On the asymptotic periods of integral functions
By J. M. WaITTAKER, Pembroke College, Cambridge.
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§1. A period of a function f(2) is defined to be a number w (5=0)
such that

(1.1) A, () =f(z + w) — f(2)

is identically zero; and it is not a difficult matter to show that an
integral function may either have no periods or else a single sequence
kA, k=41,4+2,....

The question may be asked ‘* Are these the only values of w for
which A, (z) can be ‘smaller’ than f(z), or can there be other values
of w for which A, (z) is ‘smaller’ than f(z), but is not identically
zero?” The term “smaller” needs precise definition. If f(z) is an
integral or meromorphic function it is most natural to interpret it as
meaning ‘“ of lower order,”” and it is in this sense that the word will
be understood. With this interpretation it is easy to see that in fact
there may be more than a single sequence kA of values of w for which
A, (2) is smaller than f(z). For example the integral function R (2)
defined by
(1.2) R(z) =

n

e21rin!z

I M8

1 n!!
is of infinite order, but if p is any rational number
R(z+p)— R(2)
is of order 1.
Numbers with the property under discussion will be called
asymptotic periods. Their definition is then as follows:

DEer. A number B(3=0) is an asymplotic period of an integral or
meromorphic function f(z) if Ag(z) is of lower order than f(z). The set
of all asymptotic periods of f (z) is denoted by B.

This definition inclades the case of a function f(z) of infinite
order. A, (z) must then be of finite order. It is evident that, if 8, y
are asymptotic periods, then — B, B+ y have the same property.
The following result is proved.

https://doi.org/10.1017/50013091500027322 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500027322

242 J. M. WHITTARER

If f (2) is an integral function, B is a linear set of measure zero.!

An important part in the proof is played by an extension of
Guichard’s theorem, that every integral function has a finite sum.
As this result is of independent interest it is discussed at the
beginning, instead of in its proper place in the proof of the main
theorem.

Another part of the proof consists in showing that a function of
order < 1 cannot have any asymptotic periods. More generally, this
is true if
(1.3) lo_g_;.llﬂz)_%o.

§2. The finite sum of an integral function. It was proved by
Guichard? that if f(z) is any given integral function and w =0, an
integral function g (z) exists with the property

(2.1) 9=+ w) —g(2) = f(2).

Guichard’s method is not well adapted to elucidate the relation
between the orders of f(z), g(z), an essential matter for the applica-
tion which we have in view; but by an extension of the alternative
method by which Appell and Hurwitz established (2.1) it is possible
to prove the following result.

TueEOREM 1. If f(2) is an integral function of finite order p, there
18 an integral function g (z), of order < max (1, p), for which (2.1) s
satisfied.

There is no loss of generality in taking w = 1. Let

(2.2) f@@)= X a,z~
n=0
The function
(2.3) @) =g | E—
: nel®) =35 o, @— 10
when C, is the circle |¢| = (25 + 1) 7 and s is an integer, has the
property?

1 Added in proof. B may be a non-denumerable set. See Journal London Math.
Soc., 8 (1933), 119-125. .

2 Guichard, 1. See Norlund, 2, for an account of Guichard’s work and also of the
work of Appell and Hurwitz mentioned below.

3 Norlund, 2, 8. Af(z)=f(z + 1) ~ f(2).
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(2.4) Ay, o (2) =nz—1, n=1,2,....),
so that a solution of (2.1) (with w =1) is

K an
(2.5) 9()= 5 ~thnir,e, (2)

provided that s, sp, .... can be chosen in such a way that the serizs
converges uniformly in any finite region.

If p <1 it is sufficient to take s, =8, = .... = 0, and the order
of g(2) is then < 1. For, let p~! > ¢ > 1, so that!
(2.6) |@, | <nn, (n = ny).

