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Geometric Characterizations of
Hilbert Spaces

Francisco Javier García-Pacheco and Justin R. Hill

Abstract. We study some geometric properties related to the set

ΠX ∶= {(x , x∗) ∈ SX × SX∗ ∶ x∗(x) = 1}
obtaining two characterizations of Hilbert spaces in the category of Banach spaces. We also compute
the distance of a generic element (h, k) ∈ H ⊕2 H to ΠH for H a Hilbert space.

1 Introduction

Deville, Godefroy, and Zizler [2] formally introduced the set

ΠX ∶= {(x , x∗) ∈ SX × SX∗ ∶ x∗(x) = 1}

for X a normed space and they use it to deûne a modulus of the Bishop–Phelps–
Bollobás property for functionals. However, the set ΠX appears implicitly in other
indices or moduli such as the numerical index of a Banach space, since the numer-
ical range of a continuous linear operator T ∈ L(X) can be rewritten as V(T) ∶=

{x∗(T(x)) ∶ (x , x∗) ∈ ΠX}. We refer the reader to [4] for an excellent survey paper
on the numerical index of a Banach space.

In this paper we study the geometric properties of the set ΠX and obtain two char-
acterizations of Hilbert spaces in the category of Banach spaces. In our second char-
acterization, ΠH plays a fundamental role when H is a Hilbert space, so the set ΠH
must also be studied more accurately.

Recall that a normed space X is said to be smooth provided that at any vector of
norm 1 there exists only one functional of norm 1 attaining its norm at the vector. If
X is a smooth normed space, then the dual map of X is deûned as JX ∶X → X∗ where
∥JX(x)∥ = ∥x∥ and JX(x)(x) = ∥x∥2 for all x ∈ X. It is obvious that if X is smooth,
then ΠX = {(x , JX(x)) ∶ x ∈ SX}. We refer the reader to [3] for a wide perspective on
smooth spaces and diòerentiability of the norm.

It is well known that if H is a Hilbert space, then JH is a surjective linear isometry,
and so we can identifyH with H∗ via its dual map. A�er this identiûcation, ΠH turns
out to be the intersection of SH × SH with the diagonal of H ×H.
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2 Extremal Structure of ΠX

Given a normed space X we will deûne the set

EX ∶= (ext(BX) × SX∗) ∪ (SX × ext(BX∗)).

_eorem 2.1 Let X be a normed space. _e following conditions are equivalent.
(i) ΠX ⊆ EX .
(ii) SX = ext(BX) ∪ smo(BX).

Proof (i)⇒ (ii). Let x ∈ SX∖ext(BX). If x ∉ smo(BX), then there are x∗ /= y∗ ∈ SX∗

such that x∗(x) = y∗(y) = 1. Notice that (x , x
∗+y∗
2 ) ∈ ΠX but neither x nor x∗+y∗

2
are extreme points of their respective balls.

(ii) ⇒ (i). Let (x , x∗) ∈ ΠX . Assume that x ∉ ext(BX). By hypothesis x ∈

smo(BX). Now if y∗ , z∗ ∈ SX∗ and x∗ =
y∗+z∗

2 , then y∗(x) = z∗(x) = 1 which
means that y∗ = x∗ by the smoothness of x.

Recall that an exposed face is the set of all vectors of norm 1 at which a given func-
tional of norm 1 attains its norm. An edge is a maximal segment of the unit sphere
which is an exposed face.

Corollary 2.2 Let X be a normed space.
(i) If ΠX ⊆ EX , then every edge of BX is a maximal face of BX .
(ii) If X is real and 2-dimensional, then ΠX ⊆ EX .

Proof (i) Let [x , y] ⊂ SX be an edge of BX and consider u∗ ∈ SX∗ such that [x , y] =
(u∗)−1(1) ∩ BX . Suppose to the contrary that [x , y] is not a maximal face of BX ,
so then it must be contained in a maximal face C. According to the Hahn–Banach
separation theorem, maximal faces are exposed faces, so there exists v∗ ∈ SX∗ such
that C = (v∗)−1(1) ∩ BX . Note that u∗ /= v∗ since [x , y] ⊊ C. Finally, x+y

2 ∈ SX , but
x+y
2 ∉ ext(BX) ∪ smo(BX).
(ii) If x ∈ SX ∖ ext(BX), then x belongs to the interior of a segment entirely con-

tained in the unit sphere. Since X is real and has dimension 2, there is only one hy-
perplane supporting BX on that segment, and hence x ∈ smo(BX).

