Geometric Characterizations of Hilbert Spaces

Francisco Javier García-Pacheco and Justin R. Hill

Abstract. We study some geometric properties related to the set

$$
\Pi_{X}:=\left\{\left(x, x^{*}\right) \in \mathrm{S}_{X} \times \mathrm{S}_{X^{*}}: x^{*}(x)=1\right\}
$$

obtaining two characterizations of Hilbert spaces in the category of Banach spaces. We also compute the distance of a generic element $(h, k) \in H \oplus_{2} H$ to Π_{H} for H a Hilbert space.

1 Introduction

Deville, Godefroy, and Zizler [2] formally introduced the set

$$
\Pi_{X}:=\left\{\left(x, x^{*}\right) \in \mathrm{S}_{X} \times \mathrm{S}_{X^{*}}: x^{*}(x)=1\right\}
$$

for X a normed space and they use it to define a modulus of the Bishop-PhelpsBollobás property for functionals. However, the set Π_{X} appears implicitly in other indices or moduli such as the numerical index of a Banach space, since the numerical range of a continuous linear operator $T \in \mathcal{L}(X)$ can be rewritten as $V(T):=$ $\left\{x^{*}(T(x)):\left(x, x^{*}\right) \in \Pi_{X}\right\}$. We refer the reader to [4] for an excellent survey paper on the numerical index of a Banach space.

In this paper we study the geometric properties of the set Π_{X} and obtain two characterizations of Hilbert spaces in the category of Banach spaces. In our second characterization, Π_{H} plays a fundamental role when H is a Hilbert space, so the set Π_{H} must also be studied more accurately.

Recall that a normed space X is said to be smooth provided that at any vector of norm 1 there exists only one functional of norm 1 attaining its norm at the vector. If X is a smooth normed space, then the dual map of X is defined as $\mathrm{J}_{X}: X \rightarrow X^{*}$ where $\left\|\mathrm{J}_{X}(x)\right\|=\|x\|$ and $\mathrm{J}_{X}(x)(x)=\|x\|^{2}$ for all $x \in X$. It is obvious that if X is smooth, then $\Pi_{X}=\left\{\left(x, \mathrm{~J}_{X}(x)\right): x \in \mathrm{~S}_{X}\right\}$. We refer the reader to [3] for a wide perspective on smooth spaces and differentiability of the norm.

It is well known that if H is a Hilbert space, then J_{H} is a surjective linear isometry, and so we can identify H with H^{*} via its dual map. After this identification, Π_{H} turns out to be the intersection of $\mathrm{S}_{H} \times \mathrm{S}_{H}$ with the diagonal of $H \times H$.

[^0]
2 Extremal Structure of Π_{X}

Given a normed space X we will define the set

$$
\mathrm{E}_{X}:=\left(\operatorname{ext}\left(\mathrm{B}_{X}\right) \times \mathrm{S}_{X^{*}}\right) \cup\left(\mathrm{S}_{X} \times \operatorname{ext}\left(\mathrm{B}_{X^{*}}\right)\right) .
$$

Theorem 2.1 Let X be a normed space. The following conditions are equivalent.
(i) $\Pi_{X} \subseteq \mathrm{E}_{X}$.
(ii) $\mathrm{S}_{X}=\operatorname{ext}\left(\mathrm{B}_{X}\right) \cup \operatorname{smo}\left(\mathrm{B}_{X}\right)$.

Proof (i) \Rightarrow (ii). Let $x \in \mathrm{~S}_{X} \backslash \operatorname{ext}\left(\mathrm{~B}_{X}\right)$. If $x \notin \operatorname{smo}\left(\mathrm{~B}_{X}\right)$, then there are $x^{*} \neq y^{*} \in \mathrm{~S}_{X^{*}}$ such that $x^{*}(x)=y^{*}(y)=1$. Notice that $\left(x, \frac{x^{*}+y^{*}}{2}\right) \in \Pi_{X}$ but neither x nor $\frac{x^{*}+y^{*}}{2}$ are extreme points of their respective balls.
(ii) \Rightarrow (i). Let $\left(x, x^{*}\right) \in \Pi_{X}$. Assume that $x \notin \operatorname{ext}\left(B_{X}\right)$. By hypothesis $x \in$ $\operatorname{smo}\left(\mathrm{B}_{X}\right)$. Now if $y^{*}, z^{*} \in \mathrm{~S}_{X^{*}}$ and $x^{*}=\frac{y^{*}+z^{*}}{2}$, then $y^{*}(x)=z^{*}(x)=1$ which means that $y^{*}=x^{*}$ by the smoothness of x.

