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Introduction. In the nineteenth century, Hurwitz [8] and Wiman [14] obtained
bounds for the order of the automorphism group and the order of each automorphism of
an orientable and unbordered compact Klein surface (i.e., a compact Riemann surface) of
topological genus g s 2 . The corresponding results of bordered surfaces are due to May,
[11], [12]. These may be considered as particular cases of the general problem of finding
the minimum topological genus of a surface for which a given finite group G is a group of
automorphisms. This problem was solved for cyclic and abelian G by Harvey [7] and
Maclachlan [10], respectively, in the case of Riemann surfaces and by Bujalance [2], Hall
[6] and Gromadzki [5] in the case of non-orientable and unbordered Klein surfaces. In
dealing with bordered Klein surfaces, the algebraic genus—i.e., the topological genus of
the canonical double covering, (see Alling-Greenleaf [1])—was minimized by Bujalance-
Etayo-Gamboa-Martens [3] in the case where G is cyclic and by McCullough [13] in the
abelian case.

A more involved question is to minimize the topological genus when the number of
connected components of the boundary is fixed. Our interest in this problem comes from
the field of real algebraic geometry. In fact, via the well known equivalence between the
categories of compact bordered Klein surfaces and formally real algebraic function fields
in one variable over the field R of real numbers, the problem we are interested in is the
following: given a finite group G and a positive integer k, to compute the minimum genus
of the projective, smooth, irreducible real algebraic curves with k connected components
admitting G as a group of birational automorphisms. In this paper we solve the problem
when G is a cyclic group of prime-power order (the case of prime order was studied in
[4]). Note that for complex curves, k = l, and this explains the differences—see the
example at the end of the paper—of the behaviour of minimum genus between complex
and real curves, when the number of components of the last one is fixed.

The results split into a number of cases depending on whether the surface is
orientable or not and whether the automorphism preserves the orientation or not. To
simplify the description, we use the notation in [4] which we now briefly expound.

Let K be the class of compact and bordered Klein surfaces. Given S s K, we denote
by g(S) its topological genus, k(S) the number of connected components of its boundary
and define a(S) to be 2 if 5 orientable and 1 if 5 is non orientable. Then, the algebraic
genus p(S) of S is given by p(S) = a(S)g(S) + k(S) - 1 and so, minimizing g, for fixed k,
is equivalent to minimizing p. More precisely, let us fix the integers N>2, k s 1. We
denote by KX(N, k)—resp. K+(N, k)—the collection of those orientable surfaces 5 in K
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with p(S)^2, k(S) = k, which admit an orientation-preserving (resp. orientation-
reversing) automorphism of order N. We also denote by K-(N, k) the family of
non-orientable surfaces S in K with p(S) > 2, k(S) = k, which admit an automorphism of
order N. Define the numbers

PX(N,k) = min{p(S):SsKX(N,k)} p~+ = min{p(S):S e Kl{N,k)}

P-(N, k) = min{/?(5):S s K-(N, k)}.

These numbers were computed in [4; Cor 3.2.17] for prime N, as a function of N and
k. In this article we calculate them in the case N = pe is a power of a prime number p. Of
course, if gX(N,k), g+(N,k) and g_(7V,/c) have the same meaning for the topological
genus, one obtains

g+
+(N, k) = \[p+

+(N, k) + 1 - * ] ; g+(N, k) = ±[p-+(N, k) + l-k]

and g-(N, k) = p_(N, k) + 1 — k, which solves the problem stated above.
The proofs throughout the paper are quite technical but we can summarize the

general strategy as follows: let / be an automorphism of finite order Won a surface S
whose boundary has k connected components. Let g' and k' be, respectively, the genus
and number of boundary components of the quotient 5' = S/(f). The canonical projection
S—»S' ramifies over inner points with ramification indices mu... ,mr and the Riemann
Hurwitz formula provides us with a relation:

p(S) = P(g',k',mu...,mr).

