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Geometric Characterizations of
Hilbert Spaces

Francisco Javier Garcia-Pacheco and Justin R. Hill

Abstract. 'We study some geometric properties related to the set
Iy := {(x,x*) €Sx xSxx : x*(x) =1}

obtaining two characterizations of Hilbert spaces in the category of Banach spaces. We also compute
the distance of a generic element (h, k) € H @, H to Ily for H a Hilbert space.

1 Introduction
Deville, Godefroy, and Zizler [2] formally introduced the set
Iy := {(x,x") €Sx x Sx» : x™(x) =1}

for X a normed space and they use it to define a modulus of the Bishop—Phelps-
Bollobds property for functionals. However, the set ITx appears implicitly in other
indices or moduli such as the numerical index of a Banach space, since the numer-
ical range of a continuous linear operator T € £(X) can be rewritten as V(T) :=
{x*(T(x)) : (x,x*) € Ix}. We refer the reader to [4] for an excellent survey paper
on the numerical index of a Banach space.

In this paper we study the geometric properties of the set ITx and obtain two char-
acterizations of Hilbert spaces in the category of Banach spaces. In our second char-
acterization, I1y plays a fundamental role when H is a Hilbert space, so the set [Ty
must also be studied more accurately.

Recall that a normed space X is said to be smooth provided that at any vector of
norm 1 there exists only one functional of norm 1 attaining its norm at the vector. If
X is a smooth normed space, then the dual map of X is defined as Jx: X — X* where
ITx ()| = |x] and Jx(x)(x) = |x|? for all x € X. It is obvious that if X is smooth,
then IIx = {(x,Jx(x)) : x € Sx }. We refer the reader to [3] for a wide perspective on
smooth spaces and differentiability of the norm.

It is well known that if H is a Hilbert space, then Jy is a surjective linear isometry,
and so we can identify H with H* via its dual map. After this identification, ITy turns
out to be the intersection of Sy x Sy with the diagonal of H x H.
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2 Extremal Structure of ITy

Given a normed space X we will define the set

Ex = (ext(Bx) x Sx+) U (Sx x ext(Bx+)).

Theorem 2.1 Let X be a normed space. The following conditions are equivalent.

(i) IIx cEx.
(ii) Sx =ext(Bx) usmo(Bx).

Proof (i) = (ii). Letx € Sx~ext(Bx). If x ¢ smo(Bx), then there are x* # y* € Sx~
such that x*(x) = y*(y) = L Notice that (x, *52-) ¢ IIx but neither x nor =5~
are extreme points of their respective balls.

(ii) = (i). Let (x,x*) € IIx. Assume that x ¢ ext(Bx). By hypothesis x €
smo(Bx). Now if y*,z* € Sy« and x* = 2%, then y*(x) = z*(x) = 1 which
means that y* = x* by the smoothness of x. ]

Recall that an exposed face is the set of all vectors of norm 1 at which a given func-
tional of norm 1 attains its norm. An edge is a maximal segment of the unit sphere
which is an exposed face.

Corollary 2.2  Let X be a normed space.

(i) IfIlx € Ex, then every edge of Bx is a maximal face of Bx.
(ii) If X is real and 2-dimensional, then I1x < Ex.

Proof (i) Let [x, y] ¢ Sx be an edge of By and consider u* € Sy« such that [x, y] =
(u*)™'(1) N Bx. Suppose to the contrary that [x, y] is not a maximal face of By,
so then it must be contained in a maximal face C. According to the Hahn-Banach
separation theorem, maximal faces are exposed faces, so there exists v* € Sx» such
that C = (v*)7!(1) n Bx. Note that u* # v* since [x, y] ¢ C. Finally, 52 € Sy, but
T2 ¢ ext(By) U smo(Bx).

(ii) If x € Sx \ ext(Bx), then x belongs to the interior of a segment entirely con-
tained in the unit sphere. Since X is real and has dimension 2, there is only one hy-
perplane supporting Bx on that segment, and hence x € smo(Byx). [ |

The next example shows the existence of Banach spaces that can never be equiva-
lently renormed such that ITx ¢ Ex. For this we will need a bit of background.

Let w; denote the first uncountable ordinal. The space of all bounded real-valued
functions on [0, w;] will be denoted by £ (0, w;), which becomes a Banach space
endowed with the sup norm. The subspace of £, (0, w; ), composed of those functions
with countable support, is denoted by m,.