Recall that an exposed face is the set of all vectors of norm 1 at which a given functional of norm 1 attains its norm. An edge is a maximal segment of the unit sphere which is an exposed face.

Corollary 2.2 Let X be a normed space.
(i) If $\Pi_{X} \subseteq \mathrm{E}_{X}$, then every edge of B_{X} is a maximal face of B_{X}.
(ii) If X is real and 2-dimensional, then $\Pi_{X} \subseteq \mathrm{E}_{X}$.

Proof (i) Let $[x, y] \subset S_{X}$ be an edge of B_{X} and consider $u^{*} \in \mathrm{~S}_{X^{*}}$ such that $[x, y]=$ $\left(u^{*}\right)^{-1}(1) \cap \mathrm{B}_{X}$. Suppose to the contrary that $[x, y]$ is not a maximal face of B_{X}, so then it must be contained in a maximal face C. According to the Hahn-Banach separation theorem, maximal faces are exposed faces, so there exists $v^{*} \in S_{X^{*}}$ such that $C=\left(v^{*}\right)^{-1}(1) \cap \mathrm{B}_{X}$. Note that $u^{*} \neq v^{*}$ since $[x, y] \mp C$. Finally, $\frac{x+y}{2} \in \mathrm{~S}_{X}$, but $\frac{x+y}{2} \notin \operatorname{ext}\left(\mathrm{~B}_{X}\right) \cup \operatorname{smo}\left(\mathrm{B}_{X}\right)$.
(ii) If $x \in S_{X} \backslash \operatorname{ext}\left(B_{X}\right)$, then x belongs to the interior of a segment entirely contained in the unit sphere. Since X is real and has dimension 2 , there is only one hyperplane supporting B_{X} on that segment, and hence $x \in \operatorname{smo}\left(\mathrm{~B}_{X}\right)$.

The next example shows the existence of Banach spaces that can never be equivalently renormed such that $\Pi_{X} \subseteq \mathrm{E}_{X}$. For this we will need a bit of background.

Let ω_{1} denote the first uncountable ordinal. The space of all bounded real-valued functions on $\left[0, \omega_{1}\right]$ will be denoted by $\ell_{\infty}\left(0, \omega_{1}\right)$, which becomes a Banach space endowed with the sup norm. The subspace of $\ell_{\infty}\left(0, \omega_{1}\right)$, composed of those functions with countable support, is denoted by m_{0}.

Theorem 2.3 No equivalent norm on m_{0} makes $\Pi_{m_{0}} \subseteq \mathrm{E}_{m_{0}}$.
Proof We will divide the proof into two steps.

Step $1 \quad \Pi_{m_{0}} \nsubseteq \mathrm{E}_{m_{0}}$ when m_{0} is endowed with the sup norm. Indeed, note that in this case m_{0} endowed with the sup norm isometrically contains ℓ_{∞}^{3}. Now observe that Theorem 2.1 shows that the condition $\Pi_{X} \subseteq \mathrm{E}_{X}$ is a hereditary property. Finally, it is sufficient to realize that $\Pi_{\ell_{\infty}^{3}} \nsubseteq \mathrm{E}_{\ell_{\infty}^{3}}$ by virtue of of Corollary 2.2 (i).

Step 2. Assume that m_{0} is endowed with any equivalent norm. In accordance with [3, Theorem 7.12], m_{0} endowed with any (non-necessarily equivalent) norm has a subspace which is linearly isometric to m_{0} endowed with the sup norm. Again, the hereditariness of the condition $\Pi_{X} \subseteq \mathrm{E}_{X}$ together with 1 concludes the proof.

3 A Characterization of Hilbert Spaces in Terms of Diagonals

For a topological space X the diagonal of $X \times X$ is denoted by

$$
\mathrm{D}_{X}:=\{(x, y) \in X \times X: x=y\} .
$$

In case X is a topological vector space, then the anti-diagonal is defined as

$$
\mathrm{D}_{X}^{-}:=\{(x, y) \in X \times X: x=-y\} .
$$

The following lemma helps communicate the nature and importance of diagonals in direct products of topological vector spaces.

