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Trailing-edge serrations are add ons retrofitted to wind-turbine blades to mitigate
turbulent boundary-layer trailing-edge noise. This manuscript studies the physical
mechanisms behind the noise reduction by investigating the far-field noise and
the hydrodynamic flow field. A conventional sawtooth and a combed-sawtooth
trailing-edge serration are studied. Combed-sawtooth serrations are obtained by
filling the empty space between the teeth with combs (i.e. solid filaments). Both
serration geometries are retrofitted to a NACA 0018 aerofoil at zero degree angle of
attack. Computations are carried out by solving the explicit, transient, compressible
lattice Boltzmann equation, while the acoustic far field is obtained by means of the
Ffowcs Williams and Hawkings analogy. The numerical results are validated against
experiments. It is confirmed that the combed-sawtooth serrations reduce noise more
than the conventional sawtooth ones for the low- and mid-frequency range. It is
found that the presence of combs affects the intensity of the scattered noise but not
the frequency range of noise reduction. For both configurations, the intensity of the
surface pressure fluctuations decreases from the root to the tip, and noise sources
are mainly located at the serrations root for the low- and mid-frequency range. The
presence of the filaments generates a more uniform distribution of the noise sources
along the edges with respect to the conventional serration. The installation of combs
mitigates the interaction between the two sides of the aerofoil at the trailing edge
and the generation of a turbulent wake in the empty space between teeth. As a result,
the inward (i.e. from the serration edge to the centreline) and outward (i.e. from the
serration centreline to the edge) flow motions, due to the presence of the teeth, are
mitigated. It is found that the installation of serrations affects the surface pressure
fluctuations integral parameters. Both the spanwise correlation length and convective
velocity of the surface pressure fluctuations increase with respect to the baseline
straight configuration. When both quantities are similar to the one obtained for the
straight trailing edge, the effect of the slanted edge is negligible, thus corresponding
to no noise reduction. It is concluded that the changes in sound radiation are mainly
caused by destructive interference of the radiated sound waves for which a larger
spanwise correlation length is beneficial. Finally, the difference between measurements
and the literature is caused by an incorrect modelling of the spanwise correlation
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length, which shows a different decay rate with respect to the one obtained for a
straight trailing edge.

Key words: acoustics, aeroacoustics, hydrodynamic noise

1. Introduction
Turbulent boundary-layer trailing-edge (TBL-TE) noise is one of the dominant

sources of aerofoil self-noise in wind turbines (Brooks, Pope & Marcolini 1989;
Wagner, Barei & Guidati 1996). This source of noise limits both the installation of
new wind turbines and the operational regimes of existing ones, thus reducing the
power production and increasing the overall cost of energy (Oerlemans 2016).

With the goal of reducing TBL-TE noise of already existing wind turbines, many
passive noise-mitigation solutions, based on the modification of the trailing-edge
geometry with attachable add ons, have been proposed (Azarpeyvand, Gruber
& Joseph 2013; Gruber, Joseph & Azarpeyvand 2013; Arce-León et al. 2016a;
Pringent, Buxton & Bruce 2017). Among others, sawtooth add ons are widely used
for their simplicity of manufacturing and installation. More recently, Oerlemans
(2016) proposed a variation of the conventional sawtooth geometry, named as
combed-sawtooth serration, with solid filaments filling the empty spaces between
the teeth. This design showed additional 2 dB noise reduction during in-field
measurements for the frequency range of practical interest.

The prediction of the scattered noise in presence of sawtooth serrations is not
straightforward because of the complex three-dimensional flow generated by the
spanwise varying geometry (Jones & Sandberg 2012; Arce-León et al. 2016b;
Avallone, Pröbsting & Ragni 2016b). Several analytical and semi-analytical models
were developed to obtain reliable predictions for different trailing-edge shapes (Amiet
1976; Howe 1991a,b, 1999; Azarpeyvand et al. 2013; Lyu, Azarpeyvand & Sinayoko
2016; Stalnov, Chaitanya & Joseph 2016). While predictions based upon analytical
models require only details of the geometry, semi-analytical ones need additional
information on the boundary-layer characteristics and on the spatial and temporal
distribution of the surface pressure fluctuations (i.e. spectra Φpp, spanwise correlation
length lz and convective velocity uc). The first analytical solution for a serrated trailing
edge was formulated by Howe (Howe 1991a,b). He showed that, under the assumption
of frozen turbulence, for a semi-infinite flat plate with a serrated trailing edge, the
noise reduction with respect to the straight trailing edge depends on the serration
length (2h) and wavelength (λ). The model predicts an asymptotic noise reduction at
high frequency of 10 log10[1 + (4h/λ)2] dB. Even if this model is still widely used
because of its simplicity, the predicted far-field noise spectra are typically not in
agreement with measurements (Dassen et al. 1996; Parchen et al. 1999; Oerlemans,
Sijtsma & Lopez 2009; Gruber 2012; Gruber et al. 2013; Chong & Vathylakis
2015; Arce-León et al. 2016a,b,c, 2017; Avallone et al. 2016b); it over-predicts the
maximum noise reduction and it does not predict the noise increase at frequencies
higher than the so-called cross-over frequency f ? (Gruber et al. 2013; Arce-León et al.
2017). More recently, Lyu et al. (2016) developed a more accurate semi-analytical
model that better estimates the maximum noise reduction with respect to experimental
results. They individuated two non-dimensional parameters that affect noise reduction:
k1 × 2h and lz( f )/λ, where k1 is the acoustic wavenumber in the chordwise direction
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and f is the frequency. When both quantities are larger than unity, far-field noise is
significantly reduced. This means that the serration should be long enough to ensure
a considerable phase difference between the scattered pressure waves along the edges.
Furthermore, if the spatial range of the phase difference, i.e. λ, is sufficiently small
compared to the correlation length in the spanwise direction, radiated sound waves
destructively interfere. However, some discrepancies with respect to experiments
are still present, and they were attributed to the frozen-turbulence assumption by
Arce-León et al. (2016b) and Avallone et al. (2016b). As a matter of fact, Lyu et al.
(2016) concluded that the Chase’s turbulent boundary-layer spectrum model might
represent a limitation to the applicability of the analytical solution particularly in the
high-frequency range. For this purpose, a characterization of the statistical properties
of the surface pressure fluctuations on the serrations and their frequency and spatial
dependence is necessary.

Experimental measurements showed that the intensity of the noise reduction is
a function of the frequency and of the angle of attack. For a zero-angle-of-attack
configuration, the largest reduction was measured for 5 < Stl < 15 while almost no
reduction was measured for Stl > 30, where Stl is the Strouhal number based on the
airfoil chord and the free-stream velocity (Arce-León et al. 2016b). The disagreement
between analytical predictions and experiments has been recently investigated. Gruber
(2012) and Chong & Vathylakis (2015) measured surface pressure fluctuations
on serrations installed at the trailing edge of a flat plate. Quiescent conditions
were maintained on one side of the plate. Both studies showed a larger spanwise
magnitude-squared coherence of the surface pressure fluctuations γ 2 with respect to
the one measured for a straight trailing edge. In addition, Chong & Vathylakis (2015)
showed, by combining surface pressure and surface heat transfer measurements, the
presence of pressure-driven edge-oriented vortices. They concluded that the angle
between the local streamlines and the edge-oriented vortices affects the measured
far-field noise. Similar observations on the role of the streamline curvature were
reported by Arce-León et al. (2016c), who measured with particle image velocimetry
(PIV) the flow on a plane parallel to the serration surface retrofitted to a NACA
0018 aerofoil. However, by applying Howe’s model (Howe 1991a), corrected for
the effective serration angle (i.e. the angle between the streamlines and the serration
edge), they concluded that the streamline curvature correction cannot justify the
measured noise reduction. A later study by Avallone et al. (2016b) showed that the
flow field is three-dimensional with formation of large quasi-steady edge-oriented
vortical structures in the empty space between teeth even at small angle of attack.
These structures were attributed to the strong three-dimensional mixing layer across
the serration edges. Considering the source term of the Poisson equation for the
hydrodynamic pressure, they argued that the spectra of the near-wall pressure
fluctuations strongly vary along the serration surface, thus making the assumption of
frozen turbulence no longer valid. More precisely, they showed that the convective
velocity of the streamwise velocity component increases from the root to the tip
while the spanwise correlation length of the spanwise velocity component decreases
from the root to the tip. They further showed that noise is mainly generated at
the root of the serrations. Based on the previous observations, Avallone, van der
Velden & Ragni (2017) designed the so-called iron-shaped serration. They obtained
additional 2 dB noise reduction with respect to the conventional sawtooth serration.
Further improvements could be obtained with a better understanding of the effects
of serrations on the wall pressure statistics. However, it is very difficult to measure
the surface pressure fluctuations on thin surfaces without perturbing the flow (Gruber
2012; Chong & Vathylakis 2015).
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Computations might help in overcoming the experimental limitations mentioned
above. Numerical analyses studied the flow organization around trailing-edge
serrations (Arina et al. 2012; Jones & Sandberg 2012; Sanjose et al. 2014; Kim,
Haeri & Joseph 2016; van der Velden, van Zuijlen & Ragni 2016b; Merino-Martinez
et al. 2017; van der Velden & Oerlemans 2017). Among others, Jones & Sandberg
(2012) analysed the flow over a NACA 0012 retrofitted with trailing-edge serrations
and a split plate. In this study, the boundary layer was not forced to turbulent
and the effect of the flow separation/reattachment at the suction side did not allow
to isolate the contribution of TBL-TE noise. However, they showed that the flow
is three-dimensional with the presence of horseshoe vortices in the empty space
between the teeth, which were promoting a seeping motion from the suction to the
pressure side. Furthermore, they found that the wake evolves faster toward a more
spanwise structure-dominated flow in the presence of trailing-edge serrations. They
concluded that the far-field noise levels are affected only by a modification of the
edge scattering process, and potentially by a different hydrodynamic behaviour in the
direct vicinity of the serrations. However, no further link between the hydrodynamic
flow features and the scattered far-field noise was proposed.