We get also another relation which expresses essentially how the boundary
components of S are mapped to the ones of 5". This is, roughly speaking, the content of
Theorems 3.1.5, 3.1.6, 3.1.8, 3.1.9 and 3.2.3 in [4] which give us the precise function P
above and the exact relations satisfied by N, k, g', k', m, , . . . ,mr—see e.g. conditions
(2.1)-(2.4) in Section 2. The variables mu... ,mr are divisors of N and this is why the
case N -pe for prime p is more accessible.

In this way the problem is reduced to one of a combinatorial or arithmetic nature: to
get the minimum value of the function p(S) = P(g',k',mu... ,mr) where the variables
run over subsets of non-negative integers and satisfy certain arithmetic relations. To deal
with this question we devote the first section of the paper to some arithmetic lemmas, and
the next ones to minimizing the different functions P occurring according to the prime p
being 2 or not or the orientability character of the input data. Of course, when we
calculate the minimum value of P we get also the topological data of the covering S-*S'
for which it is attained.

1. "p-adic" expansions. For the cyclic group of order pe, the results are expressed
in terms of a truncated p-adic expansion of k, the number of boundary components. This
type of expansion was used in the related but distinct problem of determining the genera
of all compact Riemann surfaces on which a cyclic group of order pe acts, dealt with by
Kulkarni and Maclachlan in [9].
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Given k and pe, there exist unique non-negative integers a, = Oj{p,e,k), j =
0 , 1 , . . . , e such that

e

k = ^ajpj where 0 < a y <p (j = 0 , . . . ,e - 1), ae>0.
;=o

e

Define p(p, e, k) = 2 a-(p, e, k).
;=0

In the case where p = 2,e>\, there is also a unique expansion
e- l

fc = 2 bj(e,k)2> where 0<fc,(e, A:)< 1 (/ = 0 , . . . ,e - 2 ) and 6f_,(e, A:) > 0
; = 0

Define e(e, A:) = be^{e, k) + 2 *2 6,(e,A:).
,=0

Our results will be expressed in terms of these functions p(p, e, k) and e(e, A:), since
the expressions for A: given above are "minimal" in a sense appropriate for our
calculations. The basic lemma expressing this "minimality" is

LEMMA 1.1. Let p denote a prime number, and k, e positive integers. Then, for integers
e

yo, y\i • • • >ye, (yi — 0) such that k = 2 y,pe~' the following conditions hold:

(1) iyi^P(p,e,k).
1=0

e
(2) If yr^ae-t(p,e,k) for some 0<i<e, then 2 yt - p(p,e, k) >p - 1.

(3) Ifp = 2, then 2 y,- - p(2,c, A:)> ( y ' " ° t ' ' ) .
/=o 2

(4) Ifp =2,e>l,k is multiple of 4 and ye > 2, then 2 y, - p(2, e, A:) > 2.
1=0

Proof. For y = (y o ,y i , . . . ,ye) as in the statement, define

e

Se(y,k)='Zyi-p(p,e,k).
/=o

We prove (1), (2) and (3) by induction on e.
If e = 1 then yop +y] = k = a{p +a0. Since 0 ^ a o < P . yi = o0 + Zip with z, > 0 , so

that yo = fli -Zi- Hence S^y, A:) -Z\{p - 1 ) ^ 0 . Also yx ¥=a0 if and only if yo^fli if and
only if z, > 1. So (1) and (2) hold for e = 1.

Now suppose A: = 2 a,p; = 2 y,pe+1~'. Let k^ = (l/p)(k - aQ) = 2 b,p', where
;=0 i=0 (=0

0<b, = fl,+i < p for r = 0 , 1 , . . . ,e - 1 and be = oe+1 s 0 . As above, ye+, =flo + z e + ] p with

ze+i a non-negative integer. Now A:, = 2 yip6'1 where y/ = y, for i = 0 , 1 , . . . , e - 1 and
1=0

ye~ye
 + Ze+i- Thus Se+1(y, A;) = Se(y',/cj)+ ze+1(p - l ) > 0 by induction. In addition, if
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ye+] ¥= a0, then ze+i > 0 so that (2) also holds. If ye+x - a0, then ze+1 = 0 and y'e = ye. So, if
y, ¥"fle+i_, for some O s / < e , then y/ ^fee_i and again by induction

