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Abstract

This paper deals with the existence, uniqueness and qualitative properties of nonnegative
and nontrivial solutions of a spatially heterogeneous Lotka-Volterra competition model with
nonlinear diffusion. We give conditions in terms of the coefficients involved in the setting of
the problem which assure the existence of nonnegative solutions as well as the uniqueness
of a positive solution. In order to obtain these results we employ monotonicity methods,
singular spectral theory and a fixed point index.

1. Introduction

In this work we are mainly concerned with the existence and uniqueness of nonnegative
solutions for the problem

L,(iom) = w(k-a(x)w - b(x)z) in Q,

L2(z") = zQi - d(x)z - c(x)w) in J2, (1.1)

w = z = 0 on 3S2,

where fi is a bounded domain of \&N with regular boundary 3Q, Lk, k = 1,2, are two
second-order uniformly elliptic operators of the form

N N

Lk:=-J2 4 (x)D,Dj + J2 *fOOA * = 1. 2, (1.2)

with a,*, if 6 C'(fi); m, n > 1; X, /x 6 K and a, b,c,de C ' ( ^ ) nonnegative and
nontrivial.
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274 Antonio Suarez [2]

Problem (1.1) provides us with the steady-state solutions to a related evolutionary
problem, which models the behaviour of two competing species, with population
densities w(x) and z(x), inhabiting fi. We refer to [13] for the meaning of each
coefficient and details about the model.

When m = n = 1 (linear diffusion), (1.1) has been extensively studied in recent
years. In the case when a, b, c and d are strictly positive functions, see for example
[6-9,11,12,18-20,24,27,32] and the references therein. When b and/or c vanish in
a domain of Q. (this means that, for instance, z does not interact with w in the set
Bo := {x 6 Q : b(x) = 0}), problem (1.1) was studied in [21,25] and [27]. And
finally, recently the case when a vanishes in a part of £2 but all other coefficients
and functions are strictly positive over Q has been analysed in [17] and [26], where
essential qualitative changes occur. Observe that in this case positive constants are
not supersolutions of (1.1) and, in fact, it is shown that the a priori bounds are lost for
some values of A and fj, and a new kind of positive solutions appear (which are infinite
over a region of £2 and finite on the rest of £2) that govern the behaviour of a related
evolutionary problem.

However, model (1.1) is less known when m, n > 1, and it has only been analysed
under more restrictive hypotheses, with constant coefficients (the homogeneous envi-
ronmental case) in [13] and when a and d are strictly positive in [28] and [30], all of
them with L\ = L2 = — A. These new parameters (m, n) were introduced in [22,29]
by describing the dynamics of a biological population whose mobility depends upon
its density. In this context, it means that the diffusion, the rate of movement of the
species from high density regions to low ones, is slower than in the linear case, giving
more realistic results. Mathematically, this mainly has three consequences which
distinguish this system from the one with m = n = 1: the strong maximum principle
does not apply (and so, unlike the linear case, there can exist nonnegative and non-
trivial solutions which are not positive in all £2), a priori bounds for all the solutions
of (1.1) and for all the values of A and fi, even when a or d vanishes, exist and that
the linearised method cannot be applied directly.

In order to study (1.1) we make the appropriate change of variables u>m = u and
z" = v, which transforms (1.1) into

Lxu = ul/m(X - a(x)ul/m - b(x)vV) in Q,

L2v = v1"l(n-d(x)v1/n-c(x)u1/m) infi, (1.3)

u = v = 0 on 3S2.

Since only nonnegative solutions have physical interest, there are four types of so-
lutions: the trivial solution, the semitrivial solutions (w, 0) and (0, v), those with
both components strictly positive, the coexistence states, and those where at least one
component could vanish in a part of £2, the semicoexistence states. Observe that a
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semicoexistence state could also be a coexistence state (see Proposition 3.3). Some-
times, we are able to prove that a semicoexistence state vanishes in a region of £2 (see
Theorem 3.4), and so it is not a coexistence state.

The paper is structured as follows. Observe that the semitrivial solutions satisfy
the following equation, the reason for our study in Section 2,

\Lw=f(x)wl'r-g(x)w2'r in a,

I w = 0 on dQ,

where L is an operator of the form (1.2), / , g e C'(^) with g > 0, g ^ 0, / can
change sign and r = m or n. Although the semitrivial solutions give/ = A. (or fj.) and
so constant, it will be very useful to study (1.4) when/ changes sign. This equation
has been previously studied in [3,13,14,23] and [31], assuming more restrictions on
the data of (1.4). We collect the main results of these works, and as a consequence we
obtain that the semitrivial solution (M, 0) = (respectively (0, v)) exists and is unique
if, and only if, A. > 0 (respectively fx > 0).

We then study the existence of dead cores (see [16]) of the solutions of (1.4). Given
a solution w of (1.4); if the set J20 := {JC e S2 : w(x) = 0} is nonempty, it is called a
dead core of w. We demonstrate a result which assures the existence of a dead core
for any nonnegative solution of (1.4) under suitable hypotheses (see Theorem 2.4). A
direct consequence of our result is that any nonnegative solution of (1.4) has a dead
core if the maximum of / is small. To our knowledge, the above results pertaining
to the existence of a dead core have been obtained when L = —A, see [3], [13], [16]
and [31], with their proofs being based on the radial properties of the Laplacian. In
this way our result generalises previous work.

In Section 3 we carry out an analysis of the existence of semicoexistence, co-
existence states and dead cores of the system (1.3). Using the results of Section 2
and monotonicity methods, we obtain results which can be summarised as follows.
Suppose A. e R.

• Assume A. < 0: if ix 6 (—oo, 0] only the trivial solution exists, if fx e (0, oo)
only the trivial and the semitrivial solutions (0, v) exist.