The goal of this manuscript is to elucidate the relation between hydrodynamic
flow features and the far-field noise. For this reason, the most relevant parameters
responsible for noise radiation are carefully investigated. Since it is experimentally
challenging to measure pressure on the surface of the serrations without affecting
the flow field, a computational approach is chosen. A characterization of the surface
pressure fluctuations allows improving the existing analytical approaches. For this
reason, the flow over a serrated trailing edge retrofitted to a NACA 0018 aerofoil
at zero angle of attack is computed by solving the explicit, transient, compressible
lattice Boltzmann equation, while the acoustic far field is obtained by means of
the Ffowcs Williams and Hawkings (FW–H) acoustic analogy (Ffowcs-Williams &
Hawkings 1969). The configuration is a replica of the experiments performed by
Arce-León et al. (2016b) to which the computational results are compared. The
zero-angle-of-attack configuration is chosen because it allows isolating the effect of
the serration loading on the hydrodynamic flow field and the radiated noise. This case
represents the simplest but unavoidable test bench for analytical models. However,
in order to compare with the state-of-the-art serration geometry, combed-sawtooth
serrations are further studied. A first analysis of this configurations was carried
out earlier by van der Velden & Oerlemans (2017) who showed that this geometry
mitigates the flow unsteadiness at root, thus being beneficial for trailing-edge noise
reduction.

In the following, the computational methodology is discussed in § 2. A brief
discussion of the two different computational test cases is given in § 3. The
computational set-up is validated in § 4 by means of a grid convergence study and
comparison with experimental data, both in terms of mean flow features and far-field
noise. The acoustic far-field results for all configurations are then discussed in § 5. In
the same section, a detailed analysis of the source distribution along the serrations
is performed. Finally, the instantaneous flow field and the integral parameters of the
surface pressure fluctuations are investigated in §§ 6 and 7. The main findings of this
work are summarized in the conclusions.

2. Computational method
2.1. Flow solver

The lattice Boltzmann (LB) method is used to compute the flow field because it was
shown to be accurate and efficient for trailing-edge noise prediction in presence of
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complex flow problems (van der Velden et al. 2016; van der Velden & Oerlemans
2017). The commercial software PowerFLOW 5.3b is adopted. It solves the discrete
LB equation for a finite number of directions. For a detailed description of the method,
the reader can refer to Succi (2001). The LB method determines the macroscopic flow
variables starting from the mesoscopic kinetic equation, i.e. the LB equation. The
discretization used for this particular application consists of 19 discrete velocities in
three dimensions (D3Q19), involving a third-order truncation of the Chapman–Enskog
expansion. It was shown that this scheme accurately approximates the Navier–Stokes
equations for a perfect gas at low Mach number in isothermal conditions (Chen,
Chen & Matthaeus 1992). The distribution of particles is solved by means of the LB
equation on a Cartesian mesh, known as a lattice. An explicit time integration and a
collision model are used. The LB equation can then be written as:

gi(x+ ci1t, t+1t)− gi(x, t)=Ci(x, t), (2.1)

where gi is the particle distribution function along the ith lattice direction. It
statistically describes the particle motion at a position x with a discrete velocity ci

in the i direction at time t. ci1t and 1t are space and time increments, respectively.
Ci(x, t) is the collision term for which the Bhatnagar–Gross–Krook (BGK) model
(Bhatnagar, Gross & Krook 1954; Chen et al. 1992) is adopted because of its
simplicity:

Ci(x, t)=−
1t
τ
[gi(x, t)− geq

i (x, t)], (2.2)

where τ is the relaxation time and geq
i is the local equilibrium distribution function.

For small Mach number flows the equilibrium distribution of Maxwell–Boltzmann
is conventionally used (Chen et al. 1992). It is approximated by a second-order
expansion as:

geq
i = ρωi

[
1+

ciu
c2

s

+
(ciu)2

2c4
s

+
|u|2

2c2
s

]
, (2.3)

where ωi are the fixed weight functions, dependent on the velocity discretization model
D3Q19 (Chen et al. 1992), and cs = 1/

√
3 is the non-dimensional speed of sound in

lattice units. The macroscopic flow quantities density ρ and velocity u, are obtained by
discrete integration of the microscopic quantities weighted by the distribution function
over the state space:

ρ(x, t)=
∑

i

gi(x, t), ρu(x, t)=
∑

i

cigi(x, t). (2.4a,b)

The dimensionless kinematic viscosity ν is related to the relaxation time following
Chen et al. (1992):

ν = c2
s

(
τ −

1t
2

)
. (2.5)

A very large eddy simulation (VLES) model is implemented to take into account
the effect of the sub-grid unresolved scales of turbulence. Following Yakhot &
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Orszag (1986), a two-equation k–ε renormalization group (RNG) is used to compute
a turbulent relaxation time that is added to the viscous relaxation time:

τeff = τ +Cµ

k2/ε

(1+ η2)1/2
, (2.6)

where Cµ = 0.09 and η are a combination of the local strain, local vorticity and
local helicity parameters. The term η allows to mitigate the sub-grid scale viscosity
in presence of large resolved vortical structures.

In order to reduce the computational cost, a pressure-gradient extended wall model
(PGE-WM) is used to approximate the no-slip boundary condition on solid walls
(Teixeria 1998; Wilcox 2006). The model is based on the extension of the generalized
law-of-the-wall model (Launder & Spalding 1974) to take into account the effect of
pressure gradient. The expression of the PGE-WM is:

u+ =
1
κ

ln
(

y+

A

)
+ B, (2.7)

where

B= 5.0, κ = 0.41, y+ =
uτy
ν
, (2.8a−c)

and where A is a function of the pressure gradient. It captures the physical
consequence that the velocity profile slows down and so expands, due to the presence
of the pressure gradient, at least at the early stage of the development. The expression
of A is:

A= 1+
f
∣∣∣∣dp

ds

∣∣∣∣
τw

, ûs ·
dp
ds
> 0, (2.9a,b)

A= 1, otherwise. (2.10)

In the equations, τw is the wall shear stress, dp/ds is the streamwise pressure
gradient, ûs is the unit vector of the local slip velocity and f is a length scale equal
to the size the unresolved near-wall region. These equations are iteratively solved
from the first cell close to the wall in order to specify the boundary conditions of
the turbulence model. For this purpose, a slip algorithm (Chen, Teixeira & Molvig
1998), obtained as generalization of a bounce back and specular reflection process, is
used.

2.2. Noise computations
The compressible and time-dependent nature of the transient computed solution
together with the low dissipation and dispersion properties of the LB scheme (Bres,
Perot & Freed 2009) allow extracting the sound pressure field directly in the near
field up to a cutoff frequency corresponding to approximately 15 voxels per acoustic
wavelength.

In the far field, noise is computed by using the Ffowcs-Williams & Hawkings
(1969) (FW–H) equation. The formulation 1A, developed by Farassat & Succi (1980),
extended to a convective wave equation, is used in this study (Bres et al. 2009).
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Serration Combed serration

X

Y

Z

Z
X

Z
X

FIGURE 1. Aerofoil, serration geometries and dimensions.

