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Geometric Characterizations of
Hilbert Spaces

Francisco Javier García-Pacheco and Justin R. Hill

Abstract. We study some geometric properties related to the set

ΠX ∶= {(x , x∗) ∈ SX × SX∗ ∶ x∗(x) = 1}
obtaining two characterizations ofHilbert spaces in the category of Banach spaces. We also compute
the distance of a generic element (h, k) ∈ H ⊕2 H to ΠH for H a Hilbert space.

1 Introduction

Deville, Godefroy, and Zizler [2] formally introduced the set

ΠX ∶= {(x , x∗) ∈ SX × SX∗ ∶ x∗(x) = 1}

for X a normed space and they use it to deûne a modulus of the Bishop–Phelps–
Bollobás property for functionals. However, the set ΠX appears implicitly in other
indices or moduli such as the numerical index of a Banach space, since the numer-
ical range of a continuous linear operator T ∈ L(X) can be rewritten as V(T) ∶=

{x∗(T(x)) ∶ (x , x∗) ∈ ΠX}. We refer the reader to [4] for an excellent survey paper
on the numerical index of a Banach space.

In this paperwe study the geometric properties of the set ΠX and obtain two char-
acterizations of Hilbert spaces in the category of Banach spaces. In our second char-
acterization, ΠH plays a fundamental role when H is a Hilbert space, so the set ΠH
must also be studiedmore accurately.

Recall that a normed space X is said to be smooth provided that at any vector of
norm 1 there exists only one functional of norm 1 attaining its norm at the vector. If
X is a smooth normed space, then the dual map of X is deûned as JX ∶X → X∗ where
∥JX(x)∥ = ∥x∥ and JX(x)(x) = ∥x∥2 for all x ∈ X. It is obvious that if X is smooth,
then ΠX = {(x , JX(x)) ∶ x ∈ SX}. We refer the reader to [3] for a wide perspective on
smooth spaces and diòerentiability of the norm.

It is well known that if H is aHilbert space, then JH is a surjective linear isometry,
and sowe can identifyH with H∗ via its dual map. A�er this identiûcation, ΠH turns
out to be the intersection of SH × SH with the diagonal of H ×H.
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2 Extremal Structure of ΠX

Given a normed space X we will deûne the set

EX ∶= (ext(BX) × SX∗) ∪ (SX × ext(BX∗)).

_eorem 2.1 Let X be a normed space. _e following conditions are equivalent.
(i) ΠX ⊆ EX .
(ii) SX = ext(BX) ∪ smo(BX).

Proof (i)⇒ (ii). Let x ∈ SX∖ext(BX). If x ∉ smo(BX), then there are x∗ /= y∗ ∈ SX∗

such that x∗(x) = y∗(y) = 1. Notice that (x , x
∗+y∗
2 ) ∈ ΠX but neither x nor x∗+y∗

2
are extreme points of their respective balls.

(ii) ⇒ (i). Let (x , x∗) ∈ ΠX . Assume that x ∉ ext(BX). By hypothesis x ∈

smo(BX). Now if y∗ , z∗ ∈ SX∗ and x∗ =
y∗+z∗

2 , then y∗(x) = z∗(x) = 1 which
means that y∗ = x∗ by the smoothness of x.

Recall that an exposed face is the set of all vectors of norm 1 atwhich a given func-
tional of norm 1 attains its norm. An edge is a maximal segment of the unit sphere
which is an exposed face.

Corollary 2.2 Let X be a normed space.
(i) If ΠX ⊆ EX , then every edge of BX is amaximal face of BX .
(ii) If X is real and 2-dimensional, then ΠX ⊆ EX .

Proof (i) Let [x , y] ⊂ SX be an edge of BX and consider u∗ ∈ SX∗ such that [x , y] =
(u∗)−1(1) ∩ BX . Suppose to the contrary that [x , y] is not a maximal face of BX ,
so then it must be contained in a maximal face C. According to the Hahn–Banach
separation theorem, maximal faces are exposed faces, so there exists v∗ ∈ SX∗ such
that C = (v∗)−1(1) ∩ BX . Note that u∗ /= v∗ since [x , y] ⊊ C. Finally, x+y

2 ∈ SX , but
x+y
2 ∉ ext(BX) ∪ smo(BX).
(ii) If x ∈ SX ∖ ext(BX), then x belongs to the interior of a segment entirely con-

tained in the unit sphere. Since X is real and has dimension 2, there is only one hy-
perplane supporting BX on that segment, and hence x ∈ smo(BX).