When p =2, 53(y, k) = Z\ = \{y\ ~ o0). Using induction as above we have

8e+i(y, k) = 8e(y', *,) + ze+1 a \{yl - be-{) + ze+i = i(>i - ae) + Ze+i

which proves (3).
Finally, for (4), if k is a multiple of 4 and e > 1, then either k = ae2

e with ae ^ 2 or

A: = 2' + 2 fl,-2y for some 2 < f < e. So,

* - 2 = ( ê - 2) + 5 ^2e"' = (a, - l)2e + 2 2̂ ' or X a^ + 5 2'.
i=0 ; = 1 ;=f + l ; = 1

Thus by (1), ^ - 2 + 1 ' y, > (ae - 1) + (e - 1) or 1 a, + (t - 1). Hence 5e(y, k)>t>2
i=0 ;=(+l

in both cases.

REMARK. (4) above is not necessarily true without the requirement that k be a
multiple of 4.

The following technical corollary will be used in computing p_(2e,k).

COROLLARY 1.2. Let k > 1, e > 2 fee integers. Let y 0 , . . . , y e , a be non-negative integers

such that k = a2e~' + i y,2e"'. 77ien, ifq=t y,, 2<? + a > e(e, A:).
1=0 1=0

Proof. By definition, e(e,k) = be.1 + 2 S fey- with A: = S 6;2
; and 0 < 6 , < l (/=

0 , 1 , . . . , e - 2), be-x > 0. Let us divide 6e_, = 2be + c, 0 < c < 1, and so

fe,2e + c2e-] + 5 6,2' = fc = yo2* + (y, + a)2e-> + J y,2£-'.
y=o 1=2

e l e-2 \
From (3) in Lemma 1.1, a + 2 y,- - 6e + c + X ft,- ^ (^ + a - c)/2, i.e.,

1=0 \ ;=0 /

e-2

2a+2q-2^ bj>2(be + c) +yx + a - c = fee_i+yi + a >fee_j + a.

e-2

Therefore, 2q + a > be^ + 2 X 6 , = e(e, k).
;=0

2. The computation of pX{pe,k). As stated in the introduction, the case e = 1 is
solved in [4; Cor 3.2.17] and so we assume e > 2. Thus pe is a multiple of 4 if p = 2 and so,
from Theorems 3.2.3, 3.1.2 and 3.1.5 (this last ot cover the case p = 2) in [4], the
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existence of a surface S in K%(pe, k) with topological genus g = g(S) is equivalent to the
existence of non-negative integers g', mu... , mr, / ] , . . . , /*• with m, > 2 and m,, f, divisors
of p e such that

_ _ k=pey. (2.1)
1=1 v rmJ

k = 2j (2.2)

If g' = 0, then lc.m.{mu... ,mr,tu... ,tk) = pe. (2.3)

(2.4) The set X = {m^,... , mr, tu.. . , tk) has the elimination property, i.e., the l.c.m. does
not change if we delete one of these numbers, and so, in particular, if X has just one
element, then X = {!}.

Note that from (2.1), pefj. = 2(g — l) + k = p(S) — 1, and so our task is to minimize
the value of /u. constrained to conditions (2.1), (2.2), (2.3) and (2.4). The cases k = 1 and
k = 2 are easier, but they need separate arguments. So we begin with

First case: k = l. Then necessarily k' = l, tx=pe, condition (2.3) is automatically
satisfied and from (2.4), r > l , mx = pe. Since /x must be positive it is obvious that its
minimum value is attained for

g' = 0, k' = l, h=pe, r = 2, mx=pe, m2 = p

a n d for th is cho ice , /J. = 1 . S ince p(S) = 1 + / ? V w e o b t a i n p t ( p e , 1) = p e ~ P e l -
Pe P

Second case: k = 2. Here we distinguish two subcases: p is odd or p = 2. For odd p,

the divisors — of pe are odd and so, by (2.2), k' = 2, tx = t2=pe. This way conditions (2.3)

and (2.4) are satisfied for any choice of mu... ,mr. Hence, the minimum value of fi is
attained for

f /\ If r\ . . e „ 1 yy. _

and then (JL = 1 — , i.e., pl(pe, 2) =pe -p6'1 + 1 if p is odd.
P

If p = 2, a new possibility occurs: k' = 1, ^ = 2e l. The corresponding value of p for
g' > 0 is bigger than or equal to 1 > 1 - \, and so we are restricted to analyze the choices
with g' = 0. Condition (2.3) imposes r > l , m}=2e, and from (2.4), r>2 and m2 = 2e.

