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Explicit Real Cubic Surfaces

Irene Polo-Blanco and Jaap Top

Abstract. The topological classification of smooth real cubic surfaces is recalled and compared to the

classification in terms of the number of real lines and of real tritangent planes, as obtained by L. Schläfli

in 1858. Using this, explicit examples of surfaces of every possible type are given.

1 Introduction

It is a well-known result of A. Clebsch, (see [B]) that every smooth cubic surface
S ⊂ P3(C) can be obtained by blowing up P2(C) at six points in general position,
i.e., no three are on a line and not all six lie on a conic. In other words, S admits
a blow-down morphism ϕ : S → P2, characterized by the properties that ϕ is an

isomorphism from S \
⋃6

i=1 ℓi to P2 \ {P1, . . . , P6}, in which the ℓi ⊂ S are six
pairwise disjoint lines and the Pi ∈ P2 are six pairwise different points. Furthermore,
ϕ(ℓi) = Pi . (It turns out that S admits, up to linear automorphisms of P2, precisely

36 blow-down morphisms to P2.)

Any such surface S contains precisely 27 lines, as was originally proved by
G. Salmon after correspondence with A. Cayley. Another very well-known fact is the
description of the 27 lines in terms of a blow-down morphism ϕ : S → P2: the lines

are the six pre-images ℓi = ϕ−1(Pi), the fifteen irreducible components different
from ℓi and ℓ j of the pre-images ϕ−1(Li j ), in which Li j denotes the line in P2 contain-
ing Pi and P j , and finally the six components different from lines ℓ j in the pre-images

ϕ−1(P ′

i ) where P ′

i is the conic in P2 containing the five points {P1, . . . , P6} − {Pi}.
From this description it is immediate which lines intersect and which lines do not.
A modern reference for all these well-known facts on cubic surfaces is [B, Proposi-
tion IV.9, Proposition IV.12, Theorem IV.1]. Any two intersecting lines determine a

plane P (the unique plane containing these two lines). The intersection S ∩ P then
consists of three pairwise intersecting lines; such a plane is classically called a tritan-

gent plane of S. Using the description of the lines in terms of a blow-down morphism,
it is very easy to verify that any smooth cubic surface S has precisely 45 tritangent

planes.

Within ten years after Salmon proved his result on the 27 lines, the Swiss mathe-
matician L. Schläfli [Sch] classified smooth cubic surfaces defined over R according

to their number of real lines and real tritangent planes.

Theorem 1.1 (Schläfli) The number of real lines and of real tritangent planes on

any smooth, real cubic surface is one of the following, in which each pair really occurs:

(27, 15), (15, 15), (7, 5), (3, 7), (3, 13).
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126 I. Polo-Blanco and J. Top

This result was also obtained by L. Cremona [Cr].

Given such a smooth, cubic surface S over R, an alternative classification is by the

topological structure on the space of real points S(R) ⊂ P3(R). This was done by
several authors including H. Knörrer and T. Miller [KM], R. Silhol [Si], and J. Kollár
[K]. The result is as follows.

Theorem 1.2 A smooth, real cubic surface is isomorphic over R to a surface of one of

the following types.

(i) A surface X obtained by blowing up P2 in six real points (no three on a line, not

all six on a conic). In this case, X(R) is the non-orientable compact connected surface of

Euler characteristic −5.

(ii) A surface X obtained by blowing up P2 in four real points and a pair of complex

conjugate points (again, no three on a line, not all six on a conic). In this case, X(R) is

the non-orientable compact connected surface of Euler characteristic −3.

(iii) A surface X obtained by blowing up P2 in two real points and two pairs of

complex conjugate points (again, no three on a line, not all six on a conic). In this case,

X(R) is the non-orientable compact connected surface of Euler characteristic −1.

(iv) A surface X obtained by blowing up P2 in three pairs of complex conjugate points

(again, no three on a line, not all six on a conic). In this case, X(R) is homeomorphic to

P2(R), which has Euler characteristic 1.