_e next example shows the existence of Banach spaces that can never be equiva-
lently renormed such that ΠX ⊆ EX . For this we will need a bit of background.

Let ω1 denote the ûrst uncountable ordinal. _e space of all bounded real-valued
functions on [0,ω1] will be denoted by ℓ∞(0,ω1), which becomes a Banach space
endowedwith the sup norm. _e subspace of ℓ∞(0,ω1), composed of those functions
with countable support, is denoted by m0.

_eorem 2.3 No equivalent norm on m0 makes Πm0 ⊆ Em0 .

Proof We will divide the proof into two steps.
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Step 1 Πm0 ⊈ Em0 when m0 is endowed with the sup norm. Indeed, note that in
this case m0 endowed with the sup norm isometrically contains ℓ3∞. Now observe
that _eorem 2.1 shows that the condition ΠX ⊆ EX is a hereditary property. Finally,
it is suõcient to realize that Πℓ3

∞
⊈ Eℓ3

∞
by virtue of of Corollary 2.2 (i).

Step 2. Assume that m0 is endowed with any equivalent norm. In accordance with
[3,_eorem 7.12],m0 endowedwith any (non-necessarily equivalent) normhas a sub-
spacewhich is linearly isometric tom0 endowedwith the sup norm. Again, the hered-
itariness of the condition ΠX ⊆ EX together with 1 concludes the proof.

3 A Characterization of Hilbert Spaces in Terms of Diagonals

For a topological space X the diagonal of X × X is denoted by

DX ∶= {(x , y) ∈ X × X ∶ x = y}.

In case X is a topological vector space, then the anti-diagonal is deûned as

D−
X ∶= {(x , y) ∈ X × X ∶ x = −y}.

_e following lemma helps communicate the nature and importance of diagonals
in direct products of topological vector spaces.

Lemma 3.1 Let X be a topological vector space.
(i) For every (x , y) ∈ X × X we have

(x , y) = (
x + y

2
,
x + y

2
) + (

x − y
2

,
y − x

2
) .

(ii) DX and D−
X are topologically complemented in X × X and both are isomorphic

to X.

Proof (i) Immediate. (ii) It suõces to notice that the linear projection

P∶X × X → DX

(x , y)→ P(x , y) = (
x + y

2
,
x + y

2
)

is continuous and (I − P)(x , y) = (
x−y
2 , y−x2 ) or all (x , y) ∈ X × X.

_eorem 3.2 Let H be a Hilbert space and consider H ⊕2 H. _en (DH)⊥ = D−
H .

Proof Let h, k ∈ H. By the parallelogram law we have that

∥(h, k)∥2
2 = ∥h∥2

+ ∥k∥2

=
∥h + k∥2

2
+

∥h − k∥2

2

= ∥
h + k

2
∥

2
+ ∥

h + k
2

∥
2
+ ∥

h − k
2

∥
2
+ ∥

h − k
2

∥
2

= ∥(
h + k

2
,
h + k

2
)∥

2
2 +

∥(
h − k

2
,
k − h

2
)∥

2
2 .

https://doi.org/10.4153/CMB-2016-019-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-019-8


772 F. J. García-Pacheco and J. R. Hill

Corollary 3.3 Let X be a Banach space. If DX and D−
X are L2-complemented in

X ⊕2 X, that is, X ⊕2 X = DX ⊕2 D−
X , then X is a Hilbert space.

Proof It suõces to look at the proof of_eorem 3.2 to realize that, under these as-
sumptions, X veriûes the parallelogram law and thus it is aHilbert space.

4 A Characterization of Hilbert Spaces Involving ΠX

If H denotes a Hilbert space, then it is clear that ΠH = (SH × SH) ∩ DH =
√

2SDH

provided that H ×H is endowed with the ∥ ⋅ ∥2-norm.