Now, writing ¢ = (2s + 1) me®,
’ n! (27 e@s+rlzi (2 4 1) df
‘!ﬁn,s(z)lé——I e n ( + )’ﬁn
2ndo  |et —1]|{(2s + 1) =}
(2'7) < An!e2s+Nn(iz| +1){2‘g + 1) "}l—n’
where A4 is independent of n, s, z. Hence
a, ln[’n~l-1,0(z)
n-41

K always denotes a constant, but not always the same constant.
Denoting by M,(r) the maximum of |g(z)| for |z|=r, the last
inequality shows that

o
< K X pr-agrlzl < Kemlel,
n=1

g

n=0

(2.8) ' lim 195114—0(_’-) <

r=—> ©

H

so that g () is of order < 1.
If p = 1, consider the function o (n) defined by
-1
(2.9) ¢ (n) = min (M—'—> .
m=n \ mlogm
o (n) is an increasing function, and
; log |a,| ! 1
2.10 - lim 261l &
( ) om)~ wSw nlogn p
Again, writing o (2) = 1 — o (n),
(2.11) e {(2s, + 1) a} " < e~?, (n=1),
provided that
(28, + 1) 7 > en*™,
and this is so if
(2.12) 8, = [n2®],

1 Valiron, 4, 40.
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It will be shown that with this choice of s, 85, .. .., (2.5) defines
an integral function of order p.

Corresponding to a given value of r = | z| define the integer
(2.13) N (r) = [(8r)V=®)].
Then (2.7), (2.9), (2.11), (2.12) show that

Ay P, s, (2)‘

'v,,(z)= P |

<n W pr{(2s, + 1) 7}~ exp {(28, + 1) 71}

< exp{—mn 4+ T ¢}

(2.14) < e m8 (n > N),
since
n— Tne®y — n > 1 n— 1 nen)+a(2)
8 8
7 o
= §n{l — po@—at} > 0,

Now take a fixed integer p and write o (p) = a. Then

N N
2 v, (2)< Z exp{—n+ Tn*® 1y}
n=p n=p

N
=< 2 exp{—n+ Tnr}

n=p
(2.15) <N (@) pn),

where u (r) is the greatest term of the last series. pu(r) is determined
by finding the maximum value of the function

— a4 Tz°r,
namely
<l — l> (Tar)lt=a),
a
so that
(2.16) p(r) = exp {(_1- — 1> (7a,.)1/(1—a)}_
a

Now, making use of (2.14), (2.15),

My(r) < %Ov,,(z) +N(@r)p(r)+ $ e— "8,

n=N+1

https://doi.org/10.1017/50013091500027322 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500027322

ON THE ASYMPTOTIC PERIODS OF INTEGRAL FUNCTIONS 245

whence, by (2.13), (2.16),

Tim loglogMo(r) .y i _ -1
,ll:nw -—log—r——— = (1 a) = {0 (p)} .

Finally, make p tend to infinity, and use (2.10).

It follows that g(z) is of order =< p. On the other hand it is
evident that g (z) is of order = p, so that g (z) must be of order p.

§3. TaeEorEM 2. An integral function has no asymplotic

periods if
(3.1) lim l(_’gi”_(i) =0,
r—>m r
or if
. 2
(3.2) lim (tog r)? log M (r) —o.

S r

The importance of a hypothesis such as (3.2), involving a lower limit

instead of an upper limit, will be seen at a later stage of the proof of
the main theorem.

We need three lemmas of Phragmén-Lindelof type.

Levma 1. An integral funclion is a constant if it salisfies the

conditions
(3.3) | ]E 1%1—”7@ —o0,
(3.4) If(—=2)=C, (z = 0).