(v) A surface X constructed as follows. Take a smooth, real conic given as F = 0 and

five real points P1, . . . , P5 on it. Take a sixth real point P6 6= P5 on the tangent line to

the conic at P5, such that no three of the six points are on a line. Write the conic through

P1, . . . , P4, P6 as G = 0. The rational map P2 · · · → P2 defined by P 7→ τ (P), in

which {P, τ (P)} is the intersection of the conic given by G(P)F − F(P)G = 0 and the

line through P and P6, then extends to an involution τ on the blow-up B of P2 in the

points P1, . . . , P6. Define X as the quotient B × Spec(C)/(τ × c) in which c is complex

conjugation. Then X(R) consists of two connected components, one homeomorphic to

the 2-sphere S2 and the other to P2(R).

A straightforward and amusing consequence is the following.

Corollary 1.3 A smooth, cubic surface S defined over R does not admit any real blow-

down morphism to P2 if and only if S(R) is not connected.

Note that the if part of this corollary is obvious for a purely topological reason: any
surface admitting a real blow-down morphism to a variety whose real points form a

connected space is itself connected. The corollary yields a visual way to recognize
real, smooth cubic surfaces not admitting any real blow-down morphism to P2.

In this paper we show (Proposition 2.1) how the description given in Theorem 1.2
implies, and, in fact, yields the same classes of real cubic surfaces, as the classical
classification of Schläfli. Although this is certainly known to many experts, we did not

find it in the literature. It is hoped that this note fills this little gap, and draws some
attention to a beautiful classical part of algebraic geometry. Working directly from
cubic equations, and as well as starting from the description given in Theorem 1.2,
we present explicit examples.
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The work reported on in this paper started when Remke Kloosterman showed
us an abstract proof of the existence of a so-called real Del Pezzo surface of degree

two which does not admit a real blow-down morphism to P2; see also the survey
paper by Kollár [K]. Explicit equations for all cases described in Theorem 1.2 are
also presented in a recent paper by Holzer and Labs [HL, Table 2]. The argument of
Kloosterman relies on the observation that the anti-canonical sheaf on a Del Pezzo

of degree two realizes the surface as a double cover of P2 ramified over a quartic
curve. Moreover, the irreducible components of the preimage of the bitangents of
this curve are the 56 smooth rational curves with self-intersection−1 in the Del Pezzo
surface [AKP, Remark 3.3]. His result now follows by constructing a situation where

the action of complex conjugation on these rational curves is incompatible with the
existence of a real blow-down morphism to P2.

2 Real Lines and Real Tritangent Planes

In this section we show that Schläfli’s classification is in fact the same as the topolog-
ical one.

Proposition 2.1 The enumerative classification of Schläfli presented in Theorem 1.1

yields the same five classes as the topological one given in Theorem 1.2. More precisely, in

the notation of the latter theorem, the number of real lines and of real tritangent planes

for each type is as follows.

type (1) type (2) type (3) type (4) type (5)

(27, 45) (15, 15) (7, 5) (3, 7) (3, 13)

This is achieved by directly describing the real lines and the real tritangent planes for
each of the five types given in Theorem 1.2.

We start by recalling some standard notation for the lines and tritangent planes.

Notation Let S be the smooth cubic surface obtained by blowing up P2 at the six
points {p1, . . . , p6}. Denote the set of 27 lines on S as follows. The image in S ⊂ P3

of the exceptional line corresponding to pi , is denoted as i, for i = 1, . . . 6. Next, i j is

the image in P3 of the strict transforms of the line passing through pi and p j . Finally,
j ′ will be the image in P3 of the strict transform of the conic passing through all pi ,
for i 6= j.

A tritangent plane P is completely determined by the three lines li such that P∩S =

l1 ∪ l2 ∪ l3. Denote P = 〈l1, l2, l3〉.

Lemma 2.2 Let S be the smooth cubic surface obtained by blowing up P2 at the six

points {p1, . . . , p6}. Then the 45 tritangent planes of S are:

(i) The 30 planes 〈i, j ′, i j〉 with i, j ∈ {1, . . . , 6}, i 6= j and

(ii) The 15 planes 〈i j, kl, mn〉, with {i, j, k, l, m, n} = {1, 2, 3, 4, 5, 6}.