_eorem 4.1 Let X be a Banach space. If there exists a vector subspace V of X⊕2 X∗

such that ΠX =
√

2SV , then X is a Hilbert space and V = DX .

Proof We will divide the proof into two steps.

Step 1 We will show that X is smooth. Suppose to the contrary that X is not. _en
we can ûnd (x , x∗), (x , y∗) ∈ ΠX such that x∗ /= y∗. _en

(0, x∗ − y∗) = (x , x∗) − (x , y∗) ∈ ΠX −ΠX ⊆ V .

_us
√

2
(0, x∗ − y∗)
∥x∗ − y∗∥

∈
√

2SV = ΠX ,

which is impossible.

Step 2 According to [1, _eorem 3.2], it is suõcient to show that JX(x + y) =

JX(x) + JY(y) for all x , y ∈ SX . So we ûx arbitrary elements x , y ∈ SX . We may
assume that x and y are linearly independent. Note that

(x + y, JX(x) + JX(y)) = (x , JX(x)) + (y, JX(y)) ∈ ΠX +ΠX ⊆ V .

_erefore
√

2
(x + y, JX(x) + JX(y))

√
∥x + y∥2 + ∥JX(x) + JX(y)∥2

∈
√

2SV = ΠX .

So there exists z ∈ SX such that
√

2
(x + y, JX(x) + JX(y))

√
∥x + y∥2 + ∥JX(x) + JX(y)∥2

= (z, JX(z)).

_is implies that z = x+y
∥x+y∥ and

(4.1) JX(
x + y

∥x + y∥
) =

√
2

JX(x) + JX(y)
√

∥x + y∥2 + ∥JX(x) + JX(y)∥2
.

Taking norms and solving for ∥JX(x) + JX(y∥ we obtain that

∥JX(x) + JX(y)∥ = ∥x + y∥.

Going to back to Equation (4.1), we deduce that JX(x + y) = JX(x) + JY(y).
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5 The Distance to ΠH

Our ûnal aim is to ûnd the distance from a generic element (h, k) ∈ H ⊕2 H to ΠH
for H a Hilbert space. In order to accomplish this, we will make use of Lemmas 5.3
and 5.4. However, to do so, wemust ûrst study this issue in amore general context.

Proposition 5.1 Let X be a normed space and consider ΠX in X ⊕2 X∗. Let x ∈ SX
and y∗ ∈ SX∗ .
(i) d((x , y∗),ΠX) ≤ d(y∗ , x−1(1) ∩BX∗).
(ii) If y is norm-attaining, then d((x , y∗),ΠX) ≤ d(x , (y∗)−1(1) ∩BX).
(iii) ∣y∗(x) − 1∣ ≤ 2d((x , y∗),ΠX).

Proof (i) Let x∗ ∈ x−1(1) ∩ BX∗ . _en (x , x∗) ∈ ΠX and so d((x , y∗),ΠX) ≤

∥(x , y∗) − (x , x∗)∥2 = ∥y∗ − x∗∥, which means that

d((x , y∗),ΠX) ≤ d(y∗ , x−1
(1) ∩BX∗).

(ii) It follows a similar proof as in (i). (iii) Let (z, z∗) ∈ ΠX . Note that

∣y∗(x) − 1∣ = ∣y∗(x) − z∗(z)∣ ≤ ∣y∗(x) − z∗(x)∣ + ∣z∗(x) − z∗(z)∣
≤ ∥y∗ − z∗∥ + ∥x − z∥ ≤ 2∥(x , y∗) − (z, z∗)∥2 ,

which implies that ∣y∗(x) − 1∣ ≤ 2d((x , y∗),ΠX).

Corollary 5.2 Let X be a normed space and consider ΠX in X ⊕2 X∗. If x ∈ SX and
y∗ ∈ SX∗ is norm-attaining, then

∣y∗(x) − 1∣
2

≤ d((x , y∗),ΠX) ≤ min{d(y∗ , x−1
(1) ∩BX∗), d(x , (y∗)−1

(1) ∩BX)} .

Now we can take care of computing the distance of a generic element (h, k) ∈

H ⊕2 H to ΠH .