This result is due to Polya and Szego.! :

LemMa 2. In Lemma 1 (3.3) may be replaced by

. log r)? log M (r)
35 lim ( = 0.
( ) F—> VT

The function

h(z) = f(2) exp(— oz! > ~(a>0),

log 2
is regular in the domain D defined by

100 <7 < R, —n<bl<m, (z = rei),

1 Pélya and Szego, 3, 149.
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z4/log z is taken to be the branch which is real and positive on the real
positive axis. Now

— exp {_ ov/r (logr cos 36 + 6 sin %0)} ,

(logr)? + 62
and
coséalogr+05inl0>710gr <O§ < 127->,
>_"_, T <9< 7))
= 2/2 2 = = ")
so that in D '

AE 1S I @lexp |- 2L
By (3.5), B may be chosen so that
a\/R
log M (R) < 5 log B
Hence, by the maximum modulus principle,
| (2)| < max {C, 1, M (100)}

for all points z in D. Finally, keeping z fixed, let ¢ — 0. It follows
that, for all values of z,

If (2)| < max {C, 1, M (100)},
and hence f(z) is a constant.
LemMA 3. If an integral function f(z) satisfies either (3.3) or

(3.5) and
(3.6) ’ If(— z)| = Ce”’, (0<a< 3), (x=0),

there is a constant A such that for all values of z
(3.7) If(z)| < de”.

It is only necessary to apply the arguments of the preceding
lemmas to the function :
f (@) exp {—(—2)}

Theorem 2 is a simple deduction. Suppose, if possible, that a
function f(z) of order p satisfies either (3.1) or (3.2) and has an
asymptotic period B, so that A,(z) is of order o <p. In the former
case p < 1, but in the latter p may be any finite number or infinity.
There is no loss of generality in taking B real and positive. More-
over we may suppose that the zeros a,, a;, ...., of f(z) have p as
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exponent of convergence. This can always be secured by adding a
suitable constant to f(z). Then, if 0 <t < 8,

J+nf) =10+ As(e+5B),

fE—aB)=F) = 5 Ay(t—sB),
so that -
[f(tLnB)| = M (B) + nds{(1 + n)B},

when Mg(r) denotes the maximum modulus of A,(z). Hence if
o<2r<p and =0,

If (£2)| < M@B) + %Mﬂ(zm

2
< Ke*™,

and so the function % (z) defined by
h(z*) =f(2) f(—2)

k()| =1f (V) f(—v2) | < K2, (z20).

Now h(z) satisfies (3.3) or (3.5) according as f(z) satisfies (3.1)
or (3.2), and it follows from Lemma 3 that the order of A (z) cannot
exceed 7.

is such that

On the other hand the zeros of %4(z) are af, 02, .... and these
have exponent of convergence p/2. Hence the order of A (z) cannot
be less than p/2. The contradiction implies that f(z) has no
asymptotic periods.

§4. LEMMA 4. The ratio of two asymptotic periods of an integral
function is real. ‘

If possible, let B, y be asymptotic periods whose ratio is not real.
It follows from the identity
-1 k-1
Jlat kB +1ly)=f() + Z A (z+8y) + T Ag(z+ ly +th)
8= =
that if |z| =7,
f(Z) =f(20) + z A'y (23) + zt Aﬁ (z,t),

where z;is in a ¢ period parallelogram ’ with the origin as one vertex,
21, 22, .... are points inside the circle |z] =7, each in a different
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‘¢ period parallelogram,” and the same is true of z,",2,", .... 1n each
case the number of points does not exceed K (B, y)r. Hence
M= M(|Bl+iv])+ KB, y) r{Mg(r) + M, ()},

and this is evidently incompatible with the hypothesis that A, (2), A, (2)
are of lower order than f(z).

§5. LEMMA 5. Let fy (2), f2(2) be periodic integral functions of
order p, whose periods w, w/u are real, and let

9(2) =f1(2) — f2(2), z=x+ .
If, for some v < p,
(5.1) lg(z+iy) | <Ke",  (|y[Za),

where K is independent of x, then u is a rational number.

p may be w. There is no loss of generality in taking « = 27,
If p is not rational, consider the function f, (—i¢ logw), any branch of
the logarithm being chosen. This function is regular and uniform in
every annulus O0<R <|w|=< R’, and so can be expanded in a
Laurent series