• Assume A. > 0: there exist positive values fxt(k), fx*(k), //.i(A.), /A2(A.) with
/ii(A.) < min{/i,(A,), /Lt*(A.)} and /x2(X) > max{/i,(X), fx*(k)} such that

- if ix 6 (—oo, 0] only the trivial and semitrivial solution (M, 0) exist;
- if ix e (0, /xi(A.)) there exists at least a semicoexistence state (u, v) and the

component v has a dead core;
- if fx e (iXi (A.), fx2(X-)) there exists at least a semicoexistence state;
- if (x € (fx2W, oo) there exists at least a semicoexistence state («, u) and the

component u has a dead core;
- if, moreover /A»(A.) < /x*(A.), then if fx e (//..(A.), /x*(A.)) there exists at least a
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coexistence state.

Analogous results can be obtained when we fix the parameter fi. It's worth mentioning
that the existence of fi\(k) > 0 was shown in [13] when all the coefficients were
positive constants. To our knowledge, the existence of/n2 (A.) > 0 is new. In Remark 4
we give a biological interpretation of this result.

In Sections 4 and 5 we study the uniqueness of coexistence states of (1.3). For
that we use the fixed point index. Observe that because m, n > 1 the linearisation
of (1.3) around the trivial or semitrivial solutions do not exist, so we cannot apply
the results in [10] (see also [24] and [27]) to compute their indices. So we will build
appropriate homotopies for that. To compute the index of a coexistence state we can
use a linearisation. In this case the linearisation of (1.3) around a coexistence state
leads us to a eigenvalue problem of the form

[SfU+MU=aU in ft,

( U = 0 on 3fi,

where 2£ = diag(L), L2) and M = (my), 1 < i,j < 2 with my > 0 for i ^ j and
rriij blowing up near 3 £2 in a controlled way. Following [15] and [27] we define a
specific order and establish the existence of the principal eigenvalue of (1.5) as well as
a characterisation of its positivity by means of the existence of a supersolution. Now,
we prove that, again with fixed A. > 0, there exists a unique coexistence state when
fx belongs to a subset of (/x*(A.), fj,*(k)). Furthermore, if m = n and a, d are strictly
positive functions we have uniqueness of the coexistence state if bM or cM is small.
The results about the uniqueness of the coexistence state of (1.3) are also, we believe,
new.

2. Preliminaries. The degenerate logistic equation

We consider the Banach space X := C,}(J2) ordered by its cone of nonnegative
functions P, whose interior is

int(P) := [u € X : u(x) > 0 for all x e Q and du/dn < 0 on 3S2},

where n denotes the outward unit normal on dQ. We say that u e X is nonnegative,
u > 0, if u € P, and u is positive, u > 0, if u e int(P).

Given q € L°°(Q) and L an operator of the form (1.2), we denote by O\(L + q) the
principal eigenvalue of L + q subject to homogeneous Dirichlet boundary conditions.
Moreover, if we denote by q> e int P the unique positive eigenfunction associated
with O\{L + q) normalised such that H^IL = 1. then it is well known that

dw
-2- < 0 on dSl,
dv
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for v any direction out of Q. Recall that as positive constants are supersolutions of L,
then

cr,(L) > 0. (2.1)

Finally, for/ e Y := C°(?2) we write

fM :=max/(x) and / L :

2.1. Existence of solutions In this section we study the semitrivial solutions of
(1.3). Observe that if the solutions of (1.3) are of the form («, 0) and (0, v), then they
satisfy equations of the following type:

\Lw=f(x)w"-g(x)w" in Q,

\w = 0 on an,

w h e r e L is a n o p e r a t o r o f t h e f o r m ( 1 . 2 ) , f,g€ C ' ( f i ) w i t h g > 0 , g ^ 0 , / can

c h a n g e s i g n a n d q a n d p sa t i s fy

0<q <l, p > q. (H)

Our first result gives us the existence of a nonnegative solution of (2.2) and lists some
useful properties. For a proof of this result see [14] for instance.

THEOREM 2.1. Assume (//). The following assertions are true.

(1) There exists a maximal nonnegative and nontrivial solution of (2.2) if, and only
if f/n > 0. We denote it by %,,,,,/,«]•
(2) The following estimates hold:

xeQ,

(0[L.q,p,f,g])M < </WeM)1/(1-9\

where e 6 C2(fi) is the unique solution of

\Le=l in^,

[e = 0 on dQ.

(3) Ifw_ € C1 (£2) is a nonnegative subsolution of (2.2), then w_ < 0[L,q,Pj,g]-
(4) Letfi € C\Q), i = 1, 2, be such thatf{ < f2, then 6lL,q,pJ,,g] < elL,q,pj2,g].
(5) If f t > 0, then any nonnegative solution of (2.2) is positive. Moreover, in this

case there exists a unique positive solution and it satisfies

e<p{x) < 0lL,q,pJ,g](x), x e^l,

where e is the unique positive root ofO\(L)ex~q + gMSp~q = fL.
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REMARK 1. If we consider//, as a real parameter, then it is easy to prove that as
fL -> oo, e(fL) = O(fl/il-q)) when p < 1 and e(fL) = 0{fl'^~q)) when p > 1.

2.2. Existence of dead cores In order to state and prove the main result, we need
some preliminary results.

LEMMA 2.2. Let R > 0 and y > 0. Consider the problem

I Lw = -Rwq - g{x)wp in Q,
, „ (2.5)

w = y on 3S2.
Then there exists a unique nonnegative solution of (2.5).

PROOF. For the existence we use the sub-supersolution method. Indeed, it is easy
to prove that (w_, W) — (0, y) is a sub-supersolution of (2.5). For the uniqueness we
can apply [1, Theorem 2].

The following technical result is fundamental in our study. Moreover, it generalises
[31, Lemma 7] and [3, Lemma 2.5], where a similar result was proved when L = —A
and g(x) = 0.