The formulation is implemented in the time domain using a source-time dominant
algorithm (Casalino 2003). Integrations are performed on the surface of the aerofoil
where the unsteady pressure is recorded with the highest frequency rate available on
the finest mesh resolution level. As a consequence, acoustic dipoles distributed on
the surface of the aerofoil are the only source terms of interest (Curle 1955) and the
nonlinear contribution related to the turbulent fluctuations in the wake of the aerofoil
is neglected.

3. Computational test cases
A NACA 0018 aerofoil with a chord of l= 0.2 m and span of b= 0.08 m (b= 0.4l)

is investigated (figure 1). The free-stream velocity is u∞ = 20 m s−1, corresponding
to a free-stream Mach number M∞ = 0.06, and a chord-based Reynolds number of
Rel = 280 000. The free-stream turbulence intensity is set to 0.1 %. The angle of
attack is α= 0 deg. The wind-tunnel model and the free-stream conditions are chosen
as in the experiments of Arce-León et al. (2016b), which measurements are used
as reference. Similarly to the experiments, boundary-layer transition to turbulence
is forced. In this case, a zig–zag strip (van der Velden et al. 2017) of height
ttrip = 0.6 mm (ttrip = 0.003l), amplitude ltrip = 3 mm (ltrip = 0.015l) and wavelength
btrip = 3 mm (btrip = 0.015l) on both aerofoil sides at x = −0.8l, i.e. 20 % of the
chord, is used. The height of the zig–zag strip corresponds to approximately half the
local incoming laminar boundary-layer thickness (δ0). The aerofoil is retrofitted with
a straight, a sawtooth and a combed-sawtooth trailing edge. Serrations have length
2h= 0.04 m (2h= 0.2l) and wavelength λ= 0.02 m (λ= 0.1l), resulting in an aspect
ratio of 2h/λ= 2. The length of the serration was chosen to be approximately equal to
four times the length of the boundary-layer thickness based on 95 % of the free-stream
velocity (based on XFOIL computations (Drela 1989)) for the tested Reynolds number.
Combed-sawtooth serrations have the same solid geometry and filaments with both
thickness and clearance of d= 0.5 mm (d= 0.0025l). Both trailing-edge add ons have
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the same thickness of the straight trailing edge equal to 1 mm (tser = 0.005l). A total
of 4 serrations are present along the span. A sketch of the geometries and of the
adopted Cartesian coordinate system is shown in figure 1. The z-axis coincides with
the aerofoil trailing edge; the y-axis is perpendicular to the surface of the serrations;
and the x-axis is aligned with the chord of the aerofoil. The origin is set at the
location of the baseline aerofoil with straight trailing edge, such that the x-axis is
oriented along the serration centreline.

The simulation domain is a box of length equal to 12l in both streamwise and
wall-normal directions and b in the spanwise direction. Periodic boundary conditions
are applied on the lateral faces of the simulation domain. Outside a circular refinement
zone of diameter equal to 10l an anechoic outer layer is used to damp out the outward
radiating and the inward reflected acoustic waves. A total of 10 mesh refinement
regions with resolution factor equal to 2 are employed. This guarantees that, at the
trailing-edge location, the first near-wall cell is located at approximately 3.9× 10−4l,
i.e. inside the viscous sub-layer. It results in a resolution of about y+ = 3 around
the trailing edge in all the directions. The rest of the aerofoil boundary is modelled
with one coarser level of resolution. In total, approximately 150 million cubic cells
(voxels) are used to discretize the problem. A mesh resolution study has been carried
out in order to verify the convergence of the boundary-layer characteristics at the
trailing-edge location and the far-field noise. The accuracy of the discretization is
also validated comparing the computational results with experimental data. Details
are described in § 4. The flow-simulation time is 0.3 s (30 flow passes) requiring
6300 CPU hours on a Linux Xeon E5-2690 2.9 GHz platform.

The physical time step, corresponding to a Courant–Friedrichs–Lewy (CFL) number
of 1 in the finest mesh resolution level, is 1.3× 10−7 s. The unsteady pressure on the
surface of the aerofoil is sampled with a frequency of 30 kHz (Stl= fl/u∞= 300) for
a physical time of 0.2 s (equals to 20 aerofoil flow passes). Given the periodicity of
the flow for the different serrations, the computed fields are spatially averaged along
the spanwise direction, as well as over the top and bottom sides of the serration.
The average is carried out along points with the same relative location with respect
to the serration root. This procedure reduces the uncertainty on the mean values as
well as increases the number of samples available for the spectra evaluation (Jones &
Sandberg 2012).

4. Grid resolution study and comparison with experiments

Grid resolution studies are carried out to verify convergence of both the
hydrodynamic and acoustic fields. Four grid resolutions are investigated: coarse
(y+ = 12), medium (y+ = 6), fine (y+ = 3) and very fine (y+ = 1.5). This is achieved
by doubling the resolution of each refinement region. The boundary-layer thickness
δ for the straight trailing edge at x/l = −0.005 is used as integral hydrodynamic
parameter for the convergence analysis. It is plotted versus the grid factor N−2/3 in
figure 2, where N is the total number of voxels.

Figure 2 shows that convergence towards a boundary-layer thickness of 9.3 mm is
obtained for the fine resolution case (y+= 3). It is further verified that the shape factor
H = δ?/θ is equal to 2.2, as in the experiments. The Richardson extrapolation with a
refinement ratio of r = 2 and order of convergence of p= 3 (discarding the coarsest
mesh), plotted as dashed line in figure 2, confirms convergence of the hydrodynamic
flow field. An additional check of the grid convergence is carried out via the grid
convergence index (GCI). It is GCI2,3= 2.36 % and GCI1,2= 0.30 % for both the fine
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FIGURE 2. Boundary-layer thickness at x/l=−0.005 for different mesh sizes. The dashed
line reports the Richardson extrapolation, while the square tick indicates the resolution
adopted throughout the manuscript.

Parameter Symbol Quantity

Free-stream velocity u∞ 20 m s−1

Edge velocity ue 18.75 m s−1

Displacement thickness δ? 3.3 mm
Momentum thickness θ 1.5 mm
Boundary-layer thickness δ 9.5 mm

δ95 7.9 mm
Reynolds number Rec 280 000

Reδ? 4 600
Reθ 2 100
Reδ 13 300

Shape factor H 2.2

TABLE 1. Boundary-layer parameters for the straight trailing edge at x/l=−0.005 for
the fine grid resolution (y+ = 3).

and very fine grid resolutions, respectively. Their ratio, computed as in equation (4.1),
is approximately equal to 1. It indicates a grid-dependent solution (Roache 1994) and
ensures that both grids are in the asymptotic range of convergence.

GCI2,3

rp ×GCI1,2
= 0.98≈ 1. (4.1)

Based on the previous considerations, the fine grid resolution (y+= 3) is used in the
rest of the study (solid square in figure 2). The resulting boundary-layer parameters
for the selected grid resolution and for the straight trailing edge are shown in table 1.

Results from the selected grid resolution are further compared against PIV
experimental results (Arce-León et al. 2016b). A description of the experimental
set-up is reported in appendix A. Time-averaged mean and turbulent velocity
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FIGURE 3. (Colour online) (a) Time-averaged, root-mean-square of the (b) streamwise and
of (c) the wall-normal velocity components. Profiles at different locations along the edge
for the straight and sawtooth configurations. Experimental PIV data for the serrated case
(circles) are extracted from Arce-León et al. (2016b). The locations along the serration,
indicated in the legend, are: (yellow) x/2h= 0, (green) x/2h= 0.5 and (light blue) x/2h=
1; the boundary layer for the straight trailing edge is reported in purple.

fluctuations (i.e. the root-mean-square) in the boundary layer for both the straight and
the sawtooth trailing edges are plotted (figure 3). For the latter, three streamwise
locations along the edge are investigated: x/2h = 0, x/2h = 0.5 and x/2h = 1.
In figure 3, the wall-normal location y and the velocity statistics are respectively
non-dimensionalized with respect to δ and ue (i.e. the edge velocity) taken at x/2h= 0
for the straight trailing edge (table 1).

A very good agreement is found between experimental measurements and
computational results for both the mean and turbulent velocity profiles. The intensity
of the velocity fluctuations is also well captured, thus suggesting that the adopted
zig–zag turbolator creates a turbulent boundary layer similar to the experimental one.
Data confirm that the presence of the sawtooth trailing edge weakly affects the flow
upstream. Computational results further capture the decrease of the boundary-layer
thickness towards the tip of the serration and the consequent increase of the near-wall
streamwise velocity. On the other hand, the root-mean-square (r.m.s.) of both the
streamwise u′u′ and wall-normal v′v′ velocity components decreases in intensity
toward the sawtooth tip. The location of the maximum u′u′ moves toward the outer
edge of the boundary layer at downstream locations, while the location of the
maximum v′v′ is constant at approximately y/δ≈ 0.3. Similar flow features were also
found in other experimental studies (Gruber 2012; Avallone et al. 2016b).