€0 E el 1
Toa,wt 4+ T h,w

n=0 n=1
so that writing z = — 4 logw,
(5.2) fi(z) = Z a, e 4+ E b, ez,
In the same way "o .
(5:3) : falr) = 2 Cc, ez L E d, e "riz,

n=0 =1
As f)(z) is of order p at least one of the series in (5.2), say the
first, is an integral function of order p.
Now, as p is irrational, the exponentials in (5.2), (5.3) are all
distinet, and so ' :
7
a,e"? = lim lj e 2= g (t+ ty) dt
P> 27 -7 .
and thus, if y = 0,
N 7
lealew < Tim 2| lg@tiy)|a
T—>» T

ar )
(5.4) <G (y),
where
G (y) = max lg (= + i) ].
By (5.1), e
(5:5) G (y) < Kev', (y = a).
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Now the function
F(w)= % a,w", w=r e,
n=0

is an integral function. Let 4 (r;) denote its maximum modulus,
A (r) = max |F(w)',

. lwl =r
y its order, and
a(r)) = max [a,|r"
nso

its maximum term. (5.4) shows that

(5.6) a (e) < G(y), (y = 0).

Moreover if M, (r) denotes the maximum modulus of F (e¥),
(5.7) Mo(y) S A4 (o), (y = 0).

For M, (y) is the maximum of | F (w)| on the curve

(logry)® + ¢* =47, (—r=¢=m),
in the w-plane, and this lies inside the curve
logr, =1y.

Now if y is finite,!

(5.8) igg;g; -1, asr—> o,

and so by (5.6}, (5.7),
lim 108G(y) > 1.
i~ log My (y)

Moreover
fim ‘oglogMo(y) _
y—>o logy
Hence
Tm l0gleC® - . .
y—> log y
and this contradicts (5.5).
Again, if y is infinite,?
(5.9) Tim logloga(r) _ , ,
r—>w logr
whence by (5.6)
T log log G (y) _ w®,

y—>wm Yy
which likewise contradicts (5.5).

1 Valiron, 4, 32.
2 ¢f. Valiron 4. (5.9) is not explicitly stated but follows readily from equation
(2.9) on p. 31. :
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§6. Functions of order > 1. It follows from Theorem 2 that an
integral function of order <1 cannot have any asymptotic periods.
It is convenient to take next the case of a function of order p>1
(including the case p = ).

By Lemma 4 the asymptotic periods all lie on a line through the
origin, say the real axis. Let B, (o <p), denote the set of real
numbers B such that Az(z) is of order < ¢. The sets B, form an
increasing sequence with limit B.

Take a fixed value of o > 1. If B, is not null, let 8 be a member
of it. In accordance with Theorem 1 Ag(z) can be expressed as the
B-difference of a function g, (z) of order < o, so that

fE+B)—f(z)=g1(z+ B) — g1 (2).
Thus the function
(6.1) 1(2) =1(z) — 9.1 (2)

is periodic, of period 8, and of order p. Write
Fi(y)= max |fi(z+y)—fi@ +w)l,
02,28

and choose 7 so that o <7 <p. There are two cases to consider.

Either _

6.2) Py s, (jy|za),

or

(6.3) F, (y) > e'?!7, for arbitrarily large values of |y|.

Take the first case. Associated with y, any other member of B,,
there are functions g, (z), f; (2), F2 (y) corresponding to g, (2), f1 (z), Fi(y).
f2 (z) has period v, order p, and

Fy(y)= max [falx+1y) —[f2(2" +99)].
0sxr, 2y

It will be shown that (6.2) implies that

(6.4) Foly) < 27, (yl=b)
For consider the function g (z), of order < o, defined by
(6.5) 9(2) = f1(2) — f2(2) = 92 (2) — 91 (2).

If (6.4) is false, then corresponding to a given value of K,
numbers z, ', ¥ can be found such that
0=z 2 =max(f,y), |yl>K,
and
lg (@ +1y) —g (& + )| = |falz + 5y) — fa(z' + 1)
— A +iy) — [z +iy)|

> elvi’,
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Hence, writing
Mo (r) = max |g(2)},

2Mo(2lyl) Z 19 (x+ i) |+ |g (=’ + iy)|>elvl,

and this is impossible if K is sufficiently large, as the order of g (z)
does not exceed o.