_e next example shows the existence of Banach spaces that can never be equiva-
lently renormed such that ΠX ⊆ EX . For this we will need a bit of background.

Let ω1 denote the ûrst uncountable ordinal. _e space of all bounded real-valued
functions on [0,ω1] will be denoted by ℓ∞(0,ω1), which becomes a Banach space
endowedwith the sup norm. _e subspace of ℓ∞(0,ω1), composed of those functions
with countable support, is denoted by m0.

_eorem 2.3 No equivalent norm on m0 makes Πm0 ⊆ Em0 .

Proof We will divide the proof into two steps.
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Step 1 Πm0 ⊈ Em0 when m0 is endowed with the sup norm. Indeed, note that in
this case m0 endowed with the sup norm isometrically contains ℓ3∞. Now observe
that _eorem 2.1 shows that the condition ΠX ⊆ EX is a hereditary property. Finally,
it is suõcient to realize that Πℓ3

∞
⊈ Eℓ3

∞
by virtue of of Corollary 2.2 (i).

Step 2. Assume that m0 is endowed with any equivalent norm. In accordance with
[3,_eorem 7.12],m0 endowedwith any (non-necessarily equivalent) normhas a sub-
space which is linearly isometric tom0 endowedwith the sup norm. Again, the hered-
itariness of the condition ΠX ⊆ EX together with 1 concludes the proof.

3 A Characterization of Hilbert Spaces in Terms of Diagonals

For a topological space X the diagonal of X × X is denoted by

DX ∶= {(x , y) ∈ X × X ∶ x = y}.

In case X is a topological vector space, then the anti-diagonal is deûned as

D−
X ∶= {(x , y) ∈ X × X ∶ x = −y}.

_e following lemma helps communicate the nature and importance of diagonals
in direct products of topological vector spaces.

Lemma 3.1 Let X be a topological vector space.
(i) For every (x , y) ∈ X × X we have

(x , y) = (
x + y

2
,
x + y

2
) + (

x − y
2

,
y − x

2
) .

(ii) DX and D−
X are topologically complemented in X × X and both are isomorphic

to X.

Proof (i) Immediate. (ii) It suõces to notice that the linear projection

P∶X × X → DX

(x , y) → P(x , y) = (
x + y

2
,
x + y

2
)

is continuous and (I − P)(x , y) = (
x−y
2 , y−x2 ) or all (x , y) ∈ X × X.

_eorem 3.2 Let H be a Hilbert space and consider H ⊕2 H. _en (DH)⊥ = D−
H .

Proof Let h, k ∈ H. By the parallelogram law we have that

∥(h, k)∥2
2 = ∥h∥2

+ ∥k∥2

=
∥h + k∥2

2
+

∥h − k∥2

2

= ∥
h + k

2
∥

2
+ ∥

h + k
2

∥
2
+ ∥

h − k
2

∥
2
+ ∥

h − k
2

∥
2

= ∥(
h + k

2
,
h + k

2
)∥

2
2 +

∥(
h − k

2
,
k − h

2
)∥

2
2 .
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Corollary 3.3 Let X be a Banach space. If DX and D−
X are L2-complemented in

X ⊕2 X, that is, X ⊕2 X = DX ⊕2 D−
X , then X is a Hilbert space.

Proof It suõces to look at the proof of _eorem 3.2 to realize that, under these as-
sumptions, X veriûes the parallelogram law and thus it is a Hilbert space.

4 A Characterization of Hilbert Spaces Involving ΠX

If H denotes a Hilbert space, then it is clear that ΠH = (SH × SH) ∩ DH =
√

2SDH

provided that H ×H is endowed with the ∥ ⋅ ∥2-norm.

_eorem 4.1 Let X be a Banach space. If there exists a vector subspace V of X⊕2 X∗

such that ΠX =
√

2SV , then X is a Hilbert space and V = DX .