Proof In fact, the lemma provides the description of the tritangent planes in terms
of a “Schläfli double six”, as was already given by L. Schläfli [Sch, p. 116, 117]. We
sketch the (quite obvious) proof for convenience.
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Suppose the plane P contains the line i. Then it does not contain any line j for
j 6= i since such lines i, j do not intersect. If P contains j ′, then for the same reason

j 6= i. Under this condition, i and j ′ indeed intersect, and both intersect the line i j.
Hence P = 〈i, j ′, i j〉. It is easily seen that this is the only type of tritangent plane
containing a line i or a line j ′.

Two different lines i j and kl intersect precisely, when the numbers {i, j} and {k, l}
are disjoint. If this is the case, then mn (with {m, n} the remaining two numbers
in {1, . . . , 6}) is the unique third line intersecting both i j and kl. This yields the
tritangent planes 〈i j, kl, mn〉.

We now describe the number of real lines and real tritangent planes for each of
the cases described in Theorem 1.2. This is quite simple, and somewhat similar to
arguments that can be found in nineteenth century papers by L. Schläfli, L. Cremona
and A. Clebsch. However, surprisingly, we did not find the result in the classical

literature, nor in modern texts on cubic surfaces such as the books by B. Segre [Se],
by Yu. I. Manin [M] or by R. Silhol [Si].

Notation Let “ ” denote complex conjugation. We will write j̄ (and in the same
manner j̄ ′, . . . , etc.) to denote the exceptional line corresponding to the point p̄i .
Note that this equals the conjugate line of the exceptional line corresponding to pi .

We discuss the various types described in Theorem 1.2 case by case.

Type (i) The cubic surface S is obtained by blowing up six real points in P2. In this

case, all 27 lines and all 45 tritangent planes are real.

Type (ii) Now S is obtained by blowing up four real points and one pair of complex

conjugate points, i.e., the set of six points is given by {a1, ā1, a2, a3, a4, a5}.

(a) The real lines are:
of type i: 2, 3, 4 and 5;
of type j ′: 2 ′, 3 ′, 4 ′ and 5 ′;

of type (i j): {i, j} = {ī, j̄} ⇔ i j ∈ {11̄, 23, 24, 25, 34, 35, 45}.

In total, there are 4 + 4 + 7 = 15 real lines.

(b) The real tritangent planes are:

of type 〈i, j ′, i j〉: all 12 planes with i, j ∈ {2, 3, 4, 5};
of type 〈i j, kl, mn〉: the planes 〈11̄, 23, 45〉, 〈11̄, 24, 35〉, 〈11̄, 25, 34〉.

In total, there are 12 + 3 = 15 real tritangent planes.

Type (iii) Here S is obtained by blowing up two real points and two pairs of complex
conjugate points, i.e., the set of six points is given by: {a1, ā1, a2, ā2, a3, a4}.

(a) The real lines are:

of the kind i: 3 and 4;
of the kind j ′: 3 ′ and 4 ′;
of the kind (i j): 11̄, 22̄, 34.

In total, there are 7 real lines.
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(b) The real tritangent planes are:
of type 〈i, j ′, i j〉: 〈3, 4 ′, 34〉 and 〈4, 3 ′, 43〉;
of type 〈i j, kl, mn〉: 〈11̄, 22̄, 34〉, 〈34, 12̄, 1̄2〉 and 〈34, 12, 1̄2̄〉.

In total, there are 5 real tritangent planes.

Type (iv) In this case, the cubic surface S is obtained by blowing up three pairs of
complex conjugate points. Write the points as {a1, ā1, a2, ā2, a3, ā3}.

(a) The only real lines in this case are 11̄, 22̄, 33̄. Hence there are precisely three real
lines in S.

(b) We now calculate the number of real tritangent planes of S. Clearly, no tritan-
gent plane of the form 〈i, j ′, i j〉 is fixed by complex conjugation. Furthermore,
every real tritangent plane must contain a real line, i.e., one of the three lines
{11̄, 22̄, 33̄}.

The planes 〈i, ī ′, iī〉 are not fixed by complex conjugation. The real ones are
〈11̄, 22̄, 33̄〉, 〈11̄, 23, 2̄3̄〉, 〈11̄, 23̄, 2̄3〉, 〈22̄, 13, 1̄3̄〉, 〈22̄, 13̄, 1̄3〉, 〈33̄, 12, 1̄2̄〉 and
〈33̄, 12̄, 1̄2〉. These are the seven real tritangent planes.

