Canad. Math. Bull. Vol. 59 (4), 2016 pp. 769–775 http://dx.doi.org/10.4153/CMB-2016-019-8 © Canadian Mathematical Society 2016

Geometric Characterizations of Hilbert Spaces

Francisco Javier García-Pacheco and Justin R. Hill

Abstract. We study some geometric properties related to the set

$$\Pi_X := \{ (x, x^*) \in S_X \times S_{X^*} : x^*(x) = 1 \}$$

obtaining two characterizations of Hilbert spaces in the category of Banach spaces. We also compute the distance of a generic element $(h, k) \in H \oplus_2 H$ to Π_H for H a Hilbert space.

1 Introduction

Deville, Godefroy, and Zizler [2] formally introduced the set

$$\Pi_X := \{ (x, x^*) \in \mathsf{S}_X \times \mathsf{S}_{X^*} : x^*(x) = 1 \}$$

for X a normed space and they use it to define a modulus of the Bishop–Phelps– Bollobás property for functionals. However, the set Π_X appears implicitly in other indices or moduli such as the numerical index of a Banach space, since the numerical range of a continuous linear operator $T \in \mathcal{L}(X)$ can be rewritten as V(T) := $\{x^*(T(x)): (x, x^*) \in \Pi_X\}$. We refer the reader to [4] for an excellent survey paper on the numerical index of a Banach space.

In this paper we study the geometric properties of the set Π_X and obtain two characterizations of Hilbert spaces in the category of Banach spaces. In our second characterization, Π_H plays a fundamental role when H is a Hilbert space, so the set Π_H must also be studied more accurately.

Recall that a normed space *X* is said to be smooth provided that at any vector of norm 1 there exists only one functional of norm 1 attaining its norm at the vector. If *X* is a smooth normed space, then the dual map of *X* is defined as $J_X: X \to X^*$ where $||J_X(x)|| = ||x||$ and $J_X(x)(x) = ||x||^2$ for all $x \in X$. It is obvious that if *X* is smooth, then $\Pi_X = \{(x, J_X(x)) : x \in S_X\}$. We refer the reader to [3] for a wide perspective on smooth spaces and differentiability of the norm.

It is well known that if *H* is a Hilbert space, then J_H is a surjective linear isometry, and so we can identify *H* with H^* via its dual map. After this identification, Π_H turns out to be the intersection of $S_H \times S_H$ with the diagonal of $H \times H$.

Received by the editors January 13, 2016; revised March 30, 2016.

Published electronically June 8, 2016.

Author F. G.-P. was supported by MTM2014-58984-P. This project has been funded by the Spanish Ministry of Economy and Competitivity and by the European Fund for Regional Development FEDER. AMS subject classification: **46B20**, 46C05.

Keywords: Hilbert space, extreme point, smooth, L²-summands.

2 Extremal Structure of Π_X

Given a normed space *X* we will define the set

$$E_X := (ext(B_X) \times S_{X^*}) \cup (S_X \times ext(B_{X^*})).$$

Theorem 2.1 Let X be a normed space. The following conditions are equivalent.

- (i) $\Pi_X \subseteq E_X$.
- (ii) $S_X = ext(B_X) \cup smo(B_X)$.

Proof (i) \Rightarrow (ii). Let $x \in S_X \setminus \text{ext}(B_X)$. If $x \notin \text{smo}(B_X)$, then there are $x^* \neq y^* \in S_{X^*}$ such that $x^*(x) = y^*(y) = 1$. Notice that $(x, \frac{x^* + y^*}{2}) \in \Pi_X$ but neither x nor $\frac{x^* + y^*}{2}$ are extreme points of their respective balls.

(ii) \Rightarrow (i). Let $(x, x^*) \in \Pi_X$. Assume that $x \notin \text{ext}(\mathsf{B}_X)$. By hypothesis $x \in \text{smo}(\mathsf{B}_X)$. Now if $y^*, z^* \in \mathsf{S}_{X^*}$ and $x^* = \frac{y^* + z^*}{2}$, then $y^*(x) = z^*(x) = 1$ which means that $y^* = x^*$ by the smoothness of x.

Recall that an exposed face is the set of all vectors of norm 1 at which a given functional of norm 1 attains its norm. An edge is a maximal segment of the unit sphere which is an exposed face.