Theorem 2.3  No equivalent norm on my makes Il,,, € Ey,.

Proof We will divide the proof into two steps.
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Step 1 1II,, ¢ E,, when m, is endowed with the sup norm. Indeed, note that in
this case m, endowed with the sup norm isometrically contains ¢3,. Now observe
that Theorem 2.1 shows that the condition ITx ¢ Ey is a hereditary property. Finally,
it is sufficient to realize that ITps_ ¢ Ees_ by virtue of of Corollary 2.2 (i).

Step 2. Assume that m is endowed with any equivalent norm. In accordance with
[3, Theorem 7.12], m, endowed with any (non-necessarily equivalent) norm has a sub-
space which is linearly isometric to m, endowed with the sup norm. Again, the hered-
itariness of the condition ITx € Ex together with 1 concludes the proof. ]

3 A Characterization of Hilbert Spaces in Terms of Diagonals

For a topological space X the diagonal of X x X is denoted by
Dx:={(x,y) e Xx X :x = y}.

In case X is a topological vector space, then the anti-diagonal is defined as
Dy={(x,y) e XxX:x=-y}.

The following lemma helps communicate the nature and importance of diagonals
in direct products of topological vector spaces.

Lemma 3.1 Let X be a topological vector space.

(i) Forevery (x,y) € X x X we have
(xy):(x+y x+y)+(x—y y—x)‘

> >

2 2 2 2

(ii) Dx and Dy are topologically complemented in X x X and both are isomorphic
to X.

Proof (i) Immediate. (ii) It suffices to notice that the linear projection

P: X x X - Dy
(x,y)ap(x’y):(x+y,x+y)
2 2
is continuous and (I - P)(x,y) = (5%, %5%) orall (x,y) e X x X. [

Theorem 3.2  Let H be a Hilbert space and consider H @, H. Then (Dy)* = Dy

Proof Let i, k € H. By the parallelogram law we have that
[(r, )5 = [0 + 11
I L S 13 &

2 2
PR e e R
2 2 2 2
h+k h+k.,2 h—-k k—-h.,2
=== (=5 u
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Corollary 3.3 Let X be a Banach space. If Dx and Dy are L*-complemented in
X @, X, that is, X @, X = Dx @, Dy, then X is a Hilbert space.

Proof It suffices to look at the proof of Theorem 3.2 to realize that, under these as-
sumptions, X verifies the parallelogram law and thus it is a Hilbert space. ]

4 A Characterization of Hilbert Spaces Involving Iy

If H denotes a Hilbert space, then it is clear that [Ty = (Si x Sy) N Dy = V2Sp,,
provided that H x H is endowed with the | - ||-norm.

Theorem 4.1 Let X be a Banach space. If there exists a vector subspace V of X &, X*
such that I1x = \/2Svy, then X is a Hilbert space and V = Dy.

Proof We will divide the proof into two steps.

Step 1 We will show that X is smooth. Suppose to the contrary that X is not. Then
we can find (x,x*), (x, y*) € IIx such that x* # y*. Then

(0,x" =y ) =(x,x") = (x,y") ellx - TIx c V.
Thus
V20X =) e oy,

[x* =y
which is impossible.

Step 2 According to [1, Theorem 3.2], it is sufficient to show that Jx(x + y) =
Jx(x) + Jy(y) for all x,y € Sx. So we fix arbitrary elements x, y € Sx. We may
assume that x and y are linearly independent. Note that

(x+ . dx(x) +Jx(¥)) = (x, Ix(x)) + (., Ix(y)) e [Ix + Ix C V.
Therefore
(ot pIx0) +x0) e
VIx+y[2+ [Ix(x) + Ix(n)[2
So there exists z € Sy such that
(x+y,Jx(x) + Ix(»))
Y EES TR S E e

v = IIx.

s . _ x+y
This implies that z = s and

X+ Jx(x)+J

2+ 1 Vix+yI?2+ [x(x) + Ix ()2

Taking norms and solving for |Jx(x) + Jx(y| we obtain that

[x(x) +Ix(P)] =[x+ ¥l
Going to back to Equation (4.1), we deduce that Jx (x + y) = Jx(x) + Jy (»). [ |
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5 The Distance to IT4

Our final aim is to find the distance from a generic element (h, k) € H @, H to Iy
for H a Hilbert space. In order to accomplish this, we will make use of Lemmas 5.3
and 5.4. However, to do so, we must first study this issue in a more general context.