Lemma 3.1 Let X be a topological vector space.
(i) For every $(x, y) \in X \times X$ we have

$$
(x, y)=\left(\frac{x+y}{2}, \frac{x+y}{2}\right)+\left(\frac{x-y}{2}, \frac{y-x}{2}\right) .
$$

(ii) D_{X} and D_{X}^{-}are topologically complemented in $X \times X$ and both are isomorphic to X.

Proof (i) Immediate. (ii) It suffices to notice that the linear projection

$$
\begin{aligned}
P: X \times X & \rightarrow \mathrm{D}_{X} \\
(x, y) & \rightarrow P(x, y)=\left(\frac{x+y}{2}, \frac{x+y}{2}\right)
\end{aligned}
$$

is continuous and $(I-P)(x, y)=\left(\frac{x-y}{2}, \frac{y-x}{2}\right)$ or all $(x, y) \in X \times X$.
Theorem 3.2 Let H be a Hilbert space and consider $H \oplus_{2} H$. Then $\left(\mathrm{D}_{H}\right)^{\perp}=\mathrm{D}_{H}^{-}$.
Proof Let $h, k \in H$. By the parallelogram law we have that

$$
\begin{aligned}
\|(h, k)\|_{2}^{2} & =\|h\|^{2}+\|k\|^{2} \\
& =\frac{\|h+k\|^{2}}{2}+\frac{\|h-k\|^{2}}{2} \\
& =\left\|\frac{h+k}{2}\right\|^{2}+\left\|\frac{h+k}{2}\right\|^{2}+\left\|\frac{h-k}{2}\right\|^{2}+\left\|\frac{h-k}{2}\right\|^{2} \\
& =\left\|\left(\frac{h+k}{2}, \frac{h+k}{2}\right)\right\|_{2}^{2}+\left\|\left(\frac{h-k}{2}, \frac{k-h}{2}\right)\right\|_{2}^{2} .
\end{aligned}
$$

Corollary 3.3 Let X be a Banach space. If D_{X} and D_{X}^{-}are L^{2}-complemented in $X \oplus_{2} X$, that is, $X \oplus_{2} X=\mathrm{D}_{X} \oplus_{2} \mathrm{D}_{X}^{-}$, then X is a Hilbert space.

Proof It suffices to look at the proof of Theorem 3.2 to realize that, under these assumptions, X verifies the parallelogram law and thus it is a Hilbert space.

4 A Characterization of Hilbert Spaces Involving Π_{X}

If H denotes a Hilbert space, then it is clear that $\Pi_{H}=\left(S_{H} \times S_{H}\right) \cap D_{H}=\sqrt{2} S_{D_{H}}$ provided that $H \times H$ is endowed with the $\|\cdot\|_{2}$-norm.

Theorem 4.1 Let X be a Banach space. If there exists a vector subspace V of $X \oplus_{2} X^{*}$ such that $\Pi_{X}=\sqrt{2} S_{V}$, then X is a Hilbert space and $V=\mathrm{D}_{X}$.

Proof We will divide the proof into two steps.
Step 1 We will show that X is smooth. Suppose to the contrary that X is not. Then we can find $\left(x, x^{*}\right),\left(x, y^{*}\right) \in \Pi_{X}$ such that $x^{*} \neq y^{*}$. Then

$$
\left(0, x^{*}-y^{*}\right)=\left(x, x^{*}\right)-\left(x, y^{*}\right) \in \Pi_{X}-\Pi_{X} \subseteq V
$$

Thus

$$
\sqrt{2} \frac{\left(0, x^{*}-y^{*}\right)}{\left\|x^{*}-y^{*}\right\|} \in \sqrt{2} \mathrm{~S}_{V}=\Pi_{X}
$$

which is impossible.
Step 2 According to [1, Theorem 3.2], it is sufficient to show that $\mathrm{J}_{X}(x+y)=$ $\mathrm{J}_{X}(x)+\mathrm{J}_{Y}(y)$ for all $x, y \in \mathrm{~S}_{X}$. So we fix arbitrary elements $x, y \in \mathrm{~S}_{X}$. We may assume that x and y are linearly independent. Note that

$$
\left(x+y, \mathrm{~J}_{X}(x)+\mathrm{J}_{X}(y)\right)=\left(x, \mathrm{~J}_{X}(x)\right)+\left(y, \mathrm{~J}_{X}(y)\right) \in \Pi_{X}+\Pi_{X} \subseteq V
$$