Hence /A > - 1 + 2^ 1 - — j > 1 - \. Therefore,

For the remainder of this secton, we assume that k > 2. First, we reformulate conditions
(2.1)-(2.4), and the notation now introduced will be used consistently throughout the
paper. Since each mt, tj is a power of p, we define Xi = Caxd{ms:ms=p'}, l ^ i < e ;
y, = Cardfo:ts = p'}, 0 < i < e. This data is denoted by F = {*,-,y,: 1 < / < e, 0 </' <e}.

, w fO if Af is empty
F = {i:l<i<e,xi+yi¥'O} and MF = \ k

1 > . /< J lmaxAF otherwise.
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e
Now k' = S )>i and conditions (2.1)-(2.4) can be stated as:

(=0

l = 2(g-l) + k=p'vi. (2.1)

k = iytp<-'. (2.2)
1=0

If g' = 0, then MF = e (i.e., xe + ye> 1). (2.3)
Either MF = 0 or xMf + yMf > 2.

Hence, our problem is to choose g' and the set Fin such a way that (JL is minimal and
these "new" conditions (2.1)-(2.4) are satisfied. We are led to consider different cases:

Third case: k>2, k&O, l(modp). For any choice of y0,... ,ye, k = ye(modp), and
so ye > 2, which guarantees that conditions (2.3) and (2.4) are satisfied for any choice of

e

xu . . . ,xe. Moreover, since k > 2 and )>(>2 then S ) " , s 3 and so /x > 0 for any choice of
1=0

e

g'. Hence, the minimum value of /x shall be obtained for g' = 0, xt = . . . = xe = 0 and E y,
i=0

minimal satisfying (2.2). Therefore, choosing y, = ae-j(p,e,k) we conclude from part (1)
in Lemma 1.1 that the minimum value of n is p(p, e, k) - 2. Consequently,

p+
+(pe,k)=pe[p(p,e,k)-2] + l.

Fourth case: k>2, k = l(modp). Consider our "canonical" p-adic expansion k =
e

S OjP* where «; = at(p, e, k). We must have a0 = 1, and thus, by choosing
;=0

g'=0, Xi = ...=xe-i = 0, xe = l, y( = ae-h 0<i<e

we obtain the required conditions (2.1)—(2.4) (since xe = ye = l and / i , 0
=~2 +

p(p,e,k) + l —^is positive j . We are going to prove this is the minimum value of /A. Let

{g',xu... ,xe,y0,... ,ye} be another choice satisfying the restrictions. If ye^2, then by
e

part (2) in Lemma 1.1, 2 y,^p(p,e,/ :) +p -1 and therefore the corresponding value
of (JL satisfies

1 = 0

On the other hand, if ye <2 then ye = \ since k = 1 (mod/?). Thus MF = e and by (2.4),
«• 1

xe > 1. By part (1) in Lemma 1.1, /x > - 2 + 2 # + 1 - — == Mo- Hence

i=o p

pl(pe,k)=pe[p(p,e,k)-l].

Fifth case: k > 2, k =0 (modp), p odd. As before we take the "p-adic" expansion of
e

k, k = 2 Ojp', 0 ̂  fly <p, (j = 0 , 1 , . . . , e - 1), and ae s 0. Of course a0 = 0 and the choice
;=0
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- 2

g' = 0; *! = . . . =JC,_I = O; yi = ae_i, 0 < / < e , gives the value lxo = — + p(p,e,k)>0

e

since £ at 2: 1 as k ¥= 0. Since *,, = 2, this is an admissible choice, and it is easy to check
j=0

that it is the best one.
Consequently pX(pe, k) = pep(p, e, k) — 1.
To finish this section we only need to study:
Sixth case: k>2, k = 0 (mod 2), p -2. Now we must distinguish two subcases: k is

multiple of 4 or not. In the first one we can repeat the argument of the previous case word
for word using part (4) of Lemma 1.1 instead of part (2).