(6.4) being thus established, it follows that if z, 2’ are any real
numbers then
|g (x+1y) —g (=" +iy) | = [ fo (@+3y) —fo (2" +3y) |+ fi (2+iy) — frla'+iy) |
= Fa(y) + Fi(y)
=3V’ (ly|=o),

and soif — 0 <z < 0,

lg(x + iy) | = g (iy) |+ Belv!”
< delvl, (lyi=d),

since ¢ (z) is of order < o < 7.
It now follows from Lemma 5 that y is a rational multiple of B.

The alternative case, expressed by (6.3), is dealt with by a
different argument.

Let N bea ‘“large” positive integer and let ¢ <A <7. At least
one of + =, say «, is alimit point of the numbers y for which (6.3)

is satisfied. Hence there is a sequence y;, ¥z, ...., tending to =,
such that

(6.6) P (y,) > exp (4}) (p=1,2,....),

and also

(6.7) >N +p+ 1)y

Corresponding to y,, a member of this sequence, let z;, 2, be
points of (0, B) for which

[f1 (@1 + 5y,) — f1 (=2 + ) | = F1(yp).

Mark in the f,-plane the values of f) (z) corresponding to values
of z=2x2+ 1y, 0=z =pB. The resultiug curve is continuous and
closed, since f; (z) has period B, and is contained in the circle of centre
Jf1(zy + ty,), radius F,(y,). Now divide this circle into annuli by
drawing concentric circles of radii sFy(y,)/S, (s=1,2,...., 8~ 1),
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where S = 2¥+? and denote by E, the set of points z for which the
fi-curve lies in the s annulus. To make matters precise, let E; consist
of the points z in (0, B) for which

(s—1) 81 F, (3,) < [falar+ i) —fi (v + i9,) | <88~ Fy (), (s =1,2, .., 8=1)
< Fi(yy), (s =9).
Evidently ,- :

mE’1+mE2 + .. "I_ mESz,Bﬁ
so that there is at least one value of k for which
mE, <BS L

As the fi-curve is continuous, and passes from the centre of the
circle of radius F, (y,) to its circumference, it must cut the concentric
circle of radius (k — })S~1F,(y,). That is to say, there is a point
£y in (0, B) such that

[f1(€p + ) — fr (21 + iy,) | = (B — 3) S~ Fi(y,)-

On drawing a diagram it is evident that if z is a point of K,

(s k), then '
/1 (& + iyp) — fr (& + i) | Z 3871 F1(9,),

and hence the values of z in (0, 8) for which this mequa,hty is satisfied
form a set E® of measure = (1 — S—1)8.

As f1(z) has period B this means that the values of ¢ in (0, B
for which

Ifl(fp'*"zyp) —-fl(fp+t+zyp)] IS lFl(yp
form a set 7', of measure = (1 — §-1)B. Let

T = Tl T2 T3 Y
so that

(6.8) mT=(l— % 2-r-Y)g— (1 —2-F)8.
p=1

It will now be shown that the sets 7, B, have no members in
common. -

If T'B, is not null, let y be a member of it. g, (z), f;(2), g (2) are
defined as before, and

g(gp + zyp + 7 - g(§p+ iyp _fl ‘fp + ?‘yp‘*' 7 _f1(§p+ /‘:yp)'
since f; (z) has period y. Hence for all values of P
2o (24,) Z |9 () + 69, + 9) — 9 (5 + i9p) |

Ifl (fp -+ sz +y)— N (fp + zyp)'
= 3871 Fi(y,) >3 S~ 'expy; > expy,,
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by (6.7), and this is false, since it implies that

Tm loglog Mo(r) - .
s @ logr

whereas ¢ (z) is of order < ¢. Hence the set T'B, is null, and so if
B,* denotes the part of B, in the interval (0, 8), by (6.8),

m B, * < 2-Y8,
As N is independent of B, o this implies that

m B,* = 0,
and so
mB,=0

for each . Hence, finally,

mB =0.