Therefore

$$
\sqrt{2} \frac{\left(x+y, \mathrm{~J}_{X}(x)+\mathrm{J}_{X}(y)\right)}{\sqrt{\|x+y\|^{2}+\left\|\mathrm{J}_{X}(x)+\mathrm{J}_{X}(y)\right\|^{2}}} \in \sqrt{2} \mathrm{~S}_{V}=\Pi_{X}
$$

So there exists $z \in \mathrm{~S}_{X}$ such that

$$
\sqrt{2} \frac{\left(x+y, \mathrm{~J}_{X}(x)+\mathrm{J}_{X}(y)\right)}{\sqrt{\|x+y\|^{2}+\left\|\mathrm{J}_{X}(x)+\mathrm{J}_{X}(y)\right\|^{2}}}=\left(z, \mathrm{~J}_{X}(z)\right)
$$

This implies that $z=\frac{x+y}{\|x+y\|}$ and

$$
\begin{equation*}
\mathrm{J}_{X}\left(\frac{x+y}{\|x+y\|}\right)=\sqrt{2} \frac{\mathrm{~J}_{X}(x)+\mathrm{J}_{X}(y)}{\sqrt{\|x+y\|^{2}+\left\|\mathrm{J}_{X}(x)+\mathrm{J}_{X}(y)\right\|^{2}}} \tag{4.1}
\end{equation*}
$$

Taking norms and solving for $\| \mathrm{J}_{X}(x)+\mathrm{J}_{X}(y \|$ we obtain that

$$
\left\|\mathrm{J}_{X}(x)+\mathrm{J}_{X}(y)\right\|=\|x+y\| .
$$

Going to back to Equation (4.1), we deduce that $\mathrm{J}_{X}(x+y)=\mathrm{J}_{X}(x)+\mathrm{J}_{Y}(y)$.

5 The Distance to Π_{H}

Our final aim is to find the distance from a generic element $(h, k) \in H \oplus_{2} H$ to Π_{H} for H a Hilbert space. In order to accomplish this, we will make use of Lemmas 5.3 and 5.4. However, to do so, we must first study this issue in a more general context.

Proposition 5.1 Let X be a normed space and consider Π_{X} in $X \oplus_{2} X^{*}$. Let $x \in S_{X}$ and $y^{*} \in \mathrm{~S}_{X^{*}}$.
(i) $\quad d\left(\left(x, y^{*}\right), \Pi_{X}\right) \leq d\left(y^{*}, x^{-1}(1) \cap \mathrm{B}_{X^{*}}\right)$.
(ii) If y is norm-attaining, then $d\left(\left(x, y^{*}\right), \Pi_{X}\right) \leq d\left(x,\left(y^{*}\right)^{-1}(1) \cap \mathrm{B}_{X}\right)$.
(iii) $\left|y^{*}(x)-1\right| \leq 2 d\left(\left(x, y^{*}\right), \Pi_{X}\right)$.

Proof (i) Let $x^{*} \in x^{-1}(1) \cap \mathrm{B}_{X^{*}}$. Then $\left(x, x^{*}\right) \in \Pi_{X}$ and so $d\left(\left(x, y^{*}\right), \Pi_{X}\right) \leq$ $\left\|\left(x, y^{*}\right)-\left(x, x^{*}\right)\right\|_{2}=\left\|y^{*}-x^{*}\right\|$, which means that

$$
d\left(\left(x, y^{*}\right), \Pi_{X}\right) \leq d\left(y^{*}, x^{-1}(1) \cap B_{X^{*}}\right) .
$$

(ii) It follows a similar proof as in (i). (iii) Let $\left(z, z^{*}\right) \in \Pi_{X}$. Note that

$$
\begin{aligned}
\left|y^{*}(x)-1\right| & =\left|y^{*}(x)-z^{*}(z)\right| \leq\left|y^{*}(x)-z^{*}(x)\right|+\left|z^{*}(x)-z^{*}(z)\right| \\
& \leq\left\|y^{*}-z^{*}\right\|+\|x-z\| \leq 2\left\|\left(x, y^{*}\right)-\left(z, z^{*}\right)\right\|_{2},
\end{aligned}
$$