Proposition 5.1 Let X be a normed space and consider I1x in X @, X*. Let x € Sx
and y* € Sx~.

(1)  d((x,y*),Ox) <d(y*,x'(1) nBx+).
(ii) If y is norm-attaining, then d((x, y*),x) < d(x, (y*)™(1) nBx).
(iii) [y*(x) =1 <2d((x, y*), x).

Proof (i) Let x* € x7}(1) n Bx+. Then (x,x*) € IIx and so d((x, y*),Ilx) <
[(x, y*) = (x,x*)|2 = |y* — x*||, which means that

d((x,y"),Mx) <d(y*,x7'(1) N Bx-).
(ii) It follows a similar proof as in (i). (iii) Let (z, z*) € [1x. Note that
() =1 = [y"(x) = 2" ()| < [y" (x) = 2" (x)| + |7 (x) = 2" (2)]|
<y =2+ lx 2] <2 (x, ") = (2:27)2,

which implies that |y* (x) — 1| < 2d((x, y*), Ix). [ |

Corollary 5.2  Let X be a normed space and consider I1x in X &, X*. If x € Sx and
y* € Sx+ is norm-attaining, then

DRI e,y 1) < min{ (37 (1) B ), (') (1) ).

Now we can take care of computing the distance of a generic element (h, k) «
H @&, H to I1y.

Lemma 5.3 Let X be a normed space. If x € X \ {0}, then d(x,Sx) = ||x - ﬁ” =

[l - 1]
Proof Indeed, d(x,Sx) < ||x - H%HH = | x| —1| and if y € Sy, then
x
(5.1) I\x—m\|:||\x\|—1| =l = Iyl <l =yl u

Lemma 5.4 Let X be a normed space and assume that X = M &, N with1 < p < co.
Fix arbitrary elements m € M and n € N.

(i) d(m+n,M)=|n|.

(ii)

am+n5M)={VMww4wm—1V <o,
max(|n], ||m] ~1]} ifp=oo.

https://doi.org/10.4153/CMB-2016-019-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2016-019-8

774 F.J. Garcia-Pacheco and J. R. Hill
Proof (i) Indeed, d(m +n, M) < |m+n—m| =|n| andif m" € M, then

] < (lm=m'|?+[n]?)? = |m+n—m'], forp<oo,

[n] < max{[m —m'|, [n]} = [m+n—-m'], forp=oco.
(ii) We may assume that m # 0 and recalling (5.1), we have that

d(m+nSy)<|m+n-——| = Il +|1m] -1|"if p < oo,
Im|"? | max{| -1 ifp=oo,

and if m’ € Sy, then

P
</\|ﬂ||"+ [[m] = 1" < /nll# + [m—m|p = |m+n—m'|, forp<oo,

—1|} <max{|n|,|[m-m'|} = |m+n-m'|, forp=co. M

max{||

The reader may notice that Lemma 5.4 (i) still holds if M and N are simply 1-com-
plemented in X.

Theorem 5.5 Let H be a Hilbert space and consider H &, H. For every h, k € H we
have that

|h - k|
V2 '
|h - k2 h+k 2, 1
I | ’H H 1)

d((h,k),Dp) =

d((h.k),Sp,) = (

d((h, k),v/2Sp,) = (Hh kH ||h\;§k| \/—| )%

Proof Noticethat H®&, H = Dy &, Dy, in virtue of Theorem 3.2. By applying Lemma
5.4 (i) we deduce that
h- k k-nh |h - k|
d((h, k), D) =||[( —>—)|,=—F7-
(000, = (A5 B - L
In accordance with Lemma 5.4 (ii) we have that
[ AT e
2 V2

d((h,k),Spy,) = (
Finally,

d((h,k),V2Sp,) = d(V2( %(h,k)),\/fSDH)

_\/—d((\/— \/—) SDH)

:\/E( Hh;kH +|HhJ2ka _1|2)5

(VR Bkl

_( 2 ‘ \/i \/§| ) .
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As we mentioned at the beginning of this section, Iy = v/2Sp,,, so we immediately
deduce the following final corollary.

Corollary 5.6  Let H be a Hilbert space and consider H &, H. If h, k € H, then

d((h,k),nH):(Hh—zkH +||h\;§k|_\/§|2);'
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