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§ 1. A period of a function f(z) is defined to be a number w (=j=0)
such that

(1.1) ^(z)=f(z + co)-f(z)

is identically zero; and it is not a difficult matter to show that an
integral function may either have no periods or else a single sequence
k\, k=±l, ±2,

The question may be asked " Are these the only values of w for
which Au (z) can be 'smaller' than f(z), or can there be other values
of co for which Au(z) is 'smaller' than /(z), but is not identically
zero? " The term "smaller" needs precise definition. If f(z) is an
integral or meromorphic function it is most natural to interpret it as
meaning " of lower order," and it is in this sense that the word will
be understood. With this interpretation it is easy to see that in fact
there may be more than a single sequence k\ of values of co for which
Afc, (z) is smaller than f(z). For example the integral function R (z)
defined by

oo fi2irin\z

is of infinite order, but if p is any rational number

R(z+p)-R(z)
is of order 1.

Numbers with the property under discussion will be called
asymptotic periods. Their definition is then as follows:

DEF. A number /? (=j= 0) is an asymptotic period of an integral or
meromorphic function f(z) if A^(z) is of lower order than f(z). The set
of all asymptotic periods of f (z) is denoted by B.

This definition includes the case of a function /(z) of infinite
order. Â  (z) must then be of finite order. It is evident that, if /?, y
are asymptotic periods, then — fi, /$ + y have the same property.
The following result is proved.
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242 J. M. WHITTAKER

Iff(z) is an integral function, B is a linear set of measure zero.1

An important part in the proof is played by an extension of
Guichard's theorem, that every integral function has a finite sum.
As this result is of independent interest it is discussed at the
beginning, instead of in its proper place in the proof of the main
theorem.

Another part of the proof consists in showing that a function of
order < 1 cannot have any asymptotic periods. More generally, this
is true if

(1.3)

§ 2. The finite sum of an integral function. It was proved by
Guichard2 that if f(z) is any given integral function and a>={=0, an
integral function g (z) exists with the property

(2.1) g(z + co)-g(z)=f(z).

Guichard's method is not well adapted to elucidate the relation
between the orders of f(z), g(z), an essential matter for the applica-
tion which we have in view; but by an extension of the alternative
method by which Appell and Hurwitz established (2.1) it is possible
to prove the following result.

THEOREM I. If f(z) is an integral function of finite order p, there
is an integral function g(z), of order ^ max (1, p), for which (2.1) is
satisfied.

There is no loss of generality in taking a> = 1. Let

(2.2)
n=0

The function

(2.3)

when Cs is the circle \t\ = (2s + 1) -n and s is an integer, has the
property3

1 Added in, proof. B may be a non-denumerable set. See Journal London Math.
Soc, 8(1933), 119-125.

2 Guichard, 1. See Norlund, 2, for an account of Guichard's work and also of the
work of Appell and Hurwitz mentioned below.

» Norlund, 2, 8. A/(z) = f(z + 1) - /(a).
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ON THE ASYMPTOTIC PERIODS OF INTEGRAL FUNCTIONS 243

(2.4) A ̂ , (z) = nz«~\ (n = 1, 2, . . . . ) ,

so that a solution of (2.1) (with OJ = 1) is

(2.5) </(z) = S J
on=o n + 1

provided that sl5 s2 can be chosen in such a way that the series
converges uniformly in any finite region.

If p < 1 it is sufficient to take s1 = s2 = . . . . = 0 , and the order
of g (z) is then ^ 1. For, let p~1 > a > 1, so that1

(2.6) \aH\<n-»", (n ^ no).

Now, writing t = (2s + 1) neie,

1/ i \\<c nl f2ire(28+1)'r|21 (2s+l)nd6

(2.7) < An! e'2«+1)"< Iz I + 1»{2s + 1) Tr}1-^,

where A is independent of n, s, z. Hence

n+ 1
K always denotes a constant, but not always the same constant.

Denoting by Mo (r) the maximum of | g (z) [ for | z | = r, the last
inequality shows that

r-— log Mn (r) ^
(2.8) hm - S — ° U ^ JT>

so that g (z) is of order ^ 1.