which implies that $\left|y^{*}(x)-1\right| \leq 2 d\left(\left(x, y^{*}\right), \Pi_{X}\right)$.
Corollary 5.2 Let X be a normed space and consider Π_{X} in $X \oplus_{2} X^{*}$. If $x \in S_{X}$ and $y^{*} \in \mathrm{~S}_{X^{*}}$ is norm-attaining, then

$$
\frac{\left|y^{*}(x)-1\right|}{2} \leq d\left(\left(x, y^{*}\right), \Pi_{X}\right) \leq \min \left\{d\left(y^{*}, x^{-1}(1) \cap \mathrm{B}_{X^{*}}\right), d\left(x,\left(y^{*}\right)^{-1}(1) \cap \mathrm{B}_{X}\right)\right\}
$$

Now we can take care of computing the distance of a generic element $(h, k) \in$ $H \oplus_{2} H$ to Π_{H}.

Lemma 5.3 Let X be a normed space. If $x \in X \backslash\{0\}$, then $d\left(x, \mathrm{~S}_{X}\right)=\left\|x-\frac{x}{\|x\|}\right\|=$ $|\|x\|-1|$.

Proof Indeed, $d\left(x, \mathrm{~S}_{X}\right) \leq\left\|x-\frac{x}{\|x\|}\right\|=|\|x\|-1|$ and if $y \in \mathrm{~S}_{X}$, then

$$
\begin{equation*}
\left\|x-\frac{x}{\|x\|}\right\|=|\|x\|-1|=|\|x\|-\|y\|| \leq\|x-y\| . \tag{5.1}
\end{equation*}
$$

Lemma 5.4 Let X be a normed space and assume that $X=M \oplus_{p} N$ with $1 \leq p \leq \infty$. Fix arbitrary elements $m \in M$ and $n \in N$.
(i) $d(m+n, M)=\|n\|$.

$$
d\left(m+n, \mathrm{~S}_{M}\right)= \begin{cases}\sqrt[p]{\|n\| p+|\|m\|-1|^{p}} & \text { if } p<\infty \tag{ii}\\ \max \{\|n\|,|\|m\|-1|\} & \text { if } p=\infty\end{cases}
$$

Proof (i) Indeed, $d(m+n, M) \leq\|m+n-m\|=\|n\|$ and if $m^{\prime} \in M$, then

$$
\begin{aligned}
& \|n\| \leq\left(\left\|m-m^{\prime}\right\|^{p}+\|n\|^{p}\right)^{\frac{1}{p}}=\left\|m+n-m^{\prime}\right\|_{p} \quad \text { for } p<\infty, \\
& \|n\| \leq \max \left\{\left\|m-m^{\prime}\right\|,\|n\|\right\}=\left\|m+n-m^{\prime}\right\|_{p} \quad \text { for } p=\infty .
\end{aligned}
$$

(ii) We may assume that $m \neq 0$ and recalling (5.1), we have that

$$
d\left(m+n, \mathrm{~S}_{M}\right) \leq\left\|m+n-\frac{m}{\|m\|}\right\|_{p}= \begin{cases}\sqrt[p]{\|n\| p+|\|m\|-1|^{p}} & \text { if } p<\infty \\ \max \{\|n\|,|\|m\|-1| & \text { if } p=\infty\end{cases}
$$

and if $m^{\prime} \in \mathrm{S}_{M}$, then

$$
\begin{aligned}
& \sqrt[p]{\|n\|^{p}+|\|m\|-1|^{p}} \leq \sqrt[p]{\|n\|^{p}+\left\|m-m^{\prime}\right\|^{p}}=\left\|m+n-m^{\prime}\right\|_{p} \quad \text { for } p<\infty, \\
& \max \{\|n\|,|\|m\|-1|\} \leq \max \left\{\|n\|,\left\|m-m^{\prime}\right\|\right\}=\left\|m+n-m^{\prime}\right\|_{p} \quad \text { for } p=\infty .
\end{aligned}
$$

The reader may notice that Lemma 5.4 (i) still holds if M and N are simply 1-complemented in X.