Lemma 5.3 Let X be a normed space. If x ∈ X ∖ {0}, then d(x , SX) = ∥x − x
∥x∥∥ =

∣ ∥x∥ − 1 ∣ .

Proof Indeed, d(x , SX) ≤ ∥x − x
∥x∥∥ = ∣ ∥x∥ − 1 ∣ and if y ∈ SX , then

(5.1) ∥x − x
∥x∥

∥ = ∣ ∥x∥ − 1 ∣ = ∣ ∥x∥ − ∥y∥∣ ≤ ∥x − y∥.

Lemma 5.4 Let X be a normed space and assume that X = M⊕p N with 1 ≤ p ≤∞.
Fix arbitrary elements m ∈ M and n ∈ N.
(i) d(m + n,M) = ∥n∥.
(ii)

d(m + n, SM) =

⎧⎪⎪
⎨
⎪⎪⎩

p
√

∥n∥p + ∣ ∥m∥ − 1 ∣
p if p <∞,

max{∥n∥, ∣ ∥m∥ − 1 ∣ } if p =∞.
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Proof (i) Indeed, d(m + n,M) ≤ ∥m + n −m∥ = ∥n∥ and if m′ ∈ M, then

∥n∥ ≤ (∥m −m′
∥
p
+ ∥n∥p

)
1
p = ∥m + n −m′

∥p for p <∞,

∥n∥ ≤ max{∥m −m′
∥, ∥n∥} = ∥m + n −m′

∥p for p =∞.

(ii) Wemay assume that m /= 0 and recalling (5.1), we have that

d(m + n, SM) ≤ ∥m + n − m
∥m∥

∥
p =

⎧⎪⎪
⎨
⎪⎪⎩

p
√

∥n∥p + ∣ ∥m∥ − 1 ∣
p

if p <∞,
max{∥n∥, ∣ ∥m∥ − 1 ∣ if p =∞,

and if m′ ∈ SM , then

p
√

∥n∥p + ∣ ∥m∥ − 1 ∣
p
≤

p
√

∥n∥p + ∥m −m′∥p = ∥m + n −m′
∥p for p <∞,

max{∥n∥, ∣ ∥m∥ − 1 ∣ } ≤ max{∥n∥, ∥m −m′
∥} = ∥m + n −m′

∥p for p =∞.

_e reader may notice that Lemma 5.4 (i) still holds ifM and N are simply 1-com-
plemented in X.

_eorem 5.5 Let H be a Hilbert space and consider H ⊕2 H. For every h, k ∈ H we
have that

d((h, k), DH) =
∥h − k∥
√

2
,

d((h, k), SDH) = (
∥h − k∥2

2
+ ∣

∥h + k∥
√

2
− 1 ∣

2
)

1
2 ,

d((h, k),
√

2SDH) = (
∥h − k∥2

2
+ ∣

∥h + k∥
√

2
−
√

2 ∣
2
)

1
2 .

Proof Notice that H⊕2H = DH⊕2D−
H in virtue of_eorem 3.2. By applying Lemma

5.4 (i) we deduce that

d((h, k), DH) = ∥(
h − k

2
,
k − h

2
)∥

2 =
∥h − k∥
√

2
.

In accordance with Lemma 5.4 (ii) we have that

d((h, k), SDH) = (
∥h − k∥2

2
+ ∣

∥h + k∥
√

2
− 1 ∣

2
)

1
2 .

Finally,

d((h, k),
√

2SDH) = d(
√

2(
1

√
2
(h, k)) ,

√
2SDH)

=
√

2d(( h
√

2
,

k
√

2
) , SDH)

=
√

2(
∥h − k∥2

4
+ ∣

∥h + k∥
2

− 1∣
2
)

1
2

= (
∥h − k∥2

2
+ ∣

∥h + k∥
√

2
−
√

2 ∣
2
)

1
2
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Aswementioned at the beginning of this section,ΠH =
√

2SDH , sowe immediately
deduce the following ûnal corollary.

Corollary 5.6 Let H be a Hilbert space and consider H ⊕2 H. If h, k ∈ H, then

d((h, k),ΠH) = (
∥h − k∥2

2
+ ∣

∥h + k∥
√

2
−
√

2 ∣
2
)

1
2 .
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