If p ̂  1, consider the function a (n) defined by

(2.9) cr(w) = min

a

(2.10)

m i n ( j \ .
m ?:» \ m log m /

a (n) is an increasing function, and

a(n) _ = 1 .
n-9.00 nlogn p

Again, writing a (n) = 1 — a (»),

(2.11) »"«<") {(2sn + 1) 77}-" < e-», (ra ̂  1),
provided that

(2sn + l)7r>cna<B>,
and this is so if
(2.12) sn = [n"W].

*Yaliron, 4, 40.
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244 J. M. WHITTAKER

It will be shown that with this choice of slt s2 , (2.5) defines
an integral function of order p.

Corresponding to a given value of r = | z | define the integer

(2.13) N (r) — [(8r)1/l7(2)].

Then (2.7), (2.9), (2.11), (2.12) show that

vn (z) =
n + 1

< «-«'<«) n" {(2sn + 1) 77}-" exp {{2sn + 1) TTT}

< exp{ — n+ 7nain)r}

(2.14) <e-"'8, {n>N),
since

n — ln n r— — > - n - — n« » +*

~~ 8

Now take a fixed integer p and write a (p) = a. Then
N N

S vn (z) < 2 exp { — n + 7n°'n) r]
n=p n=p

^ S exp { — n + lna r}

(2.15) <N(r)fi(r),

where n (r) is the greatest term of the last series, n (r) is determined
by finding the maximum value of the function

— x + 7x°- r,
namely

so that

(2.16) ft (r) ̂  exp J7-L - l\ (7ar)1«1-«)l.
l \ a / J

Now, making use of (2.14),- (2.15),

Mo (r) < S vn (z) +N(r) /x (r)
n=0
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ON THE ASYMPTOTIC PERIODS OF INTEGRAL FUNCTIONS 245

whence, by (2.13), (2.16),

lim
logr

Finally, make p tend to infinity, and use (2.10).

It follows that g (z) is of order g p. On the other hand it is
evident that g (z) is of order ^ p, so that g (z) must be of order p.

§ 3. THEOREM 2. An integral function has no asymptotic
periods if

(3.1) fim i£g^>) = 0,
r->» r

or if
(3.2) lim (^rf logM(r) = 0

— r
r—>oO

The importance of a hypothesis such as (3.2), involving a lower limit
instead of an upper limit, will be seen at a later stage of the proof of
the main theorem.

We need three lemmas of Phragmen-Lindelof type.

LEMMA 1. An integral function is a constant if it satisfies the
conditions

(3.3) ilm" 1£i^iL) = 0,

(3.4) \f(-x)\£C, (x^O).

This result is due to Poly a and Szego.1

LEMMA 2. In Lemma 1 (3.3) may be replaced by

(3.̂ 5) lim (l°gr)« log Jf(r) = Q

The function

is regular in the domain D defined by

100 < r < R, —•7T<0<TT, (z = reie).

1 Pdlya and Szego, 3, 149.
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246 J. M. WHITTAKER

ztylog z is taken to be the branch which is real and positive on the real
positive axis. Now

( azh \ I _ / g-y/r (log r cos \d + 0 sin \d)\

and
1 / IT \

cos |0 log r + 0 sin 10 ̂  -yr log r, f 0 ̂  0 ̂  y J,

, 2 ~
so that in D

By (3.5), R may be chosen so that

Hence, by the maximum modulus principle,

^ max{C, 1, M(100)}

for all points z in D. Finally, keeping z fixed, let a -> 0. It follows
that, for all values of 2,

|/(z)|rgmax{C, 1, M (100)},

and hence/(z) is a constant.

LEMMA 3. / / an integral function f(z) satisfies either (3.3) or
(3.5) and
(3.6) |/(-z)|^Ce*a, (0<a<|), (x^O),

there is a constant A such that for all values of z

(3.7) \f(z)\£Aer.