Theorem 5.5 Let H be a Hilbert space and consider $H \oplus_{2} H$. For every $h, k \in H$ we have that

$$
\begin{aligned}
d\left((h, k), \mathrm{D}_{H}\right) & =\frac{\|h-k\|}{\sqrt{2}}, \\
d\left((h, k), \mathrm{S}_{\mathrm{D}_{H}}\right) & =\left(\frac{\|h-k\|^{2}}{2}+\left|\frac{\|h+k\|}{\sqrt{2}}-1\right|^{2}\right)^{\frac{1}{2}}, \\
d\left((h, k), \sqrt{2} \mathrm{~S}_{\mathrm{D}_{H}}\right) & =\left(\frac{\|h-k\|^{2}}{2}+\left|\frac{\|h+k\|}{\sqrt{2}}-\sqrt{2}\right|^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Proof Notice that $H \oplus_{2} H=\mathrm{D}_{H} \oplus_{2} \mathrm{D}_{H}^{-}$in virtue of Theorem 3.2. By applying Lemma 5.4 (i) we deduce that

$$
d\left((h, k), \mathrm{D}_{H}\right)=\left\|\left(\frac{h-k}{2}, \frac{k-h}{2}\right)\right\|_{2}=\frac{\|h-k\|}{\sqrt{2}} .
$$

In accordance with Lemma 5.4 (ii) we have that

$$
d\left((h, k), \mathrm{S}_{\mathrm{D}_{H}}\right)=\left(\frac{\|h-k\|^{2}}{2}+\left|\frac{\|h+k\|}{\sqrt{2}}-1\right|^{2}\right)^{\frac{1}{2}}
$$

Finally,

$$
\begin{aligned}
d\left((h, k), \sqrt{2} \mathrm{~S}_{\mathrm{D}_{H}}\right) & =d\left(\sqrt{2}\left(\frac{1}{\sqrt{2}}(h, k)\right), \sqrt{2} \mathrm{~S}_{\mathrm{D}_{H}}\right) \\
& =\sqrt{2} d\left(\left(\frac{h}{\sqrt{2}}, \frac{k}{\sqrt{2}}\right), \mathrm{S}_{\mathrm{D}_{H}}\right) \\
& =\sqrt{2}\left(\frac{\|h-k\|^{2}}{4}+\left|\frac{\|h+k\|}{2}-1\right|^{2}\right)^{\frac{1}{2}} \\
& =\left(\frac{\|h-k\|^{2}}{2}+\left|\frac{\|h+k\|}{\sqrt{2}}-\sqrt{2}\right|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

As we mentioned at the beginning of this section, $\Pi_{H}=\sqrt{2} \mathrm{~S}_{\mathrm{D}_{H}}$, so we immediately deduce the following final corollary.

Corollary 5.6 Let H be a Hilbert space and consider $H \oplus_{2} H$. If $h, k \in H$, then

$$
d\left((h, k), \Pi_{H}\right)=\left(\frac{\|h-k\|^{2}}{2}+\left|\frac{\|h+k\|}{\sqrt{2}}-\sqrt{2}\right|^{2}\right)^{\frac{1}{2}}
$$

References

[1] A. Aizpuru and F. J. García-Pacheco, L^{2}-summand vectors in Banach spaces.Proc. Amer. Math. Soc. 134(2006), no. 7, 2109-2115. http://dx.doi.org/10.1090/S0002-9939-06-08243-8
[2] M. Chica, V. Kadets, M. Martín, S. Moreno-Pulido, and F. Rambla-Barreno, Bishop-Phelps-Bollobás moduli of a Banach space. J. Math. Anal. Appl. 412(2014), 697-719. http://dx.doi.org/10.1016/j.jmaa.2013.10.083
[3] R. Deville, G. Godefroy, and V. Zizler, Smoothness and renormings in Banach spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics 64, Longman Scientific \& Technical, New York, 1993.
[4] V. Kadets, M. Martín, and R. Payá, Recent progress and open questions on the numerical index of Banach spaces. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 100(2006), no. 1-2, 155-182.
Department of Mathematics, Universidad de Cádiz, Cadiz, Spain
e-mail: garcia.pacheco@uca.es
Temple College, Temple, Texas, USA
e-mail: hillj116@templejc.edu

[^0]: Received by the editors January 13, 2016; revised March 30, 2016.
 Published electronically June 8, 2016.
 Author F. G.-P. was supported by MTM2014-58984-P. This project has been funded by the Spanish Ministry of Economy and Competitivity and by the European Fund for Regional Development FEDER. AMS subject classification: 46B20, 46C05.
 Keywords: Hilbert space, extreme point, smooth, L^{2}-summands.