Note that only the case ye^0 requires some comment but then ye > 2 since k is even,
e

and so I y , - p ( 2 , e , i ) > 2 which provides, for the corresponding /x, the inequality
;=0

e 2
u>-2+ % yi>p(2,e,k)> uo = p(2,e,k) . Hence p+(2e, k) = 2ep(2,e, k) - 1 if A:

,=o 2e

is multiple of 4.
Suppose now A is not a multiple of 4, and so its "p-adic" expansion is k = 2 a/2\

;=0

fli = 1, 0 s fl;- < 1, (/ = 2 , . . . , e - 1) and ae s 0. This time we choose g' = 0,Xi = .. .=xe =
0, _y, = flj.-,, 0 < r < e - 2, >»<,_, = 0, ye = 2. This is an admissible choice since ye = 2 and the

corresponding value of /x is given by /x0
 = —2+ E y,-= p(2, e, A) - 1, which is positive

since ax = 1 and A: > 2. It is straightforward to check that p.o is the minimum value of /x
and therefore pX(2e, k) = 2e[p(2, e, k) - 1] if A; is not a multiple of 4.

The results in this section, together with Cor 3.2.17 in [4] for the case e = 1, can be
summarized as follows:

e

THEOREM 1. Let k,e be positive integers and let p be a prime number. Let k - S a;p
;

e

with 0 :£ ay < p /or ; = 0,. . . , e — 1 and ae s: 0. Ler p(p,e,k) — 2 fly. 7/ie/i

P^P^"1 * = 1, (e,p)*(l,2)
3 . A = 2, (e,p) = (l,2)

p ' - p ^ + l k = 2, (e,p)*(l,2)

- 2] + 1 A: > 2, it * 0,1 (modp)pX(pe,k) =

pe[P(p,e,k)-l)

2c[p(p,e,A-)-l] + l A:>2, A = 2 (mod4), p = 2 , e > l

pep(p, e,k)-\ otherwise

We note that for p odd, the minimum genus of a complex algebraic curve admitting
an automorphism of order pe is l/2(pe - pe~') [7]. It is interesting to compre this with the
results for gX obtained from Theorem 1. Note that gX = 0 for A; of the form aep

e + a0
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where a0 = 0,1,2, which will, of course, correspond to rotations of the sphere. Otherwise
g+ s l/2(pe -pe~1)- Note that the values of k for which we get equality here have the
form aep

e + pe~l + a0 where ao = 0,1,2.

3. The computation of p1{pe, k). The family K~l(N, k) is empty for odd N—see [4;
Prop. 3.2.3] and so we are only concerned with the calculus of p+(2e, k). As above, we
assume e s 2. Using Thms 3.1.9 and 3.2.3 in [4], and since 2e is multiple of 4, the existence
of a surface 5 in K+(2e,k) with topological genus g = g(S) is equivalent to the existence
of non-negative integers g' > 1, mu... , mr, tu . . . , tk- with m,- s 2 and mh tj divisors of
2e"] such that

(3.1) ti=g'
i\ \ m,

*' 2e

(3.2) k=2-.

(3.3) If g' = 1, then l.c.m.{m,,... ,mr,tu... ,tk-} = 2e~\
(3.4) There exist au... , ar, /3 i , . . . , £*• with g.c.d.(a,, m,) = 1 = g.c.d.(j8y, tj) for every i

r 2e *' 2C

and / such that g' is even if and only if M = 2 a, 1- 2 /3; — is a multiple of 4.
/=] trij j=\ tj

Let us analyze more carefully condition 3.4. As before, write

Xi = Card{ms: ms = 2'}, 1 < / < e - 1; yt = Card{r,: ts = 2'}, 0 < i < e - 1.