Type (v) This case is obtained by changing the real structure on a special kind of
surface as described in Type (i).

Let a1, . . . , a6 be the six real points in P2 which will be blown up. By construction,
the line connecting a5 and a6 is tangent in a5 to the conic passing through a1, . . . , a5.

Let B be the real cubic surface in P3 obtained by the usual embedding of the blow-up
of P2 in the points ai . We first describe the action of the involution τ on the 27 lines
in B.

First, let {1, 2, 3, 4} = {i, j} ∪ {k, l}. Then τ : i j ↔ kl. Indeed, take a gen-
eral point u on the line Li j containing ai and a j . The (singular) conic through
a1, . . . , a4, u equals the union Li j ∪ Lkl, and since {u, τ (u)} = (Li j ∪ Lkl) ∩ L where

L is the line connecting u and a6, the image τ (u) is a general point on Lkl. In a sim-
ilar way, using the conic through a1, . . . , a5 and observing that L56 is tangent to this
conic, it follows that τ : 5 ↔ 5 and τ : 6 ′ ↔ 6 ′. Now take a general point u on the
line L56. Clearly, its image under τ is again a general point on L56, hence τ : 56 ↔ 56.

Next, take j ∈ {1, 2, 3, 4} and consider a general point u ∈ L j6. The conic Cu

passing through a1, . . . , a4, u then obviously intersects L j6 in the points u and a j .

This means τ (u) = a j , so in particular, the rational involution map τ on P2 restricted
to L j6 is not even bijective. However, changing the point u also changes the direction
of the tangent line to Cu at a j . On the blow up B, this shows τ : j6 ↔ j. A similar
argument yields that τ maps the general point on the conic through a1, . . . , a4, a6, to

a6, and τ : 5 ′ ↔ 6.

It is now a straighforward computation to determine the action of τ on the re-

maining lines of B: one may use the observation that for any pair of lines ℓ1, ℓ2 ⊂ B,
the intersection number ℓ1 · ℓ2 equals τ (ℓ1) · τ (ℓ2). Using this, it follows that for each
j ∈ {1, 2, 3, 4} one has τ : j ′ ↔ j5.

With this information one can also describe the action of complex conjugation c

on the real cubic surface S = B × Spec(C)/(τ × c). Namely, over C this surface is
isomorphic to B, giving an identification of the lines and tritangent planes of B with
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those of S. Then by construction, a line/tritangent plane of S is real if and only if the
corresponding line/tritangent plane of B is fixed by τ × c. Since c fixes all lines and

tritangent planes of B, this means we must count the ones fixed by τ .

(a) As is explained above, 5, 6 ′ and 56 are the only lines in B fixed by τ . Hence S

contains precisely three real lines.
(b) To determine the tritangent planes fixed by τ , observe that any such plane con-

tains at least 1 line in B fixed by τ , so at least one of the lines 5, 6 ′ or 56.

The tritangent planes fixed by τ then are:
of type 〈i, j ′, i j〉: the 4 planes 〈5, j ′, j5〉 with j ∈ {1, 2, 3, 4} and the 4 planes
〈i, 6 ′, i6〉 with i ∈ {1, 2, 3, 4} and the 2 planes 〈5, 6 ′, 56〉 and 〈6, 5 ′, 56〉;
of type 〈i j, kl, mn〉: the three planes 〈i j, kl, 56〉 with {i, j, k, l} = {1, 2, 3, 4}.

This gives 13 planes, hence S contains precisely 13 real tritangent planes. Note
that in exactly one of them, namely in the one corresponding to 〈5, 6 ′, 56〉, the
three lines in S contained in it are all real as well.

Remark In particular, the above description shows that every smooth, real cubic
surface has at least one real tritangent plane that contains three real lines of the sur-
face. In the case that the total number of real lines equals three, this means that these
three lines pairwise intersect and that in fact this real tritangent plane is unique. This

is an observation already made by Schläfli [Sch, p. 118 cases D, E].

3 Examples

Example 3.1 Let Sλ be the cubic surface in P4 given by the equations:

λx3 + y3 + z3 + w3 + t3
= 0, x + y + z + w + t = 0.