LEMMA 2.3. Wefixy > Oandfi > 2/(l-q). Let So be such that for all x,x0 e RN

such that 0 <\x -xo\ <S0,

\x - xof + P\x - xo\
fi-] L(\x - xo\)

N

- fi)\x -xo\»-2 J2 aij(x)Di(\x-x0\)Dj(\x-x0\) > 0. (2.6)

Then, for all 0 < S < dist(x0, 3 £2), the unique nonnegative solution, w, of (2.5) in
B(x0, 8) is such that w(x0) = 0 provided that

- ( 2 - 7 )

REMARK 2. Observe that since 0 > 2/(1 - q), then 0 g < 0 - 2 < 0 - l , and so
the existence of 50 satisfying (2.6) is guaranteed. Moreover, since f) > 2, (2.6) can be
considered in a classical sense.

PROOF. Consider the function

if x 6
<P f j£ ) * ^

| 4 > ( ) K'/(|-«># if x e B(x0, 8) \ B(x0, 80),
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with $ = <I>i if 8 < 80. By the choice of £, we have that <l>i 6 H2(B(x0, So)).
Moreover, d<t>\/dnL > 0, on dB(x0, &o), where nL stands for the conormal associated
with L, that is, (nL)t := J2^=\ aunj- Indeed, for x e dB(x0, 80) we have

^ ' - x ^ - xJ
0)) > 0.

Moreover,

g(x)<t>p

- xof-1 L(\x - xo\)
N

- xo\
fi-2 J2 aijD^x - xo\)Dj(\x - xo\))

(|x -xof +P\x -JCO|^-'Z.(|JC -JCol)
N

P)\* -x0f~
2 J^ayD^x - xo\)Dj(\x -xo\)) > 0,

'•.;'=»

by (2.6). In B(xQ, 8) \ B(x0, 80), we have that L(<J>2) + Rt>\ + g(x)<Pp
2 > 0. Finally,

in 35(^o. 8), <I> is bigger than y provided that (2.7) holds.
Hence we can apply [4, Lemma I.I] and conclude that <t> is a supersolution of (2.5)

in B(x0, 8). This completes the proof.

For R > 0, we define the set

N(R) :={x eQ : / " (* )> R} = {x e Q : f (x) < -/?},

where f±(x) := max{±/(;t), 0}. Assume tha t /* ^ 0. The main result of this
section is the following theorem.

THEOREM 2.4. Assume that there exists R > 0 such that

(1) 8R := {fMeM/RyiW-*» < 8Q,
(2) M(R) := {x € N(R) : dist(x, dN(R) \ dQ) > 8R) £ 0.

Then there exists a dead core for any nonnegative solution w of (2.2). Moreover, we
have M(R) c Qo = {x € Q : w(x) = 0}.

PROOF. Let x0 e M(R), then

BS{x0, 8R) : = { x e Q:\x- x o \ < 8K} c N ( R ) . (2.8)
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We call z the unique nonnegative solution of (2.5) in £8{x0, 8R) with y=(
Then by (2.8) we have that

L9lL,q,p,f,gi < -

which implies that

L(z - e[L.q.Pj,g]) > R(P\L.i.pJ.g\ ~ z<r> + 8bW\L.<,,pJ.i\ - z " ) i n

and by (2.3) and the choice of y we get z > 9\L,q,Pj,t\ on dBS(x0, 8R). Hence, if we
denote by £2, := [x e @(x0, SR) : z(x) < 6{Ltq,pJ,g](x)},

L{z - 0lL,q,pJ,g]) > 0 in 8, ,

z - ^[L,9,P,/.«I > o on an, n

z - %.,./>,/.«i = o on an, n

The maximum principle implies that z > 9[L,q,Pj,g] in «^(J:O. /̂?)- Finally, we can
apply Lemma 2.3 because 8R satisfies (2.7). This finishes the proof.

As consequence of the above result, we have the following corollary.

COROLLARY 2.5. Any nonnegative solution of (2.2) has a dead core provided
that f M is sufficiently small.

PROOF. It is sufficient to repeat the proof of [13, Remark 2.13] and to take account
of the fact that SK —> 0 as fM —>• 0.

3. Existence of nonnegative solutions

Hereafter we write 9[LlJig] := 9lLuUm,2/mj,g] and 9[L2jig] := %2,i/n.2/Bj,«]-
following result gives us a necessary and sufficient condition to obtain semicoexistence
states.

THEOREM 3.1. Problem (1.3) has a semicoexistence state if, and only ifk>0 and
/x > 0.

PROOF. By Theorem 2.1 (3) it follows that

u<9lLliKa) and v < 9{L^^. (3.1)

So, if A. < 0, again by Theorem 2.1 (1) we obtain that u == 0. Analogously, if
ix < 0, v = 0. Assume now that A. > 0 and \JL > 0. In this case, we have that
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A(x) :=k- b{x)Gl[n
ilJLd](x) and B(x) := n - c(x)0^ka](x) satisfy AM = X > 0

and BM = fi > 0. We consider the pair

(M, M) = (6>f£.1>j4 a J , 0[L,A>O|) a n d (w., TO = (0[z.2,B.rfb %, , M . r f | ) -

By the definitions of A and B and Theorem 2.1 it follows that u<H,v_<v and that
j£ and u are nonnegative and nontrivial functions. Finally, it is not hard to prove that
the pair (M, 77) — (y_, v) is a sub-supersolution of (1.3). This completes the proof.

The following result provides us with conditions which assure the existence of
coexistence states as well as their bounds.