The comparison with the experiments is further extended to the far-field noise to
assess the suitability of the selected computational grid. The far-field acoustic spectra,
obtained with the FW–H analogy described in § 2.2, are compared with microphone
array measurements (Arce-León et al. 2016b). It is worth mentioning that absolute
levels from microphone array measurements are obtained making the assumption of
linear noise source along the trailing edge (Sarradj et al. 2017). Since the microphone
array was located in a plane parallel to the serration surface, computational data are
sampled at x = 0, y = 10l, z = 0. To allow the comparison, data (Φm) are scaled to
a reference observer distance (R), span (b) and Mach number (M), as reported in
equation (4.2) (Avallone et al. 2017), where the fifth-power law for the Mach number

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

37
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.377


570 F. Avallone, W. C. P. van der Velden, D. Ragni and D. Casalino

30

Straight experiment
Sawtooth experiment
Straight computations

Combed-sawtooth medium
Combed-sawtooth fine
Combed-sawtooth very fine

Sawtooth computations

10 20 3010 20
100

110

120

130

140

10

12

0

2

4

6

8

(a) (b)

FIGURE 4. Far-field pressure spectra (a) Φaa and (b) 1Φaa with respect to the straight
trailing edge. Experimental data are taken from Arce-León et al. (2016b).

has been enforced (Ffowcs-Williams 1969; Költzsch 1974; Blake 1986).

Φaa =Φm + 20 log10(R)− 10 log10(b)− 50 log10(M). (4.2)

The far-field noise spectra (Φaa) are plotted in figure 4. In figure 4(a), Φaa for
both the straight and the sawtooth configurations are compared with the available
experimental data. A good agreement in terms of absolute noise level is found.
Differences between computations and experiments are within 1 dB for Stl > 10. For
Stl < 10 the maximum difference is 3 dB. Both spectra present the characteristic
features of broadband far-field noise with intensity decreasing at higher frequencies.
Finally, to verify that the relevant flow features contributing to far-field noise are
well captured also in presence of the small gaps between the filling elements of
the combed-sawtooth serrations, 1Φaa at y = 10l are compared for the medium
(y+= 6), fine (y+= 3) and very fine (y+= 1.5) resolutions in figure 4(b). It represents
the far-field noise reduction (1Φaa > 0) or increase (1Φaa < 0) with respect to the
straight trailing edge. For the frequency range of interest, results show differences less
than 1 dB, confirming that the far-field acoustic pressure spectra are converged for
the fine resolution grid. Additionally, van der Velden & Oerlemans (2017), using the
same flow solver and spatial discretization, replicated the experiments of Oerlemans
(2016) reporting good agreement and noise reduction intensity of the same order of
magnitude. Similarly, Fares, Casalino & Khorrami (2015), in a study about a turbulent
flow past the side edge of a wing flap with applied solid filaments, showed that, for
a resolution similar the one used in this case, a good agreement between experiments
and numerical predictions is obtained up to 5 kHz (Stl = 50), which is above the
maximum frequency of interest of this study (Stl = 30).

5. Acoustic behaviour of trailing-edge serrations
5.1. Far-field analysis

The effect of the trailing-edge serrations upon the acoustic behaviour is investigated
in this section. Acoustic waves, scattered at the trailing edge of the baseline
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–25 0 25

FIGURE 5. (Colour online) Band-pass filtered time derivative of the pressure for the
straight trailing edge and Stl = 11.

configuration, are visualized through contour plot of the time derivative of the
instantaneous pressure field for Stl = 11 in figure 5. The colour bar is saturated in
order to emphasize the time derivative of the acoustic pressure waves with respect of
the hydrodynamic ones in the wake of the aerofoil. Data are band-pass filtered using
a periodogram method with a Hanning window and 50 % overlap. The procedure
results in a frequency resolution of 83.5 Hz (1Stl = 0.835).

The figure shows that the dominant source of noise is located at the trailing edge.
It is verified that, also at higher frequencies, no other source of noise (i.e. forced
transition region) is as relevant as the trailing edge. Is it further verified that the same
is valid for all the cases investigated. It is visible that the acoustic waves from the
trailing edge propagates in a predominantly upstream direction symmetric with respect
to the aerofoil chord. The intensity of the pressure waves decays with the distance
from the source location (i.e. the trailing edge).

The presence of a serrated trailing edge might alter the directivity and spanwise
correlation of the scattered acoustic field. Contour plots of the band-pass filtered
pressure time derivative for the two serration geometries are shown in figure 6. A x–y
plane aligned with the serration tip (z/λ= 0) is shown for the conventional (figure 6a)
and the combed-sawtooth (figure 6b) serrations. The comparison of figures 5 and 6
confirms the noise radiation trends of the sawtooth and combed-sawtooth serrations
shown in figure 4.

The effect of the serrations is better quantified in terms of 1Φaa. This is plotted
in figure 7 where the experimental data of Arce-León et al. (2016b) are reported for
comparison. No experimental data for the case under investigation are available for
the combed-sawtooth serrations. However, the additional 3 dB noise reduction and
the corresponding frequency range are in line with the measurements of Oerlemans
(2016) and the computations of van der Velden & Oerlemans (2017), as discussed
in the previous section. The noise reduction varies with frequency; the maximum is
found in the mid-frequency range at St number of approximately 8. The maximum
1Φaa achieved by conventional sawtooth serrations is approximately 6 dB. At St
number higher than approximately 8, the noise reduction decreases monotonically.
For Stl > 30 no difference is found. Following Jones, Sandberg & Sandham (2009),
who performed direct numerical simulation (DNS) for a straight trailing edge, the
largest noise reduction for a serrated trailing edge is expected in the non-dimensional
frequency range corresponding to 5 < Stl < 15, while negligible or no effect should
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(a) (b)

–25 0 25 –25 0 25

FIGURE 6. (Colour online) Band-pass filtered time derivative of the pressure at Stl = 11.
x–y planes at z/λ= 0 for the (a) sawtooth and (b) combed-sawtooth serrations.
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FIGURE 7. 1Φaa with respect to the straight trailing-edge configuration. Experimental data
are taken from Arce-León et al. (2016b).

be expected for Stl > 25. This was linked to the fact that, for a straight trailing edge,
the most amplified convective instability waves, responsible for noise generation, are
expected for Stl ≈ 8.5.

Combed-sawtooth serrations, with same 2h and λ, reduce noise in the same
frequency range but they show larger 1Φaa. For the present configuration, the
introduction of filaments increases 1Φaa up to 9 dB at Stl ≈ 8. No additional noise
reduction is seen for Stl> 30. The combed-sawtooth serration generates slightly higher
far-field noise (≈ 0.5 dB) with respect to the conventional sawtooth for 20< Stl < 30,
thus suggesting an effect of the thin filaments in the mid- to high-frequency range.
The maximum noise reduction takes place at the same frequency for the two serrated
configurations.

Since the introduction of a spanwise varying geometry might lead to an alteration of
the far-field noise pattern, directivity plots are showed in figure 8. They are obtained
by considering 360 microphones equally spaced in a circle of radius equal to 10l
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(a) (b)

(c)

Sawtooth Combed-sawtooth Straight

1.6 1.2 0.8 0.4
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1.5 1.3 1.1 0.9 0.7

1.2 0.8 0.4

FIGURE 8. Directivity plots of Φaa(φ,1f )/Φaa(1f ) for the straight, sawtooth and combed-
sawtooth trailing edge for three different non-dimensional frequency ranges: (a) 2< Stl< 4,
(b) 4< Stl< 16 and (c) 16< Stl< 32. Values normalized by mean values along the circular
arc of the straight edge case.

at the aerofoil mid-span. Results are further integrated over the non-dimensional
frequency band reported in each plot. At low frequency (figure 8a), a compact dipole
source is observed at the trailing edge. Increasing the frequency (figure 8b), the dipole
is tilted toward the leading edge of the aerofoil (Roger & Moreau 2010). Further
increasing the frequency (figure 8c), a non-compact behaviour appears for the straight
trailing edge where two upstream-oriented lobes are visible. This effect is mitigated
by the presence of serrations. Noise reductions with respect to the baseline aerofoil
are observed at all angles with maximum between 105 and 135 degrees. It is also
clear that the modification of the serration geometry does not alter the directivity
pattern in the simulated frequency range.