Corollary 2.2 Let X be a normed space.

- (i) If $\Pi_X \subseteq E_X$, then every edge of B_X is a maximal face of B_X .
- (ii) If X is real and 2-dimensional, then $\Pi_X \subseteq E_X$.

Proof (i) Let $[x, y] \subset S_X$ be an edge of B_X and consider $u^* \in S_{X^*}$ such that $[x, y] = (u^*)^{-1}(1) \cap B_X$. Suppose to the contrary that [x, y] is not a maximal face of B_X , so then it must be contained in a maximal face *C*. According to the Hahn–Banach separation theorem, maximal faces are exposed faces, so there exists $v^* \in S_{X^*}$ such that $C = (v^*)^{-1}(1) \cap B_X$. Note that $u^* \neq v^*$ since $[x, y] \not\subseteq C$. Finally, $\frac{x+y}{2} \in S_X$, but $\frac{x+y}{2} \notin \text{ext}(B_X) \cup \text{smo}(B_X)$.

(ii) If $x \in S_X \setminus ext(B_X)$, then x belongs to the interior of a segment entirely contained in the unit sphere. Since X is real and has dimension 2, there is only one hyperplane supporting B_X on that segment, and hence $x \in smo(B_X)$.

The next example shows the existence of Banach spaces that can never be equivalently renormed such that $\Pi_X \subseteq E_X$. For this we will need a bit of background.

Let ω_1 denote the first uncountable ordinal. The space of all bounded real-valued functions on $[0, \omega_1]$ will be denoted by $\ell_{\infty}(0, \omega_1)$, which becomes a Banach space endowed with the sup norm. The subspace of $\ell_{\infty}(0, \omega_1)$, composed of those functions with countable support, is denoted by m_0 .

Theorem 2.3 No equivalent norm on m_0 makes $\prod_{m_0} \subseteq E_{m_0}$.

Proof We will divide the proof into two steps.

Step 1 $\Pi_{m_0} \notin E_{m_0}$ when m_0 is endowed with the sup norm. Indeed, note that in this case m_0 endowed with the sup norm isometrically contains ℓ_{∞}^3 . Now observe that Theorem 2.1 shows that the condition $\Pi_X \subseteq E_X$ is a hereditary property. Finally, it is sufficient to realize that $\Pi_{\ell_{\infty}^3} \notin E_{\ell_{\infty}^3}$ by virtue of of Corollary 2.2 (i).

Step 2. Assume that m_0 is endowed with any equivalent norm. In accordance with [3, Theorem 7.12], m_0 endowed with any (non-necessarily equivalent) norm has a subspace which is linearly isometric to m_0 endowed with the sup norm. Again, the hereditariness of the condition $\Pi_X \subseteq E_X$ together with 1 concludes the proof.

3 A Characterization of Hilbert Spaces in Terms of Diagonals

For a topological space *X* the diagonal of $X \times X$ is denoted by

$$D_X \coloneqq \{(x, y) \in X \times X : x = y\}.$$

In case *X* is a topological vector space, then the anti-diagonal is defined as

$$D_X^- \coloneqq \{(x, y) \in X \times X : x = -y\}.$$

The following lemma helps communicate the nature and importance of diagonals in direct products of topological vector spaces.

Lemma 3.1 Let X be a topological vector space.

(i) For every $(x, y) \in X \times X$ we have

$$(x, y) = \left(\frac{x+y}{2}, \frac{x+y}{2}\right) + \left(\frac{x-y}{2}, \frac{y-x}{2}\right).$$

(ii) D_X and D_X^- are topologically complemented in $X \times X$ and both are isomorphic to X.

Proof (i) Immediate. (ii) It suffices to notice that the linear projection

$$P: X \times X \to D_X$$

 $(x, y) \to P(x, y) = \left(\frac{x+y}{2}, \frac{x+y}{2}\right)$

is continuous and $(I - P)(x, y) = (\frac{x-y}{2}, \frac{y-x}{2})$ or all $(x, y) \in X \times X$.

Theorem 3.2 Let H be a Hilbert space and consider $H \oplus_2 H$. Then $(D_H)^{\perp} = D_H^-$.