THEOREM 3.2. IfX and \x satisfy

k > (*(*)<V-fl>" and * > (c(Jt)e[
1/I",fl))«, (3-2)

then (1.3) possesses a coexistence state. Moreover, for any coexistence state (u, v)
of (1.3) we have the following estimates: ifX > {b{x)dl["lld^)Mthen

e[LuAM <u< %„,,„] < r-'<"-1)(ei)M
/(m~')ei- (3.3)

m <v< 6{L2^d] < fM
nnn-n(e2)^"-1)e2, (3.4)

where <pt and eit i = 1, 2, are the principal positive eigenfunctions of X, and solutions
of (2.4) with Lt respectively, and £i and Si are the positive solutions of

\ x l aMs\'m = X- b M ^ ^ ( e ^ " ^ ,

dMe\/n = n- Xl'^\^(m-l)

PROOF. Consider the same sub-supersolution as that in the proof of Theorem 3.1.
Observe that if (3.2) is satisfied, then AL > 0 and BL > 0. Hence Theorem 2.1 (5)
completes the existence of a coexistence state.

The estimates (3.1) and (2.3) yield the upper bounds of (3.3) and (3.4). On the
other hand, thanks to (3.1), u is a supersolution of (2.2) with L — L,, / = A and
g = a. So, since X > (b(x)9^["lid])M then AL > 0 and by Theorem 2.1 (5) the lower
bounds of (3.3) follow. Estimates (3.4) can be proved similarly.

REMARK 3. (1) Using (3.3) and (3.4) we can obtain a sufficient condition for the
existence of coexistence states involving the coefficients of the problem. Indeed, if X
and fi satisfy

X > M ^ - V " " - 0 and n > cM(e0T-^lim-'\ (3-6)

then A. and //. satisfy (3.2), so that (1.3) has a coexistence state.
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Casel *•

1 = »(<!) /i

Case 2

Case 4 Case 5

FIGURE 1. /? stands for the semicoexistence region in the following cases: Case 1: 1 < m, n < 2;
Case 2: 1 < m < 2 = n\ Case 3 : l < m < 2 < / i , n - 1 < l/(m - 1); Case 4: 1 < m < 2 < n,
n - 1 = l/(m - 1), cM^-'(ei)j71(e2)M""1 < ^ C a s e 5 : 1 < m < 2 < n, n - 1 > l/(m - 1).

(2) Observe that when all coefficients are positive constants (see [28] and [13]) the
conditions which assure the existence of coexistence states are independent of m and
n. This is due to the fact that positive constants are supersolutions of (1.3).

In Figure 1 we have shown the different forms of the region defined in the (X, //,)-
plane by (3.6) when m and n vary. We have denoted by / (A.) =

3.1. Existence of dead cores We will use the results of Section 2 to show the
existence of dead cores for (1.3). The first result provides us with conditions which
assure the non-existence of dead cores, and it is a direct consequence of (3.3) and
(3.4).

PROPOSITION 3.3. Assume that k and \i satisfy (3.2). Then any nonnegative solution
of (1.3) does not have a dead core.

To state the main result of this section we need some notation. We fix X > 0.
It is not hard to prove that the map n i-> Om.^.d] is strictly increasing, and so
also is ft h-> (b(x)0l["tll^M. Hence there exists a unique value n*(X) such that
X = (b(x)9^.(k)J])M. For such X fixed, we write /t,(X) = (c(x)6^Ka])M.

Analogously, for fixed /x > 0, there exists a unique X*((j.) > 0 such that [i =

^ a n d we define {t
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THEOREM 3.4. (1) Assume A. > 0. Then there exist 0 < fJ-i(X) < pi2(A)
with ixi(k) < min{/i»(A.), n*(X)} and max{/i,(A.), IA*(X)} < /*2(A.) such that if
0 < /j, < /ii(A.) or n > £i2(X) any nonnegative solution of (1.3) has a dead core.
(2) Assume \x > 0. Then there exist 0 < Xi(fx) < X2(f^) with X{(fj,) < min{A,(/i.),

A.*(/̂ )} ana7 max{A.,(/x), A*(^,)} < X2(fi) such that i/O < X < A.i(/tt) or X > A.2(^)
any nonnegative solution of (1.3) /ias a dead core.

PROOF. We prove (1). The second part follows analogously. Observe that if
fj, < fi*(X) by (3.3) we get

u > 0lLlMx)_a]. (3.7)

Now we define F(x, /A) := 11 — a(x, fi) := /x — c(x)6l[™A{x)ay Using (3.7) it is not
hard to prove that v is a subsolution of (2.2) with L = L2, f (x) = F(X,IJL) and
g(x) = d(x), and so by Theorem 2.1 (3), it follows that

Now we are going to use Theorem 2.4 to prove that 0yLl,F{x,ii)j] has a dead core, so
that by (3.8) the result follows.

Observe that in this case (F(x, fi))M = fi and so SR = (fi,(e2)M/R)n/mn~l)). On
the other hand, since (a(x, 0))M > 0 and (a(x, /X))M is decreasing in /x, there exists
a unique HoW > 0 such that /x0 = (a(x, MO))M- Observe that, by the definition of
JLA»(A.), we have that /u,0(A.) < ixt(X). Taking \JL < /LJ.0/2, we have 0 < pi < /xo/2 <
fio = (a(x, MO))M < iflix, ix))M. Hence there exists Ro > 0 such that the following
set is nonempty:

{x e 12 : Mo(A.)/2 - fl(*. MoW/2) < - « 0 } ^ 0.

We define N(/z) := ^(/?o) = [x e SI : F(x, (M) <-Ro}. Again by Theorem 2.1 we
get that if Hi < fM2 then F(x, ^ , ) < F(x, /n2). Hence if /xi <\JL2< fM>/2 then

0 £ N(iio/2) C AT0t2) C tf(/*i).

Let J:0 € Q be the point where F(x, fio/2) attains its negative minimum. For that
x0 € SI, there exists rQ > 0 such that B(x0, r0) C N(fM0/2).