The previous observations combined with the extensive experimental measurements
reported in the literature (Gruber 2012; Avallone et al. 2016a) suggest that the
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FIGURE 9. Difference between the far-field noise generated by the full airfoil (Φaa) and
the one generated by the strip 0 (Φ0

aa) extended to the entire span for the conventional
sawtooth trailing-edge serration.
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FIGURE 10. Cumulative sum of far-field sound pressure levels from root to tip (segment
1, 1–2, 1–3, . . .) for the (a) sawtooth and (b) combed-sawtooth serrations.

change of the geometrical parameters of the serrations affects the frequency range
in which noise reduction is measured, while filling the gap in between serrations
allows increasing the maximum noise reduction. In order to understand the physical
mechanisms and the effects of the filaments, a detailed flow and acoustic analysis is
carried out in the remainder of the paper.

5.2. Analysis of the serrations scattering
In the previous subsection, it was shown that the combed-sawtooth geometry
outperforms the conventional serration geometry by additionally reducing of 3 dB the
far-field noise. In this subsection, the effect of the edge scattering is investigated.

Both the aerofoil and serrations are split into strips as shown in figure 10. Each
strip is independently used to compute the pressure fluctuations in the far field with
the FW–H analogy. In the following, 9 strips are considered. It has been verified that
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varying the number of strips does not alter the detected trends. The strips cover the
last 5 % of the aerofoil chord and the full serration. The strips are numbered from
1 to 9 increasing from the root to the tip; the entire region is labelled as 0. The
FW–H analogy is then applied for each strip and for a cumulative sum of strips (i.e.
strip extending from 1 to 2: 1–2, 1 to 3: 1–3,. . .). In the following analysis, only
one serration is included (−0.5< z/λ< 0.5) to isolate its contribution. It is important
to mention that this does not account for tooth-to-tooth constructive or destructive
interference. However, as will be shown in § 7, the spanwise correlation length of
the turbulent structure is smaller than the serration wavelength. As a consequence,
there should be no correlation between the scattered waves. For the combed-sawtooth
serration also the surface of the combs is included in the FW–H integral. The
far-field noise obtained by the cumulative sum of strips allows for the detection of
regions along the serration length where most of the noise is generated. Differently,
the cross-correlation between strips allows detecting the constructive/destructive
interference between local sources.

Figure 9 shows the difference between the far-field noise scattered by the entire
aerofoil (Φaa) and the one scattered only by the strip 0 (Φ0

aa) extended to the entire
span. The figure is obtained for the conventional sawtooth trailing-edge serration;
it has been verified that the combed-sawtooth one shows the same trend. The
figure confirms that the dominant noise source is located at the trailing edge. The
contribution of the region upstream of the strip 0 contributes to less than 10 % of
the overall noise also in the low-frequency range. As expected, the contribution of
the aerofoil is more relevant in the low-frequency range because the wavelengths of
the acoustic waves are of the same order of magnitude of the aerofoil chord. This is
consistent with the dipole directivity pattern shown in figure 8.

Results of the cumulative sum of strips are plotted in figure 10 for both the
(a) sawtooth and (b) combed-sawtooth trailing edges. Three frequency ranges are
considered, following Jones & Sandberg (2012). The values are compared with respect
to the far-field spectra of the overall region, Φ0

aa. Positive values of 1Φ#
aa=Φ

#
aa−Φ

0
aa

indicate that the noise generated by the partial sum of strips is larger than the noise
generated by the entire serration. A constant positive growth rate means that noise
generated by the additional strip is in phase with the previous. A change in slope
indicates partial interference of the considered consecutive strips.

For 2 < Stl < 4, both configurations show similar trends, in terms of growth rate
and maximum intensity up to segment 4 where 1Φ#

aa > 0 is found. This suggests
that, in this frequency range, most of the noise is generated at the root. Differences
between the two trailing-edge add ons are present when considering downstream strips.
In both cases, a reduction is observed up to segment 6, but with a larger slope in
presence of the combed-sawtooth serrations. This means that the waves scattered at
the central part of the serrations are out of phase with the one scattered upstream.
The most downstream part of the serration length contributes in a different manner
for the two cases. While for the sawtooth serration, 1Φ#

aa is approximately equal to
zero, for the combed-sawtooth serration 1Φ#

aa still grows until the tip. It suggests that
the tip is a source of noise for the latter while it is not for the sawtooth serration.
For 4 < Stl < 16, no local maxima are found for both cases. However, while for
the sawtooth serrations most of the noise is still generated at the root (i.e. larger
slope), for the combed-sawtooth serration the tip starts being more relevant. At higher
non-dimensional frequencies (16 < Stl < 32), the curve of the conventional sawtooth
serrations overlaps with the one computed for the mid-frequency range, while the
combed-sawtooth configuration shows increasing noise.
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FIGURE 11. (Colour online) Phase information with respect to the overall segment (grey
scale) and normalized cross-spectral-density matrix (colour scale) for the various strips
(figure 10a) for the (a) sawtooth and (b) combed-sawtooth serrations.

In order to further investigate the interference of the scattered pressure waves
and to confirm the previous observations, the cross-power spectral density (CSD)
matrix is shown for both the sawtooth (figure 11a) and combed-sawtooth (figure 11b)
configurations. The CSD (i.e. the Fourier transform of the cross-correlation function)
is defined in equation (5.1) and it is obtained using a periodogram method with
a Hanning window size of 128 elements and 50 % overlap. Results are further
integrated over three frequency bands, as already described earlier. The auto-power
spectral density (ASD) is plotted along the diagonal. In figure 11, the inner matrix
is coloured by the magnitude of the CSD between the generic strip i and j |Ci,j|,
normalized with respect to the magnitude of the ASD of the entire region |C0,0|. The
outer grey scale shows the values of cos(Φi,0), where Φi,0 is the phase angle of Ci,0.
If cos(Φi,0)= 1, the signals are in phase. By definition, this matrix is symmetric. As
a consequence, if the signals are in phase, the segment contributes to noise increase,
while, if they are out of phase, the segment reduces noise as already discussed earlier.
Hence, the combination of the magnitude information with the phase angle represents
a different approach to study the contribution of each segment to the total emitted
noise. However, this analysis is necessary to quantify the local intensity of the noise
sources.

Ci,j(ω)=

∫
∞

−∞

[∫
∞

−∞

Φaa,i(t)Φaa,j(t+ τ) dτ
]

ejωt dt. (5.1)

The phase-angle results are consistent with the previous findings. The variation of
the slope of the cumulative sum is caused by out-of-phase locally scattered waves. The
introduction of the filaments alters the out-of-phase strip locations with respect to the
sawtooth serration. In the frequency range 2< Stl < 4, they are located in the central
part of the serration length while in the range 4< Stl < 16 they are more uniformly
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distributed along the entire length. This might indicate a situation closer to the frozen-
turbulence assumption, thus justifying a larger noise reduction.

The CSD results instead provide useful insights in terms of spatial coherence of the
pressure field. Both serrated trailing edges show that the ASD magnitude is larger at
the root region, while it constantly decreases toward the tip (bottom right side of each
figure). Only the combed-sawtooth configuration, in the highest-frequency range (16<
Stl < 32), shows the largest magnitude at the tip. Starting from the sawtooth serration,
for 16< Stl < 32, the strips close to the root, up to segment number 3, have relative
higher magnitude. The central part of the serration (from segment 4 to 6) shows a
decreasing magnitude that is approximately equal to 0 in the final part. For 4< Stl <

16, a similar trend is visible: the area with magnitude larger than 0 extends toward the
tip. The magnitude decreases with increasing frequency. The result is consistent with
the one presented before: the most relevant noise source is located at the root of the
serrations and the contribution of the tip to the overall noise generation is negligible
(i.e. almost flat curve in figure 10). Differences are present when looking at the CSD
magnitude between different strips. In the mid-frequency range, larger CSD is seen
between adjacent strip while it is lower for the other two frequency ranges. When
comparing with the combed-sawtooth serrations, it is visible that trends are similar but
differences in terms of magnitude and streamwise correlation are found (figure 11b).
There is higher streamwise correlation up to strip number 6. This correlation extends
up to the tip location. Furthermore, the magnitude of the CSD is more uniformly
distributed in particular in the frequency range 4 < Stl < 16. It suggests that noise
sources (i.e. the turbulent boundary-layer structure) are more uniformly distributed.
These results confirm the previous observation that the combed-sawtooth serration is
quieter than the sawtooth serrations because of a better performance of the serrations
in generating destructive interference effects. To support this conclusion, it will be
shown in § 7 that the magnitude of the pressure fluctuations is similar between the
two configurations.