Since each m, is even, a, = 2y, + 1, 1 < / < r, and so

2 a, — = S —=2
, = 1 m,- Wffij

On the other hand, /3, = 25, + 1 if r; T
4 1 and so,

S i8> —— 2 --2ye_,(mod4).

Therefore, M = 2(x?_, +>»e_i) (mod 4). Hence, the conditions above can be expressed as:

5 J i ) > 0 ; />($) = 2e
M + l. (3.1)

2yir-'. (3.2)
/=0

(3.3)

g' is even if and only if *<,_, +ye_i is even. (3.4)

In particular we obtain the following interesting result.

PROPOSITION 3.1. Let S be an orientable compact Klein surface of algebraic genus
g^-2, whose boundary has an odd number of connected components. Then, every
automorphism of S whose order is a multiple of 4, preserves the orientation of S.

Proof. Let / b e an automorphism on 5 of order N = 2eM with e > 2 and odd M, and
assume that the number k of connected components of the boundary of 5 is odd. If /
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reverses the orientation of 5 the same holds true for g = / M , which has order 2e, e>2 .
But then, by condition (3.2) above, k must be even.

In other words, K+(2e, k) is empty for odd k and e > 2. Hence we assume throughout
this section that k is even. The arguments here are somewhat similar to those used in the
preceding and consequently we only outline them.

First case: k=2. From (3.2) we must have ye_i = 1, yo = • • • =ye-2 ~ 0 and so
e-\ I \ \

ju. = g' — 1 + 2 */( 1 - - 1. If e = 2, the choice g' = 1, *i = 2 satisfies (3.1)-(3.4) and is
i=i \ 2 /

easily shown to give the minimum value /i.0 = l of /x. Hence p+(4,2) = 5. Similarly, if
e > 2, taking g' = 1, jti = 1, x, = 0, 2 < * < e - 1 achieves the minimum giving p+(2c, 2) =
2e~1 + l if e>2 .

& ' - i

Second case: k = 0(mod 4). Let /? = - have canonical "2-adic" expansion R = 2 «/2;

2 ; = 0

= 0

with 0 s 0̂  < 1 for 0 £y ^ e - 2 and fle_] s 0. This time the choice g' = 1, y, = «(,,_,)_, for
0 s i < « - 1, JCJ ==...= xe-2

 = 0) -̂ e-i = 1 c a n be shown to give the minimum value of /x
using (1) in Lemma 1.1 applied to R. Thus

-l,^\-l for & = 0(mod4).

k ei
caje: /c >2, /: =2 (mod 4j. As above let R = - = 2 a,2; in canonical form. The

2 y = 0

m i n i m a l d a t a h e r e is g ' = 1 , y, = a ( e - i ) - , fo r 0 < i £ e - 1 , xt•. = 0 f o r l s j < e - l g i v i n g
e- l

/i = - 1 + 2 a,- > 0 since a0 = 1 and Z? > 1. Therefore,
1=0

in this situation.
Including the cases where e = 1 for completeness from Theorem 3.2.17 in [4] we

obtain
THEOREM 2. Let k, e be positive integers and let p be a prime number. Then,

(1) K+(pe, k) is empty if either p is odd or p = 2, e > 2, and k is odd.

(2)

fk-1

2 e p ( 2 , e - l , - - l

= l,k>2

4. The computation of p-(pe,k) for odd prime p. Let e ^ 1. With the usual
notation, Theorem 3.1.3 in [4] shows that the existence of a surface S in K^(pe, k) with
topological genus g = g(S) is equivalent to the existence of non-negative integers g' ^ 1,
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xu...,xe,y0,...,ye such that:

(4.1)
i=0

: 1 ytp'-' (4.2)
1 = 0

(4.3)

The arguments involved in the computation of P-(pe, k) are now very similar to
those in Section 2 and the details can be easily completed. The results are given in
Theorem 3 at the end of Section 5.