§7. Functions of order 1. The remaining case, p =1, can be
reduced to the one just discussed. It is enough to consider a function
of regular growth 4.e. such that

log log M (r)

. 1, .
(7.1) Tog 7 -1, a8 7r->
For if

lim loglog M (r) <,
e logr
then

lim (logr)?log M (r) _ 0

rF—>®0 7

and so, by Theorem 2, f(z) has no asymptotic periods.
If mB > 0, then mB, > 0 for some 0 < 1. It will be shown that
t{hris hypothesis leads to a contradiction.
LemMa 6. Ifa>1 and
(7.2) o G(r) = § e~y
then "

(7.3) log log G () N

log logr a—1

, a8 7 —> .

This is well known. It is easy to prove it by calculating the
maximum term of (7.2) and using (5.8).
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Let 7, 8 be positive numbers satisfying the conditions

c<r<l, 8<min<—l, I-T).
9 2
(7.1) implies that
(7.4) ri=¢ <log M (r) < r'+3, (r = 1),

Now define an auxiliary function

(7.5) F(z) = % e~ £(227 ),
=1
where ?
(7.6) c(p) = 20-n2Ptl-1
If r ='z| =22, (7.4) gives
max |e°@ f(2%)] = ¢~c Y (22q+l)

06 2n
>exp {—c(q) + 2(1-a)2'1+1} = eclo), (7= ),

while
max |[e~c® f(22%z) | = ¢—c(») Jf (227+27)
05605 2r
<exp{—c(p) + 20+HEP+20y
Now if p < g,

¢ (@) + ¢ (p) — 20+OE N > ¢ (g) — 2UHHEP 20
> X(2-3) _ X(1+a)21’-ﬁ—1+s
> X724, (9 = %),
where X = 22, gince

2 — 36> 1—-;—8- + 1+ 8.
Again, if p>gq,
¢(@) +c(p) — 2005 Yo (g > gy,
when Y, = 22°.
Denoting by M (r) the maximum modulus of F (z), and writing
€ = 2 — 43, these inequalities show that

Mp(r)>e@{1 —ge—¥ — T e~¥r%, (g=q5)
p=aq+1

> %60(0)’ (q ; QS’)'
Hence

log My (r) > 220-821-1 _[og 2
—_ %,.2(1-6) — log 2,

so that F (z) is of order = 2 — 2§ > 1.
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Let B be a member of B,, so that Ag(z) is of order < o, and
Ag (2)| < Ke™", (r=0).

Now, writing ¢, = e~¢?),
¥,-1

F(z+B)—F(z)= §1 cp = Bg(Yp2+ 8B),

so that
My (r) = max |F (z+ B) — F (z) |

<K 3,7, exp{Y} (r+|B|)"}
p=

<K % ¢, Y, exp (2Y,7")
p_.

> Yoexp{—4}Y2~2 4+ 2Y,r}
p=1

<K % exp {—n2~2% 4 4nr7}.

n=1

Hence, by (7.3),

— log log -Mo (r) < 2—-28
rhen:o lOg rT — 1-—256 ’
or
I—iE ].Og 10g -MO (7') é 2_28>7<2 — 28.
s logr 1—25 '

Thus B is an asymptotic period of F(z). F (z) is therefore a
function of order > 1 whose B-set contains a subset of B, of positive
measure, and this is impossible.

§8. THEOREM 3. If B denotes the set of asymptotic periods of an
integral function f(z), either
(i) B s null,
or (ii) B consists of u set of poirits kN, k=41, 42,
or (ili) B lies on a line through the origin, is everywhere dense,
and has measure zero.

It has been seen that B lies on a line through the origin and that
m B = 0. Toshow that the only possibilities are the cases enumerated
above a further lemma is needed.