It is only necessary to apply the arguments of the preceding
lemmas to the function

/(z)exp {-(-*)«}.
Theorem 2 is a simple deduction. Suppose, if possible, that a

function f(z) of order p satisfies either (3.1) or (3.2) and has an
asymptotic period /?, so that A/3(z) is of order a<p. In the former
case p ̂  1, but in the latter p may be any finite number or infinity.
There is no loss of generality in taking /3 real and positive. More-
over we may suppose that the zeros ax, a2, . . . . , of / (z) have p as
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exponent of convergence. This can always be secured by adding a
suitable constant to / (z) . Then, if 0 5S t ^L /?,

f(l + njB) = f(t) + "j^A, (t + sp),

f{t-nP)=f(t)- I Ap(t-ap),
8 = 1

so that \f(t ±np)\^M (j8) + nlfp{(l + n)p},

when ilfp (r) denotes the maximum modulus of Â  (2). Hence if
a < 2T < p and x 2: 0,

+ jMp(2x)

and so the function h (2) defined by

h(zz

is such that
\h(x)

Now ^(2) satisfies (3.3) or (3.5) according as f(z) satisfies (3.1)
or (3.2), and it follows from Lemma 3 that the order of h (z) cannot
exceed r.

On the other hand the zeros of h (z) are a\, a\, . . . . and these
have exponent of convergence p/2. Hence the order of h (z) cannot
be less than p/2. The contradiction implies that /(z) has no
asymptotic periods.

§ 4. LEMMA 4. The ratio of two asymptotic periods of an integral
function is real.

If possible, let jS, y be asymptotic periods whose ratio is not real.
I t follows from the identity

f(z +kp + ly) =f(z)+ S1 Ay (z + ay) + "S'A^ (Z + ly + tp)
that if I z I = r,

where ZQ is in a " period parallelogram " with the origin as one vertex,
z1; z2, . . . . are points inside the circle | z j = r , each in a different
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," period parallelogram," and the same is true of 2/, z2', In each
case the number of points does not exceed K (jS, y) r. Hence

M (r) ^ M (\p\ + \y\) + K({3, y) r {M^r) + My(r)},

and this is evidently incompatible with the hypothesis that Â  (z), Ay (z)
are of lower order than/(z).

§ 5. LEMMA 5. Let f± (z), /2 (z) be periodic integral functions of
order p, whose periods OJ, OJ/JU, are real, and let

9(z)=fi(z)-f2(z), z = x + iy.

If, for some T < p,

(5.1) \g(x + iy)\<Ke^\T, (\y\^a),

where K is independent of x, then n is a rational number.
p may be 00 . There is no loss of generality in taking OJ = 2n.

If fx is not rational, consider the function fi(—i \ogw), any branch of
the logarithm being chosen. This function is regular and uniform in
every annulus 0 < B 5S [ w | 5S E', and so can be expanded in a
Laurent series

; S•anwa+ 2 bnw->\
n=o »=i

so that, writing 2 = — i log to,

(5.2) / i ( z )= S ane™+ 1 bne~™.
n=Q »=1

In the same way
(6i3) /2(z)= S cne

n^+ I dne-n»K
. » — 0 K = i . . •

As fi(z) is of order p at least one of the series in (5.2), say the
first, is an integral function of order p.

Now, as ix is irrational, the exponentials in (5.2), (5.3) are all
distinct, and so

ane™ = lim -L P" eni *-«g(t + iy) dt,

and thus, if y 5: 0,

a n \ e « » ^ l i n i i f \g(t + iy)\dt

(5.4)
where

0 (y) = max 19 (a; ± iy) | .

By (5.1),
(5.5) - ' G(y)<Ke«T, (y^a).
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Now the function

F (w) = S an w
n, iv = rx e''*,

is an integral function. Let 4 (r^) denote its maximum modulus,
A (rj) = max | F (w)',

y its order, and
a(rj) = max f aB [ rx"

its maximum term. (5.4) shows that

(5.6) a{ev)^G{y), (y ̂  0).

Moreover if M0(r) denotes the maximum modulus of F(eii),

(5.7) M0(y)£A{&), (y^O).

For M0 (?/) is the maximum of | F (w) | on the curve

(log rtf + <̂ 2 = y\ (-7T ̂  </> ^ TT),

in the w-plane, and this lies inside the curve

log rx = y.
Now if y is finite,1

(5.8) r ^ ! - 1 . asr->«,
log^(r)

and so by (5.6), (5.7),
lim loggfo) ^ i

Moreover
j - loglog^o(y) =

y-̂ oo logy
Hence

T.— log log G (y)
y-^00 lOgT/

and this contradicts (5.5).
Again, if y is infinite,2

(5.9) Urn" l°glog«(r)
logr

whence by (5.6)

which likewise contradicts (5.5).