Proof Let $h, k \in H$. By the parallelogram law we have that

$$\begin{split} \|(h,k)\|_{2}^{2} &= \|h\|^{2} + \|k\|^{2} \\ &= \frac{\|h+k\|^{2}}{2} + \frac{\|h-k\|^{2}}{2} \\ &= \|\frac{h+k}{2}\|^{2} + \|\frac{h+k}{2}\|^{2} + \|\frac{h-k}{2}\|^{2} + \|\frac{h-k}{2}\|^{2} \\ &= \|\left(\frac{h+k}{2}, \frac{h+k}{2}\right)\|_{2}^{2} + \|\left(\frac{h-k}{2}, \frac{k-h}{2}\right)\|_{2}^{2}. \end{split}$$

Corollary 3.3 Let X be a Banach space. If D_X and D_X^- are L^2 -complemented in $X \oplus_2 X$, that is, $X \oplus_2 X = D_X \oplus_2 D_X^-$, then X is a Hilbert space.

Proof It suffices to look at the proof of Theorem 3.2 to realize that, under these assumptions, *X* verifies the parallelogram law and thus it is a Hilbert space.

4 A Characterization of Hilbert Spaces Involving Π_X

If *H* denotes a Hilbert space, then it is clear that $\Pi_H = (S_H \times S_H) \cap D_H = \sqrt{2}S_{D_H}$ provided that $H \times H$ is endowed with the $\|\cdot\|_2$ -norm.

Theorem 4.1 Let X be a Banach space. If there exists a vector subspace V of $X \oplus_2 X^*$ such that $\prod_X = \sqrt{2}S_V$, then X is a Hilbert space and $V = D_X$.

Proof We will divide the proof into two steps.

Step 1 We will show that *X* is smooth. Suppose to the contrary that *X* is not. Then we can find $(x, x^*), (x, y^*) \in \Pi_X$ such that $x^* \neq y^*$. Then

$$(0, x^* - y^*) = (x, x^*) - (x, y^*) \in \Pi_X - \Pi_X \subseteq V.$$

Thus

$$\sqrt{2}\frac{(0,x^*-y^*)}{\|x^*-y^*\|} \in \sqrt{2}\mathsf{S}_V = \Pi_X,$$

which is impossible.

Step 2 According to [1, Theorem 3.2], it is sufficient to show that $J_X(x + y) = J_X(x) + J_Y(y)$ for all $x, y \in S_X$. So we fix arbitrary elements $x, y \in S_X$. We may assume that x and y are linearly independent. Note that

$$(x + y, \mathsf{J}_X(x) + \mathsf{J}_X(y)) = (x, \mathsf{J}_X(x)) + (y, \mathsf{J}_X(y)) \in \Pi_X + \Pi_X \subseteq V.$$

Therefore

$$\sqrt{2} \frac{(x+y, J_X(x) + J_X(y))}{\sqrt{\|x+y\|^2 + \|J_X(x) + J_X(y)\|^2}} \in \sqrt{2} S_V = \Pi_X.$$

So there exists $z \in S_X$ such that

$$\sqrt{2} \frac{(x+y, J_X(x) + J_X(y))}{\sqrt{\|x+y\|^2 + \|J_X(x) + J_X(y)\|^2}} = (z, J_X(z)).$$

This implies that $z = \frac{x+y}{\|x+y\|}$ and

(4.1)
$$J_X\left(\frac{x+y}{\|x+y\|}\right) = \sqrt{2} \frac{J_X(x) + J_X(y)}{\sqrt{\|x+y\|^2 + \|J_X(x) + J_X(y)\|^2}}$$

Taking norms and solving for $||J_X(x) + J_X(y)||$ we obtain that

$$\|J_X(x) + J_X(y)\| = \|x + y\|.$$

Going to back to Equation (4.1), we deduce that $J_X(x + y) = J_X(x) + J_Y(y)$.

5 The Distance to Π_H

Our final aim is to find the distance from a generic element $(h, k) \in H \oplus_2 H$ to Π_H for *H* a Hilbert space. In order to accomplish this, we will make use of Lemmas 5.3 and 5.4. However, to do so, we must first study this issue in a more general context.

Proposition 5.1 Let X be a normed space and consider Π_X in $X \oplus_2 X^*$. Let $x \in S_X$ and $y^* \in S_{X^*}$.