Proof We will divide the proof into two steps.

Step 1 We will show that X is smooth. Suppose to the contrary that X is not. _en
we can ûnd (x , x∗), (x , y∗) ∈ ΠX such that x∗ /= y∗. _en

(0, x∗ − y∗) = (x , x∗) − (x , y∗) ∈ ΠX −ΠX ⊆ V .

_us
√

2
(0, x∗ − y∗)
∥x∗ − y∗∥

∈
√

2SV = ΠX ,

which is impossible.

Step 2 According to [1, _eorem 3.2], it is suõcient to show that JX(x + y) =

JX(x) + JY(y) for all x , y ∈ SX . So we ûx arbitrary elements x , y ∈ SX . We may
assume that x and y are linearly independent. Note that

(x + y, JX(x) + JX(y)) = (x , JX(x)) + (y, JX(y)) ∈ ΠX +ΠX ⊆ V .

_erefore
√

2
(x + y, JX(x) + JX(y))

√
∥x + y∥2 + ∥JX(x) + JX(y)∥2

∈
√

2SV = ΠX .

So there exists z ∈ SX such that
√

2
(x + y, JX(x) + JX(y))

√
∥x + y∥2 + ∥JX(x) + JX(y)∥2

= (z, JX(z)).

_is implies that z = x+y
∥x+y∥ and

(4.1) JX(
x + y

∥x + y∥
) =

√
2

JX(x) + JX(y)
√

∥x + y∥2 + ∥JX(x) + JX(y)∥2
.

Taking norms and solving for ∥JX(x) + JX(y∥ we obtain that

∥JX(x) + JX(y)∥ = ∥x + y∥.

Going to back to Equation (4.1), we deduce that JX(x + y) = JX(x) + JY(y).

https://doi.org/10.4153/CMB-2016-019-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-019-8


Geometric Characterizations of Hilbert Spaces 773

5 The Distance to ΠH

Our ûnal aim is to ûnd the distance from a generic element (h, k) ∈ H ⊕2 H to ΠH
for H a Hilbert space. In order to accomplish this, we will make use of Lemmas 5.3
and 5.4. However, to do so, we must ûrst study this issue in a more general context.

Proposition 5.1 Let X be a normed space and consider ΠX in X ⊕2 X∗. Let x ∈ SX
and y∗ ∈ SX∗ .
(i) d((x , y∗), ΠX) ≤ d(y∗ , x−1(1) ∩BX∗).
(ii) If y is norm-attaining, then d((x , y∗), ΠX) ≤ d(x , (y∗)−1(1) ∩BX).
(iii) ∣y∗(x) − 1∣ ≤ 2d((x , y∗), ΠX).

Proof (i) Let x∗ ∈ x−1(1) ∩ BX∗ . _en (x , x∗) ∈ ΠX and so d((x , y∗), ΠX) ≤

∥(x , y∗) − (x , x∗)∥2 = ∥y∗ − x∗∥, which means that

d((x , y∗), ΠX) ≤ d(y∗ , x−1
(1) ∩BX∗).

(ii) It follows a similar proof as in (i). (iii) Let (z, z∗) ∈ ΠX . Note that

∣y∗(x) − 1∣ = ∣y∗(x) − z∗(z)∣ ≤ ∣y∗(x) − z∗(x)∣ + ∣z∗(x) − z∗(z)∣
≤ ∥y∗ − z∗∥ + ∥x − z∥ ≤ 2∥(x , y∗) − (z, z∗)∥2 ,

which implies that ∣y∗(x) − 1∣ ≤ 2d((x , y∗), ΠX).

Corollary 5.2 Let X be a normed space and consider ΠX in X ⊕2 X∗. If x ∈ SX and
y∗ ∈ SX∗ is norm-attaining, then

∣y∗(x) − 1∣
2

≤ d((x , y∗), ΠX) ≤ min{d(y∗ , x−1
(1) ∩BX∗), d(x , (y∗)−1

(1) ∩BX)} .

Now we can take care of computing the distance of a generic element (h, k) ∈

H ⊕2 H to ΠH .