Finally, since S^ -> 0 as /x ->• 0 there exists /i'(X) > 0 such that for yu < ix'(X),
SR,, < min{r0, So). Define fM\(X) := min{/x»(A.), n*(X), no/2(X), fi'(X)} and therefore
for/i. < /xi(A.) we get

dist(jc0, dN(fi) \ dSi) > dist(Ar0, dN(fio/2) \ 3fi) > dist(x0, dB(x0, r0))

Therefore M( /A) 5̂  0 and Theorem 2.4 completes the first part of (1).
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For the second part, take /x > max{fxt(k), (x*(k)}, so /x > (.c(x)6^Xa])M and
by (3.4) we get that v > 9[LliBMid). Now we define

G(x, ^JL) ; = k — b{x, fi) '.= k — b(x)0u BU)d]~

With a similar reasoning to that used in (3.8) we get that u < &iL,,G(x,n).a]- 1° t m s case>
we take R = \ir with r > 0 to be chosen later. So

N(R) = N(p) := {x € Q : k < b(x, fi) - /xr}

and

(G(x, fj.))M = X, SR = (k(el)M/ix

Using (3.4), we have that b(x, /J.) > b{x)e\ln{fjL)(p\ln, where e2 is defined in (3.5).
Let 5 > 0 be sufficiently small such that

Bt := {x e B+ : distfcc, dB+) > 6} ^ 0,

where B + := (A: e fi : fc(x) > 0}. Define the set

7X/*) : = {xeB+:X< e1
2'"(n)b(x)<p1

2"'{x) - nr}.

Clearly, T(ji)
On the other hand, by Remark 1, ex

2"{ji) = O(ixl/("-l)) if n > 2 and ^ " ( M ) =
O(/x) if n < 2 when ^ is large. Take r < l/(n - l).if n > 2 and r < 1 if n < 2. So
there exists £i°(^-) > 0 s u c n that for /x > At°(A.),

0 and r0t°(X)) C T(/i). (3.9)

Moreover, there exist XQ e B^+ and r0 > 0 such that

B{x0, rQ) C TQioiX.)). (3.10)

Furthermore, since 8K —> 0 as (/, —>• oo, there exists /u." (A.) such that for \x >
ix"(k) we get SR < min{r0, 5o}. Hence, using (3.9) and (3.10), for \JL > ^W '•=
max{/x,(A.), fu,*(k), /A°(X), fi"(k)}, we obtain

dist(*0, 3yV(/Li) \ 3£2) > dist(^0, a ^ ^ ) ) > dist(x0,

= r0 > SR.

Theorem 2.4 completes the proof.

REMARK 4. (1) By the proof of Theorem 3.4, we can see that if \x < yni (A.) (or
k > A2(AO) for any semicoexistence state (u, v) then v has a dead core. Similarly, if
/A > /x2(A) (or A. < ki(fi)) then M has a dead core.

https://doi.org/10.1017/S1446181100013845 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013845


[13] Degenerate competition problem 285

(2) We can give a biological interpretation of Theorem 3.4. If we fix the growth
rates of u and A, then the other species does not live in all its habitat if its growth rate
is small. But, if the growth rate of v is large, then u cannot survive in all of Q.
On the other hand, when m = n = 1 it was shown in [21] (see also [27]) that if the
interaction rate (for example) b is large, then v drives u to extinction. This is in strong
contrast with the case when m, n > 1, because by Theorem 3.1 neither species drives
the other to extinction when b or c is large.

4. Maximum principle for a singular system

We define in X2 the following order: given (uj, V\), (u2, v2) € X2,

(«i. V\) < («2> u2) if and only if u\ < u2 and i>i > v2.

Analogously, we write (uu v\) -< (u2, v2) if u\ < u2 and v\ > v2 or u\ < u2 and
Ul > V2.

Let M(x) = (my (x)) be a 2 x 2 matrix whose elements belong to the Frechet space
Cl(Q) and such that there exist K > 0 and a 6 (0, 2] satisfying:

(HM) my > 0, mv ^kO,

K(x) |d is t (ac , dtif-" < K i,j = 1,2. (4.1)

The object of this section is to analyse the following singular eigenvalue problem:

\ in Q,
{ (4-2)
[ u = 0 on an,

where ^f = diag(Li, L2), £/ = (M, U)' , and L,-, J = 1, 2, are operators as in (1.2).
The next result characterises the existence of a positive eigenvalue of (4.2) by

means of the existence of a strict positive supersolution in the following sense. The
proof of the result follows from [27, Theorem 6.3] and [15, Section 2].

DEFINITION 4.1. We say that 4> e (C2(f2) n CM(£T))2, S e (0,1), <I> >• 0 is a
supersolution of .£? + M if (J&? + A / )* > 0 in £2 and * v 0 on 3fi. If in addition,
(JS? + M)<t> >- 0 in fi or <J> >- 0 on dQ., then it is said that <t> is a strict supersolution.

THEOREM 4.2. Under the assumption (HM), the following conditions are equiva-
lent:

(1) jSf + M admits a positive strict supersolution;
(2) The operator \S£ + M]~l : X2 i-> X2 is well defined, compact and strongly

positive;
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(3) The problem

\^U + M(x)U= F mft,

[U = 0 on 3ft,

where F e Y2, satisfies the strong maximum principle, that is, if F > 0 and F •£ 0,
then U>0;
(4) The operator [_Sf + M] : X2 i-> Y2 possesses a strictly positive eigenvalue,

denoted by O\{& + M). This eigenvalue is simple and it is the only eigenvalue
of (4.2) possessing a positive eigenfunction <t>x > 0.

In the present work, we need to apply this result assuming less regularity for the
strict supersolution.

PROPOSITION 4.3. Assume that M satisfies (HM). Then ax (_Sf + M) > 0 if and only
if there exists 4> G (C2(ft) PI C*(ft))2 such that d> > 0 in ft and ( if + M)<t> ^ 0 in ft.

REMARK 5. Since <t> = (<J>i, <t>2) £ X2, when we write $ ^ 0 we mean that
<i>i(x) > 0 and $2(;c) < 0 for all x e ft.