- (i) $d((x, y^*), \Pi_X) \le d(y^*, x^{-1}(1) \cap \mathsf{B}_{X^*}).$
- (ii) If y is norm-attaining, then $d((x, y^*), \Pi_X) \le d(x, (y^*)^{-1}(1) \cap \mathsf{B}_X)$.
- (iii) $|y^*(x) 1| \le 2d((x, y^*), \Pi_X).$

Proof (i) Let $x^* \in x^{-1}(1) \cap B_{X^*}$. Then $(x, x^*) \in \Pi_X$ and so $d((x, y^*), \Pi_X) \le ||(x, y^*) - (x, x^*)||_2 = ||y^* - x^*||$, which means that

$$d((x, y^*), \Pi_X) \leq d(y^*, x^{-1}(1) \cap \mathsf{B}_{X^*}).$$

(ii) It follows a similar proof as in (i). (iii) Let $(z, z^*) \in \Pi_X$. Note that

$$\begin{aligned} |y^*(x) - 1| &= |y^*(x) - z^*(z)| \le |y^*(x) - z^*(x)| + |z^*(x) - z^*(z)| \\ &\le \|y^* - z^*\| + \|x - z\| \le 2\|(x, y^*) - (z, z^*)\|_2, \end{aligned}$$

which implies that $|y^*(x) - 1| \le 2d((x, y^*), \Pi_X)$.

Corollary 5.2 Let X be a normed space and consider Π_X in $X \oplus_2 X^*$. If $x \in S_X$ and $y^* \in S_{X^*}$ is norm-attaining, then

$$\frac{|y^*(x)-1|}{2} \le d((x,y^*),\Pi_X) \le \min\{d(y^*,x^{-1}(1)\cap \mathsf{B}_{X^*}),d(x,(y^*)^{-1}(1)\cap \mathsf{B}_X)\}.$$

Now we can take care of computing the distance of a generic element $(h, k) \in H \oplus_2 H$ to Π_H .

Lemma 5.3 *Let X* be a normed space. If $x \in X \setminus \{0\}$, then $d(x, S_X) = ||x - \frac{x}{||x||}|| = ||x|| - 1|$.

Proof Indeed, $d(x, S_X) \le ||x - \frac{x}{||x||}|| = ||x|| - 1|$ and if $y \in S_X$, then

(5.1)
$$||x - \frac{x}{||x||}|| = |||x|| - 1|| = |||x|| - ||y||| \le ||x - y||.$$

Lemma 5.4 *Let X* be a normed space and assume that $X = M \oplus_p N$ with $1 \le p \le \infty$. *Fix arbitrary elements* $m \in M$ *and* $n \in N$.

(i)
$$d(m+n, M) = ||n||.$$

(ii)

$$d(m+n, \mathsf{S}_M) = \begin{cases} \sqrt[p]{\|n\|^p + |\|m\| - 1|^p} & \text{if } p < \infty, \\ \max\{\|n\|, |\|m\| - 1|\} & \text{if } p = \infty. \end{cases}$$

F. J. García-Pacheco and J. R. Hill

Proof (i) Indeed, $d(m+n, M) \le ||m+n-m|| = ||n||$ and if $m' \in M$, then

$$\|n\| \le (\|m - m'\|^p + \|n\|^p)^{\frac{1}{p}} = \|m + n - m'\|_p \quad \text{for } p < \infty,$$

$$\|n\| \le \max\{\|m - m'\|, \|n\|\} = \|m + n - m'\|_p \quad \text{for } p = \infty.$$

(ii) We may assume that $m \neq 0$ and recalling (5.1), we have that

$$d(m+n, S_M) \le \|m+n - \frac{m}{\|m\|}\|_p = \begin{cases} \sqrt[p]{\|n\|^p + |\|m\| - 1|^p} & \text{if } p < \infty, \\ \max\{\|n\|, |\|m\| - 1| & \text{if } p = \infty, \end{cases}$$

and if $m' \in S_M$, then

$$\sqrt[p]{\|n\|^{p} + \|m\| - 1\|^{p}} \le \sqrt[p]{\|n\|^{p} + \|m - m'\|^{p}} = \|m + n - m'\|_{p} \quad \text{for } p < \infty,$$
$$\max\{\|n\|, \|m\| - 1\|\} \le \max\{\|n\|, \|m - m'\|\} = \|m + n - m'\|_{p} \quad \text{for } p = \infty.$$

The reader may notice that Lemma 5.4 (i) still holds if *M* and *N* are simply 1-complemented in *X*.

