have

LrH2r+1(X) ∼= Hsing
1 (Cr(X))⊗

Hsing
0 (Cr(X))

Hsing
0 (Zr(X)).

In particular, LrH2r+1(X) is a filtered colimit of copies of the homology groups Hsing
1 (Cr,e(X)),

where Cr,e(X) is the Chow variety of dimension r, degree e cycles on X. Moreover, for each e, the
map Hsing

1 (Cr,e(X)) ∼= L0H1(Cr,e(X)) → LrH2r+1(X) is induced by a ‘universal correspondence’
Γ : Ze(Cr,e(X),X) (given by the identity map on Cr,e(X)) and hence, by Theorem 4.22(5), is a
morphism of IMHSs. Since Γ(−) commutes with filtered colimits, we have

Γ(LrH2r+1(X, Q)) = lim−→Γ(LrH2r+1(Cr,e(X), Q)).

The Andreotti–Frankel theorem [AF59] shows that, for each e, there is a surface Se ⊂ Cr,e, so
that the map

H1(Se, Q)
∼=−→H1(Cr,e(X), Q)

is an isomorphism. This shows that Γ(LrH2r+1(X, Q)) is generated by classes coming via corre-
spondence from classes in Γ(Hsing

1 (Se, Q(0))). In fact, we claim that the Andreotti–Frankel theorem
allows us to take Se to be definable over k, and hence the result follows. Indeed, let Y be any
projective variety definable over k, say of dimension n. The Andreotti–Frankel theorem amounts
to the assertion that a smooth, affine complex variety of dimension d has the homotopy type of a
d-dimensional CW complex. Thus, if we take Yn−1 to a subvariety of Y that is definable over k,
that contains the singular locus of Y and all components of Y having dimension less than two, and
for which U = Y − Yn−1 is affine, then we have HBM

2 (U, Q) = HBM
1 (U, Q) = 0 by Poincaré duality,

as long as n > 2. Thus, Hsing
1 (Yn−1, Q) ∼= Hsing

1 (Y, Q), for n > 2, and the claim is established by
induction on n � 2.

At one time, it was conjectured that the classical Abel–Jacobi map itself ought to induce an
isomorphism on torsion subgroups:

Φr|alg∼0,tor : (CHr(X)alg∼0)tor
?∼=−→J a

r (X)tor, (8.12)

for X smooth and projective. More generally, it was conjectured that the map

Φr|tor : (CHr(X)hom∼0)tor → Jr(X)tor (8.13)

ought to be injective.
The map (8.12) is always surjective. In codimension one (i.e. r = dim(X) − 1), the injectivity

of (8.12) and (8.13) are easily seen to hold; in codimension two (r = dim(X) − 2), the injectiv-
ity of these maps is a consequence of the Merkur’ev–Suslin theorem [MS82] (see [Mur85, 10.3]);
and for zero-cycles (r = 0), the injectivity of these maps is a theorem of Rojtman [Roj80] (see
also [Blo79]). The injectivity of (8.12), however, is now known to fail in general. Schoen [Sch00]
has constructed examples of a smooth, projective complex variety X of dimension d, definable
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over a field of transcendence degree one over Q, for which CHr(X)alg∼0 has infinite l-torsion for
all 0 < r < d − 2 and some prime l. Since Jr(X)tor ∼= (Q/Z)ν for some integer ν, the Abel–
Jacobi map cannot be injective on (CHr(X)alg∼0)tor for such varieties. Soulé and Voisin [SV05]
have also shown that (8.12) can fail to be injective for four-folds with r = 1. In earlier work, Totaro
[Tot97] constructed examples of a smooth, projective variety X, definable over a number field, for
which (8.13) fails to be injective. In light of Theorem 8.11, it is interesting to note that there are
no known examples of the failure of the injectivity of (8.12) for varieties definable over number
fields.

We now show how Schoen’s examples give rise to additional examples of varieties X for which
Jmor

r (X) � J a
r (X) has a kernel. We first recall the details of Schoen’s construction.