An equation for Sλ in P3 is λx3 + y3 + z3 + w3 + (−x − y − z − w)3
= 0. A

straightforward calculation shows that Sλ is a smooth cubic surface for all λ ∈ C,
except λ = 1/4 and λ = 1/16. In case λ = 1/16, the unique singular point is

(x : y : z :w :t) = (−4 : 1 : 1 :1 :1). For λ = 1/4, there are exactly four singular points,
given by taking x = −2, three of the remaining coordinates +1, and the last one
−1. In fact, the number of isolated singularities on a cubic surface cannot exceed
four, and the surface with four such singular points is unique. This surface was first

studied by A. Cayley and it is called the Cayley cubic surface; cf. [Hu, pp. 115–122].
Some nineteenth century plaster models of it appear in the celebrated Rodenberg
series; see [F, pp. 16-17], [Po2, Serie VII, nr. 2-6].

For real λ > 1/4, all Sλ(R) are topologically the same. The special one with λ = 1

was first studied in 1871 by A. Clebsch [Cl, § 16]. He showed that all 27 lines on this
surface are real (see also [Hu, pp. 122–128]), hence for λ > 1/4, the surface Sλ is of
Type (i). An explicit blow-down morphism, defined over Q , in the case λ = 1 was
constructed by one of the authors [Po2, pp. 52–56].

Similarly, for all real λ < 1/16, the Sλ(R) are homeomorphic. The case λ = 0
yields the Fermat cubic surface. It is a well-know exercise [Ha, Exc. V 4.16], to show
that it contains exactly three real lines and seven real tritangent planes. Hence for
λ < 1/16, the surface Sλ is of Type (iv) (see [Se] for an intuitive proof of this). An
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explicit blow-down morphism, defined over Q , in the case λ = 0 was presented by
N. Elkies [El] and also by one of us, [Po2, pp. 59–62].

In the singular surface S = S1/16, the point (−4, 1, 1, 1, 1) is an isolated point of
the real locus S(R). To see this, use the equation

x3/16 + y3 + z3 + 1 − (x + y + z + 1)3
= 0

for an open affine part of S; on this part, we consider the point (−4, 1, 1). The change
of variables r = x + 4, s = y − 1, t = z − 1 yields the new equation

6t2 + 6s2 +
9

4
r2 + 6rs + 6st + 6rt + F(r, s, t)

in which F is a homogeneous cubic. Clearly, the quadratic part of this defines a
positive definite form, hence (0, 0, 0) is an isolated point in the real locus defined by
the equation.

In fact, what happens in Sλ(R) when λ decreases from 1/4 to 1/16 is that for
λ = 1/4 we have a 2-sphere which is connected to the rest of the surface in the four
singular points. When λ decreases, the contact of this 2-sphere with the rest of the
surface disappears. The 2-sphere becomes smaller until at λ = 1/16 it shrinks to a

single point (the singular point), and for λ < 1/16 this point has disappeared. In
particular, what we claim here is that for 1/16 < λ < 1/4, the real locus Sλ(R) is not
connected and hence Sλ is of Type (v). This can be shown topologically. Instead, we
briefly sketch below how one finds the three real lines and 13 real tritangent planes in

the case 1/16 < λ < 1/4.
Observe that the three real lines given in parametric equations as

l1 = (0 : −t : t : 1), l2 = (0 : −1 : t : 1), l3 = (0 : t : −1 : 1)

are contained in Sλ.
Let H be a plane containing l1. One can write H = {ax + b(y + z) = 0}. Suppose

first that a = 0. This describes the real tritangent plane H = {y + z = 0}, meeting S

in l1 and in a pair of complex conjugate lines. In case a 6= 0, the plane can be given

as Hb = {x + by + bz = 0}. We count the number of tritangent planes of this type.
One has Hb ∩ Sλ = l1 ∪ Cb where Cb is a (possibly reducible) conic. In order for

Hb to be a tritangent plane, we need Cb to be singular. Since 1/16 < λ < 1/4, this
happens for exactly four different real values of b, which gives us four real tritangent

planes (in particular, the case b = 0 yields H = {x = 0}, which is the plane that
contains the three real lines l1, l2 and l3). We have then counted five real tritangent
planes. Again using 1/16 < λ < 1/4, it follows that each of them, apart from

{x = 0}, contains l1 and a pair of complex conjugate lines. By proceeding in the
same way with the tritangent planes containing l2 and l3 respectively, we find four
real tritangent planes for each case, all containing l2, resp. l3, as the only real line
(apart from the plane H = {x = 0} that contains all of l1, l2 and l3). In total, we have

now counted 12 pairs of complex conjugate lines and three real lines, hence these
are all the lines of Sλ. Since every real tritangent plane contains a real line of Sλ, the
above calculation in fact yields all real tritangent planes of Sλ. Therefore, the surface
contains precisely 5 + 4 + 4 = 13 real tritangent planes.