6. Instantaneous and mean flow organization

The analysis of the acoustic behaviour shows that the destructive interface is
the dominant noise reduction mechanism and that the introduction of the filaments
spreads more uniformly the noise sources along the serration length. The latter might
be caused by an alteration of the flow that can lead to a modification of the surface
pressure fluctuations and of the locally scattered pressure waves. For this reason, a
detailed description of the mean and instantaneous flow organization is reported.

As discussed in § 3, transition to turbulence is forced with a zig–zag turbolator
located at x/l = −0.8. It generates streamwise-oriented vortices that break to
turbulence before approaching the trailing edge (figure 12). Even if not shown
for the sake of conciseness, it is verified that the transition process does not depend
on the trailing-edge geometry.

The instantaneous flow organization for x/l > 0 depends on the presence of the
trailing-edge add ons as shown in figures 13 and 14. They show the iso-surface of
the λ2 criterion (Jeong & Hussain 1995) and the corresponding near-wall streamlines
respectively, both colour contoured with the non-dimensional velocity magnitude
V/u∞. The density of the coherent flow structures decreases downstream the near
wake (figure 13). This is due to a lower resolution used in the computations after the
serration length. This does not influence the result of this study, since only the flow
over the serration surface is relevant for noise generation.
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FIGURE 12. (Colour online) Iso-surface of λ2 criterion colour contoured with velocity
magnitude for the straight trailing edge.
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(c)

FIGURE 13. (Colour online) Iso-surface of λ2 colour contoured with non-dimensional
velocity magnitude for the (a) straight, (b) sawtooth and (c) combed-sawtooth trailing
edges.

For all the investigated configurations, the flow across the trailing edge and
in the near wake is rich of turbulent structures in form of streamwise-oriented
and hairpin vortices. The modification of the trailing-edge geometry induces small
modifications in the distribution of the turbulent structures and it affects the way in
which they convect over the edge. Across the straight trailing edge, coherent vortices
are uniformly distributed along the entire span of the computational domain. The
velocity magnitude decreases right after the edge while it increases again downstream,
thus reducing the wake deficit. Conversely, the presence of the trailing-edge serrations
mitigate the flow interaction between the two sides of the aerofoil as visible in
figure 13(b,c). For both serrated configurations, the flow is decelerated near the root
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FIGURE 14. (Colour online) Instantaneous streamlines colour contoured with non-
dimensional velocity magnitude for the (a) sawtooth and (b) combed-sawtooth trailing-
edge serrations.

and at the junction between the aerofoil and the add ons as shown by the dark
blue streamlines in figure 14. This is due to the geometrical change of curvature
of solid surface and to the flow interaction between the two sides of the aerofoil
at the root of the sawtooth serration. In the empty space between the sawtooth
serrations, the coherent vortices convect with a velocity of approximately 70 % of the
free-stream velocity, as visible from the colour contour, while along the serration the
near-wall velocity increases more slowly. The latter is due to the thinner boundary
layer developing over the serrations, as will be discussed later when commenting
figure 15 and previously shown experimentally (Arce-León et al. 2016b; Avallone
et al. 2016b).

For the sawtooth serration, the density of the coherent structures is non-uniform
in the spanwise direction. A larger density of small structures, similar to the one in
the near wake of the baseline configuration, are present in the empty space between
serrations. A deeper look at the figures 13 and 14 shows the presence of edge
vortices near the serration edges that convect with slower velocity magnitude with
respect to the central part of the empty region (i.e. the rolling light blue streamlines
near the slanted edge). The streamlines further show streamwise-oriented vortices
developing in the empty space between serrations. These vortices are generated by
the three-dimensional mixing layer (Wlezien & Kibens 1986; Wygnanski et al. 2011).
They affect the near-wall streamlines that, near the root, show a strong outward
motion (i.e. from the serration centreline toward the edge) while, at approximately
half of the serration length show an inward motion (i.e. from the serration edge
toward the centreline). The introduction of slits mitigates these effects. Small vortices
with small velocity magnitude are present between the slits where the flow tends
to seep. The distribution of the vortices is more uniform in the spanwise direction.
A less strong outward flow motion is visible at the root and the inward motion
is no visible because of the absence of the streamwise-oriented vortices. As a
consequence, the streamlines are aligned with the streamwise direction. At the tip of
the combed-sawtooth serrations, a spanwise uniform region of small coherent flow
structures is visible (figure 13c). It resembles the flow organization in the near wake
of the straight trailing edge. The milder turbulent mixing, caused by the installation
of the filaments, creates a more uniform turbulent flow over the trailing edge that
can be also linked to the more uniform CSD of the far-field scattered pressure waves.
Similarly, the large density of small coherent structures uniformly distributed along
the span might be linked to the large ASD calculated in the high-frequency range. An
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FIGURE 15. (Colour online) Contour of the mean velocity component over the serration
at y/δ= 0.05: (a) streamwise, u, (b) wall-normal, v, (c) spanwise, w velocity components
and (d) near-wall flow direction, tan−1(u,w). Projections of the solid serration on the x–z
plane are indicated by means of continuous black lines.
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FIGURE 16. (Colour online) Contour of the mean velocity component over the combed
serration at y/δ = 0.05: (a) streamwise, u, (b) wall-normal, v, (c) span-=wise, w velocity
components and (d) near-wall flow direction, tan−1(u,w). Projections of the solid serration
on the x–z plane are indicated by means of continuous black lines.

additional interesting difference between the sawtooth and the combed-sawtooth add
ons is the location of large coherent hairpin vortices. In presence of the conventional
sawtooth serrations, the visualization in figure 13 shows that a high density of
hairpin vortices is visible in the shear region between the solid surface and the empty
space. At the tip, they bridge the solid serration tips. The introduction of segment
mitigates the shear between the solid surface and the wake between serrations. As
a consequence, hairpin vortices are more uniformly distributed along the entire span.
For x/l> 0.1, strong similarities between the different configurations are visible.
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The effect of the different instantaneous flow organization reflects in a different
mean flow field. For this reason, the near-wall spatial distributions of the time-
averaged mean velocity components are shown in figures 15 and 16 for the sawtooth
and the combed-sawtooth geometries. The straight configuration is not included since
it has been shown that the upstream effect is negligible (figure 3). Data are extracted
on a plane at y/δ= 0.05 (y= 0.5 mm) and averaged and mirrored as discussed in § 3.
The wall-normal location is selected to allow comparisons with previous literature
(Jones & Sandberg 2012; Arce-León et al. 2016b; Avallone et al. 2016b). For the
case of a serrated trailing edge, the mean streamwise velocity component increases
from the root to the tip. It corresponds to an acceleration of the flow with a thinning
effect of the boundary layer (Arce-León et al. 2016b). Even at zero degree angle of
attack, the flow tends to seep into the empty space between serrations (downward
motion also visible from the instantaneous streamlines in figure 14), as evidenced
by the negative mean wall-normal velocity component v near the edge. The flow
exhibits an outward motion as visible from the spanwise velocity component w and
from the mean flow direction in the x–z plane tan−1(u,w). As already discussed, this
effect is attributed to the three-dimensional shear layer that promotes the formation
of streamwise elongated structures in the empty space between serrations. For the
combed-sawtooth serration, while u shows similar flow features, the downward motion
of v at the edge of the solid part of the serration is weaker and limited to the regions
corresponding to the empty space between slits, as also visible from the streamlines
discussed above. A strong downward motion is present in the near wake. This is due
to the fact that the flow mixing is shifted towards the end of the serrations. Similarly,
the spanwise component w is approximately zero because of the presence of the
filaments that align the flow. The mean flow direction in the x–z plane shows that
a weak deflection is still present near the root. More downstream, the instantaneous
coherent structures are more streamwise aligned and confined to the empty spaces.
This results in a smaller outward motion in the mean flow field. Chong & Vathylakis
(2015) and Arce-León et al. (2016b) argued that the outward motion can affect the
noise reduction. Then, the flow alignment forced by the slits can improve the noise
reduction performance of combed-sawtooth serrations (Avallone et al. 2017).

The analysis of the instantaneous and mean flow shows that the introduction of
the add ons alters the way the coherent flow structures convect over the edge. The
conventional sawtooth serrations force the flow to align with the slanted edge because
of the strong downward motion, as described in the previous paragraph. Additionally,
the introduction of the spanwise discontinuity can limit the spanwise coherence of
the turbulent structure; it forces the brake down of the flow structures larger than the
serration wavelength and of the ones convecting over the root of the serrations. The
introduction of the slits enhances the spanwise uniformity of the flow by mitigating
the discontinuity at the root location. This allows the larger coherent structure to be
less affected and to convect more uniformly over the serration. Then, the presence
of the slits orients the streamlines in the streamwise direction. Both these features
favour destructive interference (Lyu et al. 2016). The statistical analysis of the surface
pressure fluctuations in the following section confirms this flow description and its
consequences on the radiated noise.