LevmA 7. Let E be a non-null linear set of points with the property
that if x, y are any members of K, —z, x 4+ y are also members. Then
either (a) E consists of a set of points kA, or (b) E is everywhere dense.
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If E is not everywhere dense, let (a, ) be an interval not
containing a member of E. Let o’ be the upper bound of members
of £ < a, and B’ the lower bound of members of £ = 8. Then there
are no members of E inside the interval (8, 28’ — a’). For suppose
that such a member, z, exists. As f’is a lower bound of members of
E there is a member y satisfying the inequality

B <y< ?_i‘zﬂ

By the addition property 2y — = is a member of ¥, and
<28 —z2z=2y—a<f,

giving a contradiction. Similarly there are no members of E inside
any interval {8’ + k (B’ — '), B'+ (k4 1) (B’ — ')}, and so E consists of
the points 8’4 k(8 — o), k=10, + 1, .... Asthe origin is a member
of E it is evident that this set is of the form kA, k=0, -1, +2,....

Theorem 3 follows on observing that B has the requisite property
(except that the origin is excluded).

§9. Ezamples. Theorem 2 shows that if p <1, case (i) is the
only possibility, and functions of all orders with no asymptotic
periods can be constructed by making use of the following result.

If f(2) is any integral function and n an integer > 2, f (2") has no
asymptotic periods.

Forif s=1,2,....,n—1,
f{ (Z + lerL's/n Ig)n} _f(zn) — AB (e—Znis/n Z),

go that if 8 is an asymptotic period, the numbers >®/” B must have
the same property. This is impossible, since they are not collinear.
¢? is an obvious example of a function of order 1 which falls
under case (ii). A method of constructing functions of higher order
with but a single sequence of asymptotic periods is suggested by
noticing that the gaps in the series (1.2) played an essential part.

THEOREM 4. Let

8

(9.1) f(2) = X a(n)e®
==
be an integral function of order p, (L <p < ), so that
(9-2) Lim lOg log ’ a (n) ,_1 — P .
o logn p—1
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If there is a sequence my, N, . ..., such that
(9.3) Ny —n, < K, (p=1,2,....),
-1
(9-4) lOg log I a (np) , - P s
log n, p—1

then f (z) has no asymptotic periods except a set kA, k= +1, +2, ...
A must be of the form 27", where A is an integer. If f(z) has

other asymptotic periods they must be everywhere dense on the real
axis. Let N be an integer > K and B a period < N-1. If ¢ is any
integer there are at least N of the points kB between 2z (¢ + }) and
27 (9 + %), and so at least one of the points n, 8. Hence

|1 — e™f| = 4/2, for a sequence py, Py, ....

Thus
max |f(z — iy + B) — f(z —1p)|
05z 2m
= |a(n)|.e”. et — 1], (n=1),
= /2 |a(n)|ew, N = Mg, Mo, ...
= 4/2 exp(— n*+ ny),
where a, = P T2 PP and m;, ms, .... is a subsequence of
Pn —
Ny, Na; .

Thus if n =m,, y = 2n*r ~1,

max |f(x—twy+B)—flx—1iy) =+12exp {(%)Pn},

0szs2n
so that B cannot be an asymptotic period.

Functions of infinite order presenting case (ii) can be constructed
in the same way, e.g. (9.4) may be replaced by

log I a(ny) |t

. 0.
;Z %) n, log n, —ez
: log log|ec, |t
(9.6) nlli gnli{'gn| :pil, (l<p<w),
the series
(9.7) 3 Cn e2nnliz
n=1

defines a function of order p having every rational number as an
asymptotic period. The construction breaks down if p=1 and I
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have been unable to find an example of a function of order 1 which -

falls under case (iii). It may well be that no such function exists.
To sum up:

Case (i). Functions of all orders exist.

Case (i1). Functions of all orders p in (1 = p < =) exist.

Case (t4t). Functions of all orders p in (1 <p < o) exist.
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