Theorem 5.5 Let H be a Hilbert space and consider $H \oplus_2 H$. For every $h, k \in H$ we have that

$$d((h,k), D_{H}) = \frac{\|h-k\|}{\sqrt{2}},$$

$$d((h,k), S_{D_{H}}) = \left(\frac{\|h-k\|^{2}}{2} + \left|\frac{\|h+k\|}{\sqrt{2}} - 1\right|^{2}\right)^{\frac{1}{2}},$$

$$d((h,k), \sqrt{2}S_{D_{H}}) = \left(\frac{\|h-k\|^{2}}{2} + \left|\frac{\|h+k\|}{\sqrt{2}} - \sqrt{2}\right|^{2}\right)^{\frac{1}{2}}.$$

Proof Notice that $H \oplus_2 H = D_H \oplus_2 D_H^-$ in virtue of Theorem 3.2. By applying Lemma 5.4 (i) we deduce that

$$d((h,k), D_H) = \left\| \left(\frac{h-k}{2}, \frac{k-h}{2} \right) \right\|_2 = \frac{\|h-k\|}{\sqrt{2}}.$$

In accordance with Lemma 5.4 (ii) we have that

$$d((h,k),\mathsf{S}_{\mathsf{D}_{H}}) = \left(\frac{\|h-k\|^{2}}{2} + \left|\frac{\|h+k\|}{\sqrt{2}} - 1\right|^{2}\right)^{\frac{1}{2}}.$$

Finally,

$$d((h,k), \sqrt{2}S_{D_{H}}) = d\left(\sqrt{2}\left(\frac{1}{\sqrt{2}}(h,k)\right), \sqrt{2}S_{D_{H}}\right)$$
$$= \sqrt{2}d\left(\left(\frac{h}{\sqrt{2}}, \frac{k}{\sqrt{2}}\right), S_{D_{H}}\right)$$
$$= \sqrt{2}\left(\frac{\|h-k\|^{2}}{4} + \left|\frac{\|h+k\|}{2} - 1\right|^{2}\right)^{\frac{1}{2}}$$
$$= \left(\frac{\|h-k\|^{2}}{2} + \left|\frac{\|h+k\|}{\sqrt{2}} - \sqrt{2}\right|^{2}\right)^{\frac{1}{2}}$$

As we mentioned at the beginning of this section, $\Pi_H = \sqrt{2}S_{D_H}$, so we immediately deduce the following final corollary.

Corollary 5.6 Let H be a Hilbert space and consider $H \oplus_2 H$. If $h, k \in H$, then

$$d((h,k),\Pi_H) = \left(\frac{\|h-k\|^2}{2} + \left|\frac{\|h+k\|}{\sqrt{2}} - \sqrt{2}\right|^2\right)^{\frac{1}{2}}$$

References

- A. Aizpuru and F. J. García-Pacheco, L²-summand vectors in Banach spaces. Proc. Amer. Math. Soc. 134(2006), no. 7, 2109–2115. http://dx.doi.org/10.1090/S0002-9939-06-08243-8
- [2] M. Chica, V. Kadets, M. Martín, S. Moreno-Pulido, and F. Rambla-Barreno, Bishop-Phelps-Bollobás moduli of a Banach space. J. Math. Anal. Appl. 412(2014), 697–719. http://dx.doi.org/10.1016/j.jmaa.2013.10.083
- [3] R. Deville, G. Godefroy, and V. Zizler, Smoothness and renormings in Banach spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics 64, Longman Scientific & Technical, New York, 1993.
- [4] V. Kadets, M. Martín, and R. Payá, Recent progress and open questions on the numerical index of Banach spaces. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 100(2006), no. 1-2, 155–182.

Department of Mathematics, Universidad de Cádiz, Cadiz, Spain e-mail: garcia.pacheco@uca.es Temple College, Temple, Texas, USA

e-mail: hillj116@templejc.edu