— log log 0 (y) =

1 Valiron, 4, 32. ' •
2 Cf. Valiron 4. (5.9) is not explicitly stated but follows readily from equation

(2.9) on p. 31.
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§6. Functions of order > 1. It follows from Theorem 2 that an
integral function of order < 1 cannot have any asymptotic periods.
I t is convenient to take next the case of a function of order p > 1
(including the case p = oo ).

By Lemma 4 the asymptotic periods all lie on a line through the
origin, say the real axis. Let Bv(a<p), denote the set of real
numbers ]8 such that Ap (z) is of order ^ ex. The sets Ba form an
increasing sequence with limit B.

Take a fixed value of a > 1. If Ba is not null, let jS be a member
of it. In accordance with Theorem 1 Â  (z) can be expressed as the
^-difference of a function gx (z) of order ^ a, so that

f(z + P)-f(z)=g1(g + P)-g1(z).
Thus the function

(6.1) fi(z)=f(z)-9i(z)

is periodic, of period j8, arid of order p. Write

F1 (y) = m a x |/3 (z + iy) - f, (x' + iy)\,

and choose r so that a < T < p. There are two cases to consider.
Either
(6.2) F1(y)^e^T, (\y\^a),
or
(6.3) F1(y) > e ' y ' T , for arbitrarily large values of | y \.

Take the first case. Associated with y, any other member of Ba,
there are functions g2 (z),/2 (z), F2 (y) corresponding to g1 (z),^ (z), F-^y).
f2 (z) has period y, order p, and

F2 (y) = m a x | / 2 (x + iy) - f2 {x' + iy)\.

It will be shown that (6.2) implies that

(6.4) F2(y)^2ei»lT, (\y\^b).

For consider the function g (z), of order ^ a, defined by

(6.5) g (z) = A (z) - / 2 (z) = g2 (z) - 9l (z).

If (6.4) is false, then corresponding to a given value of K,
numbers x, x', y can be found such that

0 ^ x, x ^ m a x (£, y), \y\> K,
a n d

\g{* + *y)-g(*' + iy)i ^ l/2(* + *y) - .M*' + *y)\
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Hence, writing
Mo (r) = m a x \g(z)\,

and this is impossible if K is sufficiently large, as the order of g (z)
does not exceed a.

(6.4) being thus established, it follows that if x, x' are any real
numbers then

I? (x+iy)-g (x' + iy) | ^ |/2 (x+iy)-f2 (x'+iy) 1 + i.A (x+iy)-J1(x'+iy) \

and so if — oo < x < oo ,

since g (z) is of order <̂  a < r.

It now follows from Lemma 5 that y is a rational multiple of /3.

The alternative case, expressed by (6.3), is dealt with by a
different argument.

Let N be a " large " positive integer and let a < A < T. At least
one of ± oo , say oo , is a limit point of the numbers y for which (6.3)
is satisfied. Hence there is a sequence ylt y2, . . . . , tending to oo ,
such that
(6.6) F1 (yp) > e x p (yr

p) (p= 1, 2, . . . . ) ,
and also
(6.7) yr

P>(N + p+l)yx
p.

Corresponding to yp, a member of this sequence, let xlt x2 be
points of (0, /?) for which

|/i (*i + %yp) - /i (aj2 + iyP) I = ^i (yP)-

Mark in the / rplane the values of j x (z) corresponding to values
of 2 = x + iyp, 0 ^ x ^ ^. The resultiug curve is continuous and
closed, since fx (z) has period jS, and is contained in the circle of centre
/ i {%i + iyp)' radius F1 (yP). Now divide this circle into annuli by
drawing concentric circles of radii sFx (yp)/S, (s = 1, 2, . . . . , 8 — 1),
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where S = 2X+P, and denote by Es the set of points x for which the
/ rcurve lies in the slh annulus. To make matters precise, let Es consist
of the points x in (0, |3) for which

(s-1) S-^F, (yp) ^ |A(*i + iyP)-h{x + iyp) | <sS~1 Fx{yp), (s = 1,2, ..,8-1),

Evidently, • . .
m Ex + m E2 -f .. + m Es = /3, ;.

so that there is at least one value of k for which

As the /j-curve is continuous, and passes from the centre of the
circle of radius F1 (yp) to its circumference, it must cut the concentric
circle of radius (Jc — | ) S"1 Fx (yp). That is to say, there is a point
gp in (0, /3) such that

l/i (& + iyP) - / i [X! + iyp) | = (* - i) S-1 F, (yp).