This finishes the calculation.
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Example 3.2 Instead of starting from cubic equations directly, one can of course
derive such equations starting from six points in the plane. A very convenient way to

do this is described by T. Shioda [Sh, § 6]. His observation is that, although the six
points are required not to be contained in any conic, they will certainly be smooth
points on some irreducible, cuspidal cubic curve. After a linear transformation, one
may assume that this cubic curve C is given by the equation y2z − x3

= 0. Then

t 7→ at := (t : 1 :t3)

defines an isomorphism of algebraic groups over Q from the additive group Ga to the
group of smooth points on C (in which (0 : 1 :0) is taken as the neutral element). The
latter group has the property that three points at1

, at2
, at3

in it, are on a line precisely

when t1 + t2 + t3 = 0 and similarly, six smooth points at j
are on a conic if and only if∑

t j = 0.

Now, given six values t j ∈ Ga which are pairwise different such that no three of
them add to 0 and

∑
t j 6= 0, Shioda [Sh, Thm. 14] explicitly gives an equation for

the corresponding smooth, cubic surface. We give some examples of this.

Take four values t1, . . . , t4 and put t5 := −(t1 + t2 + t3 + t4)/2 and t6 := t1 +
t2 + t3 + t4. Assume that the t j are pairwise different, no three of them add to 0
and

∑
t j 6= 0. With this choice, the conic through at1

, . . . , at5
meets C in at5

with

multiplicity two (since t1 + t2 + t3 + t4 + 2 · t5 = 0). The tangent line to this conic
at at5

is by construction tangent to C as well, and because t6 + t5 + t5= 0, the third
point of intersection with C is at6

. Hence this is a configuration as is used in the
construction of cubic surfaces of Type (v). As an explicit example, take (t1, . . . , t6) :=

(0, 1, 2, 5,−4, 8). The corresponding cubic surface of Type (i) has equation

y2w + 2yz2
= x3 − 964825

768
xw2 − 79

2
xz2 +

433748125

55296
w3 +

141859

96
z2w.

The involution τ is in this case given as τ (x : y : z :w) := (x : y :−z : w). This implies
that after changing the sign of the coefficients of yz2 and xz2 and z2w, a cubic surface

of Type (v) is obtained.

Starting from the set {±
√
−1, 1±

√
−1,±1}, the method yields the cubic surface

of Type (iii), given by

y2w + 2yz2
= x3 − 3025

8748
xw2 +

55

81
xzw − 1

3
xz2 − 5525

354294
w3 +

8345

39366
zw2 +

67

243
z2w.

To obtain an example of Type (ii), one takes four real values and one pair of com-

plex conjugates. For example, {±1,±
√
−1, 2, 3} yields the equation

y2w + 2yz2
= x3 − 138025

34992
xw2 − 245

81
xzw − 16

3
xz2

+
48982975

5668704
w3 +

600565

78732
zw2 +

1439

486
z2w.
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Example 3.3 As a final remark, an alternative way to produce examples of real
smooth cubic surfaces with exactly three real lines and 13 real tritangent planes (i.e.,

of Type (v)), is by changing the real structure on certain surfaces. For example, start
from the Clebsch diagonal cubic surface given by x3 + y3 +z3 +w3−(x+ y+z+w)3

= 0.
This is a surface of Type (i). The change of coordinates x0 = x + y, x1 = (x− y)

√
−1,

x2 = z, and x3 = w leads to the equation 2x3
0−3x0x2

1 +8x3
2 +8x3

3−8(x0 +x2 +x3)3
= 0.

This corresponds to a cubic surface containing exactly three real lines and 13 real tri-
tangent planes, hence of Type (v). More details concerning this method may be found
in [Po2], in particular Proposition 6 and the proof of Proposition 4.
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