Theorem 8.14 (Schoen [Sch00]). Suppose that k is an algebraically closed subfield of C, W is a
smooth, projective k-variety, and E is an elliptic curve over C whose j-invariant does not belong
to k. Then for any integer r � 0, the map

CHr(W )⊗ CH0(E)tor → CHr(W ×k E)

given by external product of cycles is injective.

Remark 8.15. Schoen’s theorem is actually more general than this: one may replace k ⊂ C with any
extension of algebraically closed fields, even those of positive characteristic.

Schoen also proves [Sch02] that for any algebraically closed field k of characteristic zero, there
exist a smooth, projective three-fold W (in fact, W can be taken to be an abelian variety) such that
CH1(W )⊗Ql/Zl has infinite corank for some prime l. Taking k = Q and picking E to be an elliptic
curve over C whose j-invariant does not belong to k, then since CH0(E)tor ∼= (Q/Z)2 ∼= ⊕

l(Ql/Zl)2,
we see that CHr(W )⊗ CH0(E)tor has infinite l-torsion for some prime l.

Theorem 8.16. Suppose that k, W , and E are as in Theorem 8.14 and that CHr(W )⊗Ql/Zl has
infinite corank for some prime l. Then the kernel of

Jmor
r (W ×k E)→ Jr(W ×k E)

contains the quotient of a non-zero complex vector space by a countable subgroup. In particular,
there exists a complex abelian four-fold V , definable over an algebraically closed field of transcen-
dence degree one over Q, such that the kernel of

Jmor
1 (V )→ J1(V )

is uncountable.

Proof. Observe that elements of CH0(E)tor are algebraically equivalent to 0 and hence we have an
isomorphism

CH0(E)tor ∼= L0H1(E)⊗Q/Z.

Moreover, the kernel of CHr(W )→ CHr(WC)→ LrH2r(WC) is divisible (since CHr(W )/alg ∼ 0 ∼=
LrH2r(WC)) and thus

CHr(W )⊗ CH0(E)tor ∼= LrH2r(WC)⊗ L0H1(E)⊗Q/Z.

The image of the injection in Schoen’s theorem is contained in (CHr(WC ×C E)alg∼0)tor and there
is a natural surjection

LrH2r+1(WC ×C E)⊗Q/Z � (CHr(WC ×C E)alg∼0)tor,

coming from (8.5) in the proof of Theorem 8.4. Moreover, the injection in Schoen’s theorem coincides
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with the composition of

CHr(W )⊗ CH0(E)tor ∼= LrH2r(WC)⊗ L0H1(E)⊗Q/Z

→ LrH2r+1(WC ×C E)⊗Q/Z � (CHr(WC ×C E)alg∼0)tor,

where the first map is induced by external product in Lawson homology, and thus the map

LrH2r(WC)⊗ L0H1(E)⊗Q/Z→ LrH2r+1(WC ×C E)⊗Q/Z

is injective.
We claim that the map

Griffr(WC)Q ⊗Q L0H1(E, Q)→ LrH2r+1(WC ×C E, Q)

is not the zero map. As in the proof of Theorem 6.2, this will suffice to complete the proof. Note
that CHr(W )⊗Ql/Zl

∼= LrH2r(WC)⊗Ql/Zl. The hypotheses imply that the map

Griffr(WC)⊗ L0H1(E) ⊗Ql/Zl → LrH2r(WC)⊗ L0H1(E) ⊗Ql/Zl

is not the zero map, and hence that

Griffr(WC)⊗ L0H1(E)⊗Ql/Zl → LrH2r+1(WC ×C E)⊗Ql/Zl

is non-zero.

Note that Schoen’s examples give torsion cycles that lie in the kernel of the classical Abel–Jacobi
map and are algebraically equivalent to zero. The previous result shows that these torsion cycles
entail the existence of non-torsion classes in

(ker(Φr) ∩ CHr(X)alg∼0)/ ker(Φmor
r ).
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