7. Time-averaged and statistical analysis of the surface pressure fluctuations

The previous sections have shown that the presence of filaments between serrations
alters the instantaneous and mean flow organization. The turbulent coherent flow
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FIGURE 17. (Colour online) Intensity of the mean surface pressure fluctuation p′p′/p2
0:

(a) sawtooth and (b) combed-sawtooth serration. The serration edge in the x–z plane is
indicated by means of continuous black lines.

structures and their distribution can affect the surface pressure fluctuations that
represent the source of aerofoil trailing-edge noise. For this reason, the surface
pressure fluctuations are investigated in terms of time-averaged distribution, spectra,
integral correlation length and convective velocity. These statistical parameters are
chosen because used in the analytical formulation of broadband trailing-edge noise
(Amiet 1976).

Time-averaged surface pressure fluctuations (p′p′) are plotted in figure 17. Results
clearly show that the spatial distribution and the intensity of the time-averaged surface
pressure fluctuations are similar for both configurations but with a higher spanwise
uniformity for the combed-sawtooth configuration (figure 13). The intensity varies
along the serration length, while it does not vary in the span. The intensity decreases
from the root to the tip by a factor two, supporting the hypothesis that the scattered
pressure waves might be less intense toward the tip. This streamwise variation might
be caused by the thinner boundary layer and by gradually balancing the pressure
field on the two sides of the aerofoil. The comparison with the computations of
Avallone et al. (2017) suggests that the spatial distribution of the time-averaged
surface pressure fluctuations does not depend on the serration geometry but only on
its length.

Similarly, the spectra of the surface pressure fluctuations along the edge are only
weakly sensitive to the different geometry (figure 18a). Three control points along the
edge of the serrations at x/2h= 0, 0.5 and 1 are used. It is verified that, at the root,
the spectra of the baseline configuration are similar. The decay of the surface pressure
spectra varies along the serration length. This leads to a cross-over frequency between
the spectra at the root and the one along the edges (figure 18b). This cross-over
frequency moves towards higher frequencies at downstream locations but the same
values are found for the two geometries. Some differences between the spectra can be
observed at downstream locations and they can be linked to the different instantaneous
flow organization discussed in the previous section. As a matter of fact, the filaments
impose a more gradual interaction between the two serration sides, thus promoting a
more uniform convection of the turbulent structures (figure 13). This might justify why
the spectra in the streamwise direction for the combed-sawtooth serration show slightly
less differences than the sawtooth ones. Closer to the tip, the intensity of the spectra
is larger for the combed-sawtooth case. This can be related to the higher density of
small coherent structures as observed in figure 13.

As previously discussed, the presence of the trailing-edge add ons alters the
distribution and convection of the turbulent structures, thus affecting both the spanwise
correlation length lz and the convective velocity uc of the surface pressure fluctuations,
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FIGURE 18. (Colour online) (a) Spectra of the surface pressure fluctuations Φpp at
three streamwise locations corresponding to x/2h= 0 (yellow), 0.5 (green) and 1 (blue).
(b) 1Φpp = Φ

x/2h=0
pp − Φx/2h>0

pp , i.e. the difference of the Φpp between the root location
x/2h= 0 and x/2h= 0.5 (green) and 1 (blue). The continuous and dashed lines represent
the serration and combed serration respectively.

which are the most relevant parameters for TBL-TE noise prediction. In conventional
trailing-edge noise theory, they are directly proportional to the noise radiation (Amiet
1976). Furthermore, as discussed in the Introduction, it was shown by Lyu et al.
(2016) that the spanwise correlation length is also related to noise decrease in
presence of trailing-edge serrations. For this reason, the latter is estimated for all the
configurations. The spanwise correlation length lz is defined as

lz(x, f )=
∫
∞

−∞

√
γ 2(x, 1z, f ) dz, (7.1)

where γ 2 is the magnitude-squared coherence evaluated along the spanwise direction
z. 1z is the spanwise distance between the reference point and any other point along
the span. γ 2 is computed with a periodogram approach using a Hanning window
and 50 % overlap. The resulting frequency resolution is equal to 300 Hz. In order to
improve convergence, data are spatially averaged over all the serrations present in the
computational domain, as previously discussed. Contour plots of γ 2 versus 1z/δ and
Stl are plotted in figure 19, where δ is the boundary-layer thickness at x/l=−0.005
(table 1). The reference point is chosen at the serration centreline z/l= 0. Figure 19
shows γ 2 at three streamwise locations along the serrated surface (x/2h= 0, 0.45, 0.9)
and at the location of the straight trailing edge for the baseline configuration (x/2h=
0). It is visible that, as expected for turbulent flows, γ 2 monotonically decreases with
increasing 1z. This is true regardless of the reference location. At the root location,
both serrated trailing edges show larger magnitude with respect to the straight trailing
edge for higher 1z. Closer to the tip, the computation of γ 2 is limited by the spanwise
extent of the solid surface.

In order to easily compare both configurations, a simplification is carried out: the
streamwise varying lz is averaged over the entire serration and plotted versus Stl in
figure 20. This is done to retrieve a single frequency-dependent lz curve, which can
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FIGURE 19. (Colour online) Spanwise magnitude-squared coherence γ 2 versus the
chord-based Strouhal number Stl. Each column represents a studied configuration: (a,d, f )
sawtooth, (b,e,g) combed sawtooth, (c) straight. Each row reports a location in the
streamwise direction: (a–c) x/2h= 0, (d,e) x/2h= 0.45, ( f,g) x/2h= 0.9.
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FIGURE 20. Spanwise correlation length (lz) versus the Strouhal number based on the
chord (Stl). For the serrated configurations lz is averaged along the entire serration length.

be compared with the one of the straight trailing edge. For the straight trailing edge,
data are averaged in the spanwise and not in the streamwise direction. This procedure
results in a serration with a uniform distribution of lz on the entire surface. This
approach is similar to the one adopted in analytical models for serrated trailing-edge
noise (Lyu et al. 2016). Within the limit of this simplification, the averaged spanwise
correlation length lz is larger for both the conventional and combed-sawtooth serrations
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FIGURE 21. Convective velocity of the surface pressure fluctuations uc versus the Strouhal
number based on the chord Stl.

with respect to the straight configuration. For all the configurations, lz decreases when
increasing the frequency but with a different slope. In particular, it decreases faster
for the serrated cases. The three curves collapse for Stl > 20 that corresponds to a
wavelength based on the convective velocity (figure 21) approximately equal to δ. For
Stl≈20, lz≈ δ

∗, where δ∗ is the boundary-layer displacement thickness at x/l=−0.005
(table 1). This is in line with the observations of Jones & Sandberg (2012), where
instead a split plate was used as baseline configuration, who stated that serrations
would not alter the flow features for high non-dimensional frequencies. Linking these
results with the instantaneous flow field (figures 13 and 14), it is possible to argue that
the larger lz is caused by a milder interaction of the turbulent flow over the two sides
of the aerofoil. For Stl < 20, the filaments slightly reduce lz and no additional benefit
is obtained by using combed-sawtooth serrations. It suggests that smaller structures are
perturbed by the flow passing through the filaments. This could be responsible for the
slight noise increase for 20< Stl < 30.

For a straight trailing edge, a larger lz results in higher far-field noise (Amiet
1976; Moreau & Roger 2009). The opposite trend is found for a slanted trailing
edge. However, following the extension of Amiet’s theory for a serrated trailing
edge formulated by Lyu et al. (2016), for a given slanted edge and acoustic
wavenumber, a larger lz, which is uniform along the edge, would be beneficial
for noise reduction since the effective correlated serration-averaged amplitude is
2he = lzσ , where σ = 4h/λ is the serration shape factor. The spatial average effect of
the combed-sawtooth serrations is then to increase the spanwise correlation length of
the coherent structure, which tend to aligned with the serration edge (Avallone et al.
2016b), thus promoting destructive interference (figure 11) between the scattered
pressure waves within one correlation length. This finding supports the idea that
a serration acts as a filter and that separate sub-critical and super-critical gust
components (Graham 1970). The efficiency of the separation is higher when the
turbulent eddies are convected smoothly along the serration and their spanwise
correlation length is much larger than the boundary-layer displacement thickness at
the root. This finding also explains why analytical models do not predict any sound
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reduction or sound increase at high frequency. In the models of Howe (1991a) and
Lyu et al. (2016), which are based on the spanwise correlation length model of
Corcos (1964), the effective correlated serration amplitude is only function of the
shape factor and not of the frequency. Then, it is possible to argue that the frequency
dependence and the faster decay rate of the spanwise correlation length is responsible
for no noise reduction at high frequency.