On drawing a diagram it is evident that if a; is a point of E,,
(s=j=&), then

IA (iP + iyP) -fi(« + iyP) l^hs-* FX (yp),

and hence the values of x in (0, j8) for which this inequality is satisfied
form a set E&> of measure ^ (1 — 8'1) p.

As /i(z) has period j8 this means that the values of t in (0, j8)
for which

l/i & + iyP) -fx (iP + t + iyp) | ̂  \ S-1 Fx (yp)

form a set Tp of measure ^ (1 — 8~1)fl. Let

T = T1TiT9....
so that

(6.8) mT^ (1 - S 2-P-AT)JS = (1 -2~*)£ .

It will now be shown that the sets T, Ba have no members in
common.

If TBa is not null, let y be a member of it. g2 (z), f2 (z), g (?) are
defined as before, and

9 (iP + iyP + y) - 9 (S, + iyP) = / i (£p + iyP + y) - A (& + typ).
since /2 (z) has period y. Hence, for all values of p,
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by (6.7), and this is false, since it implies that

Tim l o g l o g ^ o f r ) ^
,.__>* logr

whereas g (z) is of order <S a. Hence the set TBa is null, and so if
Ba* denotes the part of Ba in the interval (0, /?), by (6.8),

As N is independent of /3, a this implies that

mBa*=0,
and so

TO Ba = 0

for each a. Hence, finally,

TO .6 = 0.

§7. Functions of order 1. The remaining case, p = 1, can be
reduced to the one just discussed. It is enough to consider a function
of regular growth i.e. such that

,- ,\ log log M (r\
(7.1) —s-p-2 ^-' - > 1 , as r - > oo.

log r
For if

l i m log log M (r) < 1
T^Tn logr .

then

and so, by Theorem 2, /(z) has no asymptotic periods.

If wi-B > 0, then mBa > 0 for some a < 1. It will be shown that
this hypothesis leads to a contradiction.

LEMMA 6. If a> 1 and

(7.2) . • G(r) = S e-"Br",

, „> log logG (r) a7.3 f f—-' -> r , as r-> oo .
log log r a — 1

This is well known. It is easy to prove it by calculating the
maximum term of (7.2) and using (5.8).
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Let T, 8 be positive numbers satisfying the conditions

a<r<\, S < m m ( — ,
\ 9\ 9 2

(7.1) implies that
(7.4) r1-* < logM{r)<rx+\ (r ^ ra).

Now define an auxiliary function

(7.5)

where
(7.6)

If r = !z| = 22*, (7.4) gives

max |e-c<*>/(22'2)| = e-
c<«> M (22*+1)

0S«S2

> exp {- c
while

max | e-*<

Now if p < q,
C{q) + C (p) - 2<1+s><2p+2«> > c (q) -

where X = 2^, since

2 - 38 >

Again, if p > q,

when YP = 22P.

Denoting by Mp(r) the maximum modulus of F (z), and writing
e = 2 — 48, these inequalities show that

MF (r) > ec<" {1 - JB-* ' - S e - ^ ' } , (j ^

Hence
log Mp (r) > 22<1-*>2«-1 - log 2

= Jr 8»-«)- log2,

so that F{z) is of order 2g 2 — 28 > 1.
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Let jS be a member of Ba, so that Â  (z) is of order ^ a, and

;A,(2)|<tfe'Ts ( r^O) .

Now, writing cp = e~cW,

F(z + fi)-F(z)= 2 6p 2 /^(FpZ + ajB),
J) = l S = 0

so that

2
P=I

<K 2 cpYpexp(2Ypr)

= K 2 Yp exp { - \ Y2
p~

2S +

< Z 2 exp {—w2~25 + 4nrT}.
n = l

^ loglogiMr) ^ 2 - 2S

n=l

Hence, by (7.3),

or
lim

logr — \1 — 28

Thus /5 is an asymptotic period of F (z). F (z) is therefore a
function of order > 1 whose i?-set contains a subset of Ba of positive
measure, and this is impossible,

§ 8. THEOREM 3. / / B denotes the set of asymptotic periods of an
integral function f(z), either

(i) B is null,
or (ii) B consists of a set of points kX, k = ± 1, ± 2, . . . . ,
or (iii) B lies on a line through the origin, is everywhere dense,

and has measure zero.