Lemma 5.3 Let X be a normed space. If x ∈ X ∖ {0}, then d(x , SX) = ∥x − x
∥x∥∥ =

∣∥x∥ − 1 ∣ .

Proof Indeed, d(x , SX) ≤ ∥x − x
∥x∥∥ = ∣∥x∥ − 1 ∣ and if y ∈ SX , then

(5.1) ∥x − x
∥x∥

∥ = ∣∥x∥ − 1 ∣ = ∣ ∥x∥ − ∥y∥∣ ≤ ∥x − y∥.

Lemma 5.4 Let X be a normed space and assume that X = M⊕p N with 1 ≤ p ≤ ∞.
Fix arbitrary elements m ∈ M and n ∈ N.
(i) d(m + n,M) = ∥n∥.
(ii)

d(m + n, SM) =

⎧⎪⎪
⎨
⎪⎪⎩

p
√

∥n∥p + ∣∥m∥ − 1 ∣
p if p < ∞,

max{∥n∥, ∣ ∥m∥ − 1 ∣ } if p = ∞.
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Proof (i) Indeed, d(m + n,M) ≤ ∥m + n −m∥ = ∥n∥ and if m′ ∈ M, then

∥n∥ ≤ (∥m −m′
∥
p
+ ∥n∥p

)
1
p = ∥m + n −m′

∥p for p < ∞,

∥n∥ ≤ max{∥m −m′
∥, ∥n∥} = ∥m + n −m′

∥p for p = ∞.

(ii) We may assume that m /= 0 and recalling (5.1), we have that

d(m + n, SM) ≤ ∥m + n − m
∥m∥

∥
p =

⎧⎪⎪
⎨
⎪⎪⎩

p
√

∥n∥p + ∣∥m∥ − 1 ∣
p

if p < ∞,
max{∥n∥, ∣ ∥m∥ − 1 ∣ if p = ∞,

and if m′ ∈ SM , then

p
√

∥n∥p + ∣∥m∥ − 1 ∣
p
≤

p
√

∥n∥p + ∥m −m′∥p = ∥m + n −m′
∥p for p < ∞,

max{∥n∥, ∣ ∥m∥ − 1 ∣ } ≤ max{∥n∥, ∥m −m′
∥} = ∥m + n −m′

∥p for p = ∞.

_e reader may notice that Lemma 5.4 (i) still holds ifM and N are simply 1-com-
plemented in X.

_eorem 5.5 Let H be a Hilbert space and consider H ⊕2 H. For every h, k ∈ H we
have that

d((h, k), DH) =
∥h − k∥
√

2
,

d((h, k), SDH) = (
∥h − k∥2

2
+ ∣

∥h + k∥
√

2
− 1 ∣

2
)

1
2 ,

d((h, k),
√

2SDH) = (
∥h − k∥2

2
+ ∣

∥h + k∥
√

2
−
√

2 ∣
2
)

1
2 .

Proof Notice that H⊕2H = DH⊕2D−
H in virtue of_eorem 3.2. By applying Lemma

5.4 (i) we deduce that

d((h, k), DH) = ∥(
h − k

2
,
k − h

2
)∥

2 =
∥h − k∥
√

2
.

In accordance with Lemma 5.4 (ii) we have that

d((h, k), SDH) = (
∥h − k∥2

2
+ ∣

∥h + k∥
√

2
− 1 ∣

2
)

1
2 .

Finally,

d((h, k),
√

2SDH) = d(
√

2(
1

√
2
(h, k)) ,

√
2SDH)

=
√

2d(( h
√

2
,

k
√

2
) , SDH)

=
√

2(
∥h − k∥2

4
+ ∣

∥h + k∥
2

− 1∣
2
)

1
2

= (
∥h − k∥2

2
+ ∣

∥h + k∥
√

2
−
√

2 ∣
2
)

1
2
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Aswementioned at the beginning of this section, ΠH =
√

2SDH , sowe immediately
deduce the following ûnal corollary.

Corollary 5.6 Let H be a Hilbert space and consider H ⊕2 H. If h, k ∈ H, then

d((h, k), ΠH) = (
∥h − k∥2

2
+ ∣

∥h + k∥
√

2
−
√

2 ∣
2
)

1
2 .
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