5. The computation of p-(2e,k), e > 2 . This case is more complicated as surfaces 5
in K-(2e,k) with topological genus g = g(S), can arise in two ways as given by Theorem
3.1.6 or Theorem 3.1.8 in [4].

This has an obvious explanation, since we are lead to different conditions according
to the quotient of S under the involved automorphism being orientable or not.

In fact, it turns out that the minimum genus always corresponds to a solution of the
conditions given by Theorem 3.1.6, so we first reformulate these conditions.

*' r-
Setting t = k'-p', and a= 2 -r in Theorem 3.1.6, it will follow that such a

I=J'+I 2

surface S will occur if and only if there exist non-negative integers g', t>0, xu... ,xe,
y0,... ,ye,a such that:

( ^ ^ (5.1)
i=0 1 = 1 V L I I

* = i yF~l + "2"1 (5-2)
1=0

If g' = 0 and t = 1, thenxe +ye>\ . (5.3)

It is convenient to use 8 = 2fi, so that

$lyl + <*\>0, and p(S) = 1 +ee~lS.
,-=o J

Note, from (5.2) and the term in square brackets above, that this is precisely the
situation in which we can apply Corollary 1.2.

Using this Corollary and notation of Section 1, variations of minimizing arguments
above yield the following minimum values for 5.

(i) 80 = 1 if k = 1.
(ii) So = - 2 + e(e, k)iik = l(mod 2), k > 1.
(iii) So = -2- ( e ~ 1 ) + e(e, k)Hk = 0(mod 2), k > 1.

Now we reformulate the conditions contained in Theorem 3.1.8 of [4] as follows:
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there exist non-negative integers g' 2:1, t >0, a, xu... ,xe, v0,... ,ye such that:

p(S) = g(S) + k - 1 =2'/i + 1. (5.4)
1=0 1=1

e

k = 2 y,-2e~"' + a2e~1. (5.5)
i=0

If t = 0, then a = 0 and *„ + ye is even. (5.6)

If t = 0 and g' = 1 then x, + y? s 1. (5.7)

If r = 0, g' = 2and 2 (*,•+y,)2e~'= 0(mod4), then x e + y e > l . (5.8)

In each of the cases studied above, we find that the minimum value 50 of 8 obtained
from conditions (5.1)-(5.3) is smaller than all values of 5 obtained from parameters
satisfying conditions (5.4)-(5.8). The arguments to establish this follow the same lines as
those given, and are left to the reader.

Summarizing the results obtained in this and the preceding section and also the cases
where e = 1 contained in Theorem 3.2.15 of [4] we obtain:

THEOREM 3. Let k, e, be positive integers and let p be a prime number. Then

(p - l)pe~] + 1 k = 1

pe[p(p, e,k)-l] + l k>l,p odd, k & O(modp)

. pep(p,e,k) podd,k = 0(modp)
P-(P >k>=\k k>l =2 e = l

2e~l[s(e,k) -2] + 1 k > 1 ,k odd,p=2,e>l

. 2e"1e(e,A:) keven,p =2, e>\.

Theorems 1, 2 and 3 give a complete solution to the problem of calculating the
numbers pX{N, k), p+(N, k) and p~(N, k) when N is a power of a prime number. Taking
into account that bordered and compact Klein surfaces are simply projective, smooth,
irreducible real algebraic curves, so that if C is the curve associated with the surface S,
then C is homeomorphic to the boundary of 5 and the surface 5 is orientable if and only if
the curve C disconnects its complexification, our results can be stated in terms of
birational automorphisms of real projective, smooth, irreducible algebraic curves with
fixed number of connected components, as was observed in the introduction.

Note that it is a routine matter to determine the constants p and e in which our
results are stated from the truncated p-adic expansions.

EXAMPLE. Take pe = 16 = 24 and k = 54. Then

Thus p = p(2, e, k) = 5 = p(2, e - 1, k/2); e = e(e, k) = 10. Thus, from Theorems 1, 2 and
3 we obtain

pX(16,54) = 65 =p;(16,54); p_(16,54) = 80.

Thus from these we obtain in these cases that

j?+ = 6 = e l : £_ = 27.
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