As discussed before in § 6, the boundary-layer thickness decreases from the root to
the tip, thus accelerating the flow. This might induce an increase of the convective
velocity uc, which affects the far-field noise. Since the far-field noise reduction is a
function of frequency, uc is computed for all the points along the edge following a
spectral approach (Panton & Robert 1994):

uc(x, z, f )= 2π1x
(
∂φ

∂f

)−1

, (7.2)

where φ is the phase obtained from the cross-spectral density between adjacent cells
in the streamwise direction with distance 1x. In the following, results are averaged
along the entire edge in order to easily compare the serrated case with the straight
trailing edge (Kim et al. 2016) and plotted in figure 21. Although not shown here,
it has been verified (van der Velden & Oerlemans 2017) that the frequency averaged
convective velocity increases from the root to the tip of the serration as found
experimentally (Arce-León et al. 2016b; Avallone et al. 2016b). This causes a higher
streamwise averaged uc with respect to the baseline configuration. As expected, for all
the configurations under investigation, uc decreases with increasing Stl since smaller
eddies are convected closer to the wall. For the baseline configuration, at frequency
Stl> 20, a small increase is seen. Small differences are measured when comparing the
two serrated geometries: uc is larger for the combed-sawtooth serrations for Stl < 13,
while it is lower at higher frequencies. The larger uc might be caused by the more
uniform flow over the serrations and the absence of strong discontinuities due to the
wake flow between teeth. The larger uc for the serrated trailing edges might cause
higher noise with respect to the straight trailing edge.

To better compare the combined effect of lz and uc, their product is plotted in
figure 22. The figure clearly shows trends close to the one obtained when comparing
far-field noise (figure 7). No difference between the three configurations is present
for Stl > 20. This plot and the ones discussed above suggest that the most relevant
hydrodynamic parameter that controls noise reduction is the spanwise correlation
length of the surface pressure fluctuations lz, which leads to destructive interference.
However, this effect is modulated by the larger convective velocity that increases the
intensity of the scattered pressure waves.

8. Conclusions
The turbulent flow over a NACA 0018 aerofoil with and without trailing-edge

serrations and the resulting scattered turbulent boundary-layer trailing-edge noise
were studied to investigate the physical noise reduction mechanisms. The flow field
was computed by solving the explicit, transient, compressible lattice Boltzmann
equations, while the acoustic far field was obtained by means of the Ffowcs Williams
and Hawkings integral solution. Both conventional sawtooth and combed-sawtooth
trailing-edge add ons were compared with the straight trailing-edge configuration.
Boundary-layer transition was forced by means of a zig–zag strip along both sides of
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FIGURE 22. Product of the convective velocity (uc) and spanwise correlation length (lz)
versus the Strouhal number based on the chord (Stl).

the aerofoil. A grid resolution study and comparison against experimental data was
used to assess the computational set-up. Computational results agree with previous
experimental PIV and acoustic beamforming results (Arce-León et al. 2016b; Avallone
et al. 2016b).

Noise reduction depends on the frequency. Sawtooth serrations show approximately
6 dB noise reduction with respect to the straight configuration. Combed-sawtooth
serrations attain additional 3 dB noise reduction than the conventional sawtooth
serrations at the same non-dimensional frequency. The additional noise reduction is
in agreement with in-field measurements (Oerlemans 2016). For both configurations,
the maximum noise reduction is obtained for Stl approximately equal to 8. This
represents the non-dimensional frequency corresponding of the most amplified flow
instability (Jones et al. 2009). Trailing-edge serrations reduce noise for Stl < 30
while at higher frequencies no noise reduction is found in agreement with Jones &
Sandberg (2012). For a given serration geometry, the introduction of filaments in the
empty space between teeth does not affect the frequency range over which serrations
reduce noise but only the maximum noise reduction.

The serrated surface was split into strips to study the constructive/destructive
interference between scattered acoustic pressure waves along the edge. Results and
their comparison with dilatation field plots suggest that the main effect of trailing-edge
serrations, with and without filaments, is to create destructive interference between
pressure waves scattered along the edge. Interference between strips depends on the
frequency. The results further confirm previous experimental assumptions that most
of the noise is generated at the root of the serrations (Avallone et al. 2016b). The
presence of the combs mitigates this effect at the root, spreading more uniformly the
noise sources along the entire serrations.

Aiming at detecting the physical parameters that contribute to noise mitigation,
the instantaneous and time-averaged flow fields were analysed. They show that the
introduction of sawtooth serrations promotes the formation of elongated coherent
structures in the wake in the empty space between serrations together with hairpin
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vortices along the sawtooth edges. The introduction of slits mitigates the interaction
between the two sides of the serrations and avoids the formation of the wake. Direct
consequence is a more uniform distribution of the coherent flow structures. The
effect of such modification on the time-averaged flow field is to mitigate the both
the outward (i.e. from the centreline toward the edge) and inward (i.e. from the edge
toward the centreline) flow motions.

Differences in the instantaneous flow organization leads to a different statistical
characterization of the surface pressure fluctuations. For this reason, the spanwise
correlation length lz and the convective velocity uc of the surface pressure fluctuations
were investigated, since related to noise generation. It is found that lz varies in the
streamwise direction. The streamwise averaged lz increases in presence of trailing-edge
serrations for Stl < 20. It increases more in presence of combed-sawtooth serrations.
This integral correlation length tends to the value of the straight trailing edge for
Stl > 20. This is due to the milder spanwise flow discontinuity imposed by the
installation of the slits. Following Lyu et al. (2016), larger lz might be beneficial to
noise reduction by promoting destructive interference because of the phase difference
between scattered pressure waves. When lz is closer to the one obtained in presence
of a straight trailing edge no additional benefit in terms of noise reduction is found,
thus suggesting that the flow no longer sees the slanted edge. Similarly, uc increases
in presence of serrated edges. The introduction of filaments further increases uc

for Stl < 20 with respect to the conventional sawtooth trailing edge. Differently,
uc decreases for Stl > 20. Also this effect is attributed to the milder spanwise
discontinuity and the thinner boundary layer on the serration surface. The product
of the two quantities averaged along the entire surface shows trends similar to the
far-field noise curve.

It is possible to conclude that trailing-edge serrations reduce noise because of
destructive interference between radiated acoustic pressure waves for which a larger
spanwise correlation length is beneficial. The disagreement between literature and
measurements is caused by the different decay rate of the spanwise correlation
length with respect to the one for a straight trailing edge, thus affecting the effective
correlated length of serrations, which become frequency dependent. The computed lz

and uc might be used as input in the analytical model to verify that it can improve
far-field noise prediction for serrated trailing edges.
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Appendix. Experimental set-up

The reference experiments from Arce-León et al. (2016b) were conducted at the
Delft University of Technology vertical wind tunnel (V-Tunnel). It has a contraction
ratio of approximately 60 : 1. For these measurements a square nozzle of 40× 40 cm2

was used. The turbulence intensity was below 0.5 % for the range of tested velocities.
A NACA 0018 aerofoil with chord of 20 cm and span of 40 cm was installed in

the V-Tunnel between two 1.5 m long side plates to approximate the two-dimensional
flow condition over most of the wing. The aerofoil leading edge was located at 0.5 m
from the contraction exit. A modular trailing edge allowed inserts (i.e. the straight and
the sawtooth trailing-edge serrations) to be retrofitted while keeping the surface free
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from irregularities. The geometry of the trailing edge serrations was the same of the
one of the current manuscript.

Boundary-layer transition was forced to turbulent with randomly distributed
roughness elements. The trip tape was constructed by a random distribution of
carborundum elements with nominal size of 0.6 mm, placed on a thin double side
tape of 1 cm width. The tape was streamwise centred at 20 % of the chord and was
applied for the entire aerofoil span. A stethoscope probe was used to verify that the
boundary layer was turbulent until the trailing edge.

Particle image velocimetry data were obtained with high-speed stereoscopic-PIV set-
up at three streamwise aligned planes located at z/λ= 0, 0.25 and 0.5. The data used
as comparison in this manuscript were obtained from an uncorrelated data set of 2000
particle images acquired at a frequency of 250 Hz for 8 s.

Acoustic data were obtained using an array of 64 microphones and an effective
diameter of 0.9 m. Microphones were arranged in a multi-arm spiral configuration.
The chosen configuration resulted in a minimum resolvable distance of 12 mm.
Acoustic data were acquired at a sampling frequency of 50 kHz for 60 s. To isolate
trailing-edge noise, beamforming data were integrated over an area extending between
z=−10 cm and z= 0.1 cm and x=−6 mm and x= 6 mm.
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