The following boundary point result will be used in the proof.

LEMMA 4.4. Let u e C2(ft) D C (ft) be such that u>QinQ.,u^0 and

{L + q)u>0 in Q, u > 0 on 3ft,

where q e C'(ft) satisfies (4.1). 77ie« «(x) > 0 for all x 6 ft and for all x0 e 3ft
5wc/i rta? u(x0) = 0, (du/dn)(x0) < 0.

PROOF. It is an easy consequence of [5, Lemma 3.6] with p(r) = ra~2.

PROOF OF PROPOSITION 4.3. Itisclearthatifai(JSf+M) > 0, we can take $ = 4>i,
the eigenfunction associated with O\ (Ĵ f + M).

Now assume that there exists <t> e (C2(ft) D C^(ft))2 such that O > 0 in ft and
(Jzf + M)<t> := G >- 0 in ft. Let F > 0 and F # 0 and U be the solution of (4.3).
We have to prove that U >- 0 and then, by Theorem 4.2, the proof is concluded.

For each e > 0 and K > 0, we define

W := £/ + (£, - £ ) ' + £/:$ € (C2(ft) n C°(ft))2.

Since <t> e (Cj(ft))2, for any e > 0, there exists y(e) > 0 such that W x 0 in
ft£ := {* e ft : dist(jc, 3ft) < y(s)}. Moreover

M)W>: s((mn - mn, mlx - rm2)' + K G) > 0 in ft\ft£,
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for K sufficiently large. Now in £2\£2£ the coefficients my are bounded. So, since <t>
is a strict supersolution in £2\fi£, we can apply [27, Theorem 6.3] to get that W > 0
in Q\Q£. Thus W > 0 in Q for all e > 0, and we obtain that U > 0 in £2. Let
(/ = («i, u2)'. Since (/ ^ (0,0) we can assume that u\ > 0 and «i ^ 0. Then,
denoting F = (f\,f2)' and taking into account that m12 > 0, we obtain

L\U\ -\- m\\U\ = / i — /M12M2 5: 0 in £1, u\ = 0 on 9£2,

and so applying Lemma 4.4, we get «i > 0. For the second equation,

^2(—"2) + m-ni—ui) = —fi + m2\Ui > 0 in J2, u2 = 0 on 3fi

and so — u2 > 0. So U >- 0. This completes the proof.

Again, the next result is a consequence of [27, Theorem 6.5] and [15, Theorem 4].

THEOREM 4.5. Assume (HM) holds. There exists one real eigenvalue of (4.2),
denoted Oi(J£ + M), associated with a positive eigenfunction <& i >- 0. The eigenvalue
is simple and there is no other eigenvalue associated with a positive eigenfunction.

The following result will be used to compare principal eigenvalues of different
matrices.

LEMMA 4.6. Let A (x) = (ay (x)) and B(x) = (by (x)) be two matrices with ay, btj
satisfying (HM), fe,, > a,, and ay > bjifor i ^ j with some inequality strict. Then

PROOF. Let O4 >- 0 be the eigenfunction associated with _S? + A. Then it is easy
to show that (S£ + B — ax (_Sf + A)I)<PA >- 0, and so <J>A is a strict supersolution of

. Hence, by Theorem 4.2, we deduce that

B -

whence the conclusion follows.

5. Uniqueness result

Throughout this section we assume that A. and (JL satisfy (3.2), and so the validity
of the strong maximum principle is guaranteed. Indeed, by (3.4) we get

ul/m(k - b(xWn) - a(x)u2/m > ul/m(X - b(x)9l[^d]) - a(x)u2/m,
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and so, by (3.2), there exists a positive constant M such that

«'/m(X - b(x)v1/n) - a(x)u2/m + Mu>0, (5.1)

whence it follows that if (M, V) is a nonnegative solution of (1.3) with u ^ 0, then
u(x) > 0 for all x e £2. Similarly we can reason with the second equation in (1.3).

In this section we obtain a uniqueness result for a coexistence state of (1.3). In
order to get the result we use the fixed point index in cones.

For the fixed M > 0 obtained in (5.1), consider the operator Jf : X2 h+ X2

defined by

•= ((Ll + M ) V ( * a(*)" b{x)v) + Mu)\
U' V) ' \(L2 + M)-l(vl/n(n - dixW" - c{xWm) + Mv)) '

where (L, + M)~', i = 1,2, stands for the inverse on the operator L, + M in £2 under
homogeneous Dirichlet boundary conditions. Observe that by (2.1), cr^L, + M) > 0
and so (L, + M)"1 is well defined and is a compact operator. Thanks to the choice
of M, see (5.1), J ^ is a positive operator whose fixed points are componentwise
nonnegative solutions of (1.3).

On the other hand, by (3.3) and (3.4), there exist Rt > 0, i = 1, 2, such that for
every («, u) coexistence states of (1.3),

IMIoo < Rx := (A.(«,)«)"/(1-1) and IMIoo < Ri := &(*)„)«<*-».

So the fixed point index of Jf over SB with respect to the cone P x P i s well defined,
where SS := {(«, v) 6 P2 : \\u\\go < Ri + l, IMIoo < Ri + !}• We are now going to
compute this index in some cases.

PROPOSITION 5.1. Assume that k and n satisfy (3.2). The following assertions are
true:

(1) iPx

(2) i/,xP(jr,(0,0))=0;
(3) / , x

PROOF. (1) First, we define #i : X »->• X by

#,(u) := (L, + M)-\uxlm(k - a(x)uUm) + Mu).