It has been seen that B lies on a line through the origin and that
m B = 0. To show that the only possibilities are the cases enumerated
above a further lemma is needed.

LEMMA 7. Let Ehe a non-null linear set of points with the property
that if x, y are any members of E, —x, x + y are also members. Then
either (a) E consists of a set of points kX, or (b) E is everywhere dense.
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If E is not everywhere dense, let (a, /?) be an interval not
containing a member of E. Let a be the upper bound of members
of E <L a, and jS' the lower bound of members of E Sj jS. Then there
are no members of E inside the interval (/T, 2/3' — a'). For suppose
that such a member, x, exists. As jS' is a lower bound of members of
E there is a member y satisfying the inequality

By the addition property 2y — x is a member of E, and

a' < 2j8' - x ^ 2y - x < j3',

giving a contradiction. Similarly there are no members of E inside
any interval {£' + k (]8' — a'), 0' + (& + 1) (£' - a')}, and so JS? consists of
the points j8' + A (j8' — a'), & = 0, ± 1, . . . . As the origin is a member
of E it is evident that this set is of the form kX, k = 0, ± 1, ± 2, . . . .

Theorem 3 follows on observing that B has the requisite property
(except that the origin is excluded).

§9. Examples. Theorem 2 shows that if p < 1, case (i) is the
only possibility, and functions of all orders with no asymptotic
periods can be constructed by making use of the following result.

/ / / (z) is any integral function and n an integer > 2, f (zn) has no
asymptotic periods.

For if s = 1, 2, . . . . , n— 1,

f{ (z + e2™"1 /3)»} -/(«") = Ap (e-2lri*/»2),

so that if j8 is an asymptotic period, the numbers e27rtS/"/? must have
the same property. This is impossible, since they are not collinear.

e2 is an obvious example of a function of order 1 which falls
under case (ii). A method of constructing functions of higher order
with but a single sequence of asymptotic periods is suggested by
noticing that the gaps in the series (1.2) played an essential part.

THEOREM 4. Let

(9.1) f(z) = S a{n)eHiz

be an integral function of order p, (1 < p < <x>), so that

log log |a M l " 1
 = p

(9.2) =

n->*. log n p — 1
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/ / there is a sequence nx, n2, . . .., such that

(9.3) np+1 - nv < K, (p = 1, 2, . . . . ) ,

/o ^ log log | o K ) I - 1 p

log np p — 1

Jften / ( z ) Aas wo asymptotic periods except a set kX, & = ± 1, ± 2 , . . . .

A must be of the form —, where A is an integer. If /(z) has
t

other asymptotic periods they must be everywhere dense on the real
axis. Let N be an integer > K and /3 a period < N~x. If q is any
integer there are at least JV of the points kfi between 2n (q + £) and
2TT (g + f), and so at least one of the points npp. Hence

1 — einpp\ 3: \/2, for a sequence px, p2
Thus

max \f(x — iy + j8) — f (x — iy) |
0g*S2» "

~^\a(n)\.env .\ein*—\\, (n^l),

:> -v/2 \a(n)\en», n = mt, m2>

= V2 exp(— nan+ny),

where an = — , pn -> p, and %, m2, . . . . is a subsequence of

» ] , 7 l 2 , . . . .

Thus if w = m(, y = 2wa» - 1 ,

2 J I '
so that j3 cannot be an asymptotic period.

Functions of infinite order presenting case (ii) can be constructed
in the same way, e.g. (9.4) may be replaced by

(9.5) l o g l a K ) i - i _ ^ a > ( h
nv log nv

If
(9.6) Mm ^ g M K i L ^ ^ L . , (1 < , , < « ) ,

«-=•« TC log n p — 1

the series

(9.7) S cne
2ir)!!'z

n = l

defines a function of order p having every rational number as an
asymptotic period. The construction breaks down if p — 1 and I
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have been unable to find an example of a function of order 1 which
falls under case (iii). It may well be that no such function exists.

To sum up:

Case (i). Functions of all orders exist.

Case (it). Functions of all orders p in (1 5S p rgi oo) exist.

Case (iii). Functions of all orders p in (1 < p 5S oo) exist.
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