By (2.3), taking Bu := [u e P : Hulloo < R\ + 1} the fixed point index of % over Bu

is well defined. Applying [2, Lemma 12.1] it can be proved that

i>(Sfi, *.) = !. (5.2)
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Indeed, if there exist t > 1 and u e P such that ||M||OO = RI + I and %(u) = tu, then

and so Ml*, < (\ / t)m^m-x\ex)
mJ(m~X) < / ? , < / ? , + 1. Analogously,

ip&i, Bv) = 1, (5.3)

with &2(v) := (L2 + M)-1(u1/"(Ai - rf(Jt)wI/B) + Mv) and flB := {u 6 P : \\v\U <
Ri + l } .

Consider the operator ^ : [0, 1 ] X X 2 H X2 defined by

V + Mu)

Observe that by (3.3) and (3.4) any fixed point of 3>f\ belongs to SB. So, it follows by
homotopy invariance, (5.2) and (5.3) that

iPxP(jxr, SB) = i>x,( jef( i , •), SB) = iPxP(j%(o, •), SB)

= ip&u Bu) • ipM, Bv) = 1.

We now prove (2). Let ^i £ Y, i = l,2,be such that V̂  > 0 in fi. We define

Wit v\ •=

We claim that there exists S > 0 such that

(II, v) ^ Jfiit, u, v), Vr e [0, 1], V(«, v) e J£, (5.4)

where J/& := {(«, v) e P2 : ||M||TO < 5, Hulloo < 6} \ {(0,0)}. Assume there exist
sequences (ur, vr) of functions and tr e [0, 1] such that (ur, vr) —*• (0, 0) as r —*• oo
and (wr, vr) = ^ ( r , , «r, vr). Since A. > 0 and ||ur||oo -> 0, there exists r0 € N such
that (A. — b(x)v\ln)L > 0 for r > r0. So, the strong maximum principle is satisfied
in the first equation, and so ur > 0. Let K > 0 be such that K > ai(L\). Since
ll«rlloo -> 0, there exists n e N such that for r > r\ we have

LlMr = uJ/m(X - fe(^)v;/n) - a(x)u2/m + tr^ > A-«r,

and hence O\ (L i — K) > 0, a contradiction.
Thus by (5.4) the homotopy is admissible and we get

, (o, 0)) = ipMJf. -A) = ip*
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this last equality following by (5.4).
It remains to prove (3). Let rfr e Y be such that V > 0 in Q. We define another

operator

)u1/'I) + M«) \
») + Mv + til,)) •(L2 + M)

We claim that there exists 5 > 0 such that

(«, v) £ JVUt, u, v), W e [0, 1], V(II, v) e Jtiy (5.5)

where Jl, := {(«, u) € P2 : Hu-^.i.-llloo < 5, ||u||oo < «}\{(%,.x.«].0)). Assume
there exist sequences (ur, vr) —*• (fyt,,*,,,], 0) as r —> oo and rf 6 [0, 1] such that

(ur, iv) = ^ ( r r , «r, vr).

Since ur < 0luxM and /A > (c(x)0f[™x a])M, it follows that

y }t"Ka] > 0. (5.6)

Let K > 0 be such that K > CTI(L2). Then by (5.6) there exists r0 e N such that for
r > r0 we have

m) - rf(*)wr
2/" + trf > Kvr, in £2,

and hence <7i(L2 — K) > 0, a contradiction.
Thus by (5.5) the homotopy is admissible and we get

uKa], 0)) = iF

= 0.

Analogously, it can be treated as the solution (0,9[Lllltd{).

Let(«0. i»o) be a coexistence state of (1.3). We consider the matrix M(BoVo) := (my),
i,j = 1, 2, which is related to the linearisation of (1.3) about (u0, v0), where

mn = - • - H J / " ~ I ( * - 2a(x)ul
0

/m - b(x)vl/n), mn = -b(pc)ul/mvl
0

/n-\
? " (5.7)

m22 = —vl'n-\n - 2d(x)vl
0

/n - c(xW0
/m), m2I = -c(x)vl

0
/nul

0
/m^.

n m

Observe that since (M0, V0) is a coexistence state, by (3.3) and (3.4) there exists ko > 0
such that ko dist(x, 3fi) < «o and ko dist(x, 3£2) < VQ, then MiU(SiVo) satisfies (HM), so
that O\ (JS? + M(uo.vo)) makes sense.

The general uniqueness result reads as follows.
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THEOREM 5.2. Assume that k and p. satisfy (3.2) and ox (Jj? + M(uoVo)) > Ofor any
(u0, VQ) coexistence state of (1.3). Then (1.3) possesses a unique coexistence state.

PROOF. Recall that by Proposition 3.3, if A. and \i satisfy (3.2) then any nonnegative
solution of (1.3) is a coexistence state. We claim that if («0. «o) is a coexistence state
of (1.3), then

i>xi.(jr,(«o.«b)) = l. (5-8)

Assume that we have proved (5.8), then since W is a compact operator, it possesses
a finite number of coexistence states, say («,-, u,), / = 1, . . . , r. Then

iPxP(jxr, S3) = iPxP(jxr, (o, o)) + iPxP(jr. (elLuX,ah o))
r

, (0, 9[Ll^d])) + J2 ipxriJf* («/.

and so, by Proposition 5.1 and (5.8), 1 = 0 + 0 + 0 + r, whence the conclusion now
easily follows.

It remains to prove (5.8). Let h € Cl(Q) be such that h verifies that, for some
a € (0, 2] and K > 0, \h(x)\ dist(x, 3fi)2-a < K and

h > max{0, m n , m22}, (5.9)

where mn and m22 are defined in (5.7). We define the operator

+ hu)
K ' ; " V(L2 + A)"1 (v1/n(/i - d(x)vl/n - c(x)u1/m) + Au)y '

Observe that (L, + h)~l exists because ft > 0 and so <Ti(L,- + /I) > 0.
By the Leray-Schauder formula, ipxp(&, ("o. ^o)) = (—1)?. where | is the sum

of the multiplicities of the eigenvalues of DiUiV)^(u0, v0) larger than one, being
D(u,v)^(.u0, v0), the linearisation of & about (M0, V0). It is clear that

o) = diag((L, + h)~\ (L2 + hy^-M^,^ + diag(/i, h)),

where Af(((OilB) is defined by (5.7). It is not hard to prove that if r > 1 is an eigenvalue
of DiUiV)S"(uQ, vQ), then

MiUo,VB) + B) = 0, (5.10)

where
((mn-hKl/r-l) mI2(l/r-l)
V mai(l/r-l)
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Since r > 1, by (5.9) and Lemma 4.6 we get

<r,(j£f + M(Uo,Vo) + B)>al(Sf + M(uo,Uo)) > 0,

contradicting (5.10).

The following result provides us with a sufficient condition for O\ (Jif+M(UOiUo)) > 0
to hold.

PROPOSITION 5.3. Assume that m = n, a(x), d(x) > 0 for all x e Q, X. and /x
satisfy (3.2) and that for any (u0, v0) coexistence state of (1.3),

() (pf
M\d/M\v0JM \UOJM

Then (1.3) possesses a unique coexistence state.
PROOF. Let * := (aul

0
/m, -fal"") € (C2(fi) D Cj(fi))2, with a,/3 > 0 to be

chosen. We will show that <t> is a supersolution in the sense of Definition 4.1 of
j£? + M(UoWo) if (5.11) holds. Proposition 4.3 and Theorem 5.2 will complete the
proof.

First, observe that <I> >- 0. In order to show that O is a supersolution of S£ + M{Ua<Vo)

we have to prove that (for the first equation)

LKanJ'") + mu(x)au0
/m + m12(x)(-)3v^/m) > 0, (5.12)

where mu and mn are defined in (5.7). Taking into account the fact that

7""1 ( l ) J
to prove (5.12) it suffices that

""1 - - for all* 6 S2.

Analogously, for the second equation it is sufficient that

d{x)v2
0'

m'x > c(x)u2
0
/m~l ^ , for all x e Cl.

P

Now, by (5.11) it is easy to show that there exist a and ft satisfying the above
inequalities.

https://doi.org/10.1017/S1446181100013845 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013845


[21] Degenerate competition problem 293

The following result provides us with another sufficient condition to obtain a
uniqueness result.

PROPOSITION 5.4. Assume that k and ix satisfy (3.2) and that for any coexistence
state (u0, VQ) of (1.3) the following inequalities hold for all x 6 Q:

k ( l - - ) + a(x)u}/m(x) ( - - l ) > b(x) (l + - - - ) vl
0
/n{x),

(
(5.13)

1 — — I + d(x)Vn"(x) ( — — 1 ) > c(x) I 1 H

Then (1.3) possesses a unique coexistence state.

PROOF. Taking $ := (M0, — fo)> it suffices to prove that <t> >- 0 is a supersolution
of J5f + M(uo,Uo) provided that (5.13) holds and we again apply Proposition 4.3 and
Theorem 5.2. For the second equation, <t> is a supersolution if

L2(-v0) + m2i(.x)(uo) + m22(x)(-v0) < 0,

where m2i and m22 are defined in (5.7). For observe that

m22(x)(-v0)

0 + = " :

provided that (5.13) holds. Similarly we can reason with the first equation.

We will now use the upper estimates of (3.3) and (3.4) giving sufficient conditions
for the uniqueness of a coexistence state in terms of several coefficients involved in
the model setting.

COROLLARY 5.5. Assume that m = /i, a(x), d(x) > Ofor x eH, k and [x satisfy
(3.2) and

(2-m)/m / \ (2-m)/m ,(2-m)/m / x (2
*.) (e-l\
<PZ/M \<PI/M

(5.14)

where S\ and e2 are defined in (3.5). Then (1.3) possesses a unique coexistence state.

PROOF. By (3.3) and (3.4) we have that
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and

and so (5.11) is satisfied if (5.14) holds. It suffices to apply Proposition 5.3.

COROLLARY 5.6. Assume that some of the following sets of inequalities, (1) to (4),
hold:

(1) If I <m,n<2,

) C (
n m) \ m

- - -
m n

(2) Ifl <n<2andm> 2,

bM

\ n m

m n

(3) 7/1 <m<2andn> 2,

0+i -CM 0
n mj \ m

(4) Ifm > 2 a/u/ n > 2,

) M ( 2 ) r (
m) \ m

- - V
m)

77ie/i (1.3) possesses a unique coexistence state.

PROOF. Reasoning as in the proof of Corollary 5.5, it is sufficient to apply (3.3),
(3.4) and Proposition 5.4.

REMARK 6. (1) Observe that when m = 1, (5.11) is the condition obtained in
[27, Theorem 4.2] and [21, Theorem 4.8]. Moreover, when m = n, and a and d are
positive, we obtain uniqueness provided that bM or cM is small.
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(2) The (A., /z)-regions defined in Corollary 5.6 are subsets of the coexistence region
obtained in Theorem 3.2. Similar conditions to those imposed in Figure 1 assure the
existence of these subregions.

6. Conclusions

We have studied the set of nonnegative solutions of a spatially heterogeneous Lotka-
Volterra competition model with degenerate diffusion. Basically, we have found three
differences with respect to the non-degenerate (linear) case:

(1) In the degenerate case all the nonnegative solutions are bounded, unlike the linear
case in which a priori bounds are lost for some values of the data of the problem.
(2) In the degenerate case a new kind of nonnegative solution appears: nonnegative

and nontrivial solutions that vanish in a region of the habitat of the species. We obtain
sufficient conditions in terms of some parameters involved in the setting of the model
ensuring the existence or non-existence of such solutions.
(3) Unlike the non-degenerate case, in our model when the competition between the

species is "strong" neither species drives the other to extinction.

Finally, we have obtained the uniqueness of the positive solution of the problem under
some conditions on the data of the problem.
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