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Analysing the dynamics of velocity gradients is useful for understanding various nonlinear
turbulence processes. This work focuses on how the vibrational non-equilibrium of
the constituent molecules in a gaseous medium affects the dynamics of the velocity
gradient and the pressure Hessian tensors. We first derive the exact evolution equation
of the pressure-Hessian tensor in the presence of the vibrational non-equilibrium process.
Subsequently, we perform several direct numerical simulations of compressible isotropic
turbulence, including the vibrational relaxation process therein. Using flow fields extracted
from these simulations, we conduct several parametric studies over a range of the
Damköhler number (ratio of the relevant fluid time scale to that of the mean vibrational
relaxation process) and the initial ratio of the vibrational temperature to the mean
local temperature. We find that a variation in the initial Damköhler number does
influence the evolution of the pressure-Hessian and the velocity gradient tensors. As
the vibrational relaxation process becomes more rapid (an increase in the value of the
initial Damköhler number), it causes a decrease in the strength of the pressure-Hessian
tensor and simultaneous suppression of dilatational fluctuations in the flow field. On the
other hand, a variation in the initial value of the ratio of the vibrational temperature
to the local temperature does not seem to affect the pressure-Hessian or the velocity
gradient tensor. These findings are expected to aid in the development of closure models
for the pressure-Hessian tensor in compressible flows under vibrational non-equilibrium
conditions.
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1. Introduction

The velocity gradients and their temporal evolution in a turbulent flow hold the key toward
deeper insights and improved understanding of several nonlinear turbulence phenomena
like cascade (Suman & Girimaji 2011), material element deformation (Batchelor 1952;
Girimaji & Pope 1990), intermittency (Li & Meneveau 2005, 2006), energy dissipation
and scalar mixing (O’Neill & Soria 2005; Meneveau 2011). Experimental measurements
(Tsinober, Kit & Dracos 1992) of velocity gradients are challenging. Experimentally,
performing temporal tracking of the gradients is even more complex and rare (Xu, Pumir &
Bodenschatz 2011). On the other hand, direct numerical simulations (DNS) can provide a
realization of the raw Eulerian velocity field, which can then be used to assess the velocity
gradient tensor. Still, developing simple (ordinary differential equation) dynamical models
of the velocity gradient tensor is desirable. These models are computationally inexpensive
compared with DNS, which require enormous computing resources and pose challenges
in handling (post-processing) massive datasets. Further, these simple dynamical models
provide a more natural framework in which the temporal evolution of the velocity gradients
can be tracked following individual fluid elements (Lagrangian evolution), allowing for
more insightful and physics-based investigations and analyses. Moreover, such dynamical
models, whenever available, can directly serve as closure models for alternate methods
of turbulence computations, such as the Lagrangian probability density function (PDF)
methods (Pope 1985).

Given the advantages of such dynamical models of velocity gradients, much research has
been directed toward their development and validation. The pioneering work in this regard
is that of Vieillefosse (1982), who ignored the viscous effects and the unclosed, non-local
anisotropic portion of the pressure-Hessian tensor. He presented the first approximate
autonomous dynamical equation of the velocity gradients. This equation is referred to as
the restricted Euler equation (REE). Based solely on an REE-based analysis, the author
conjectured that the gradient steepening observed in turbulent flows must involve the
tendency of the vorticity tensor to align well with the positive eigenvalues of the strain-rate
tensor. Subsequently, Ohkitani & Kishiba (1995) used the REE model to provide insightful
explanations about the alignment tendencies of the pressure-Hessian eigenvectors with the
vorticity vector. With the subsequent availability of the DNS database, these conjectures
have indeed been confirmed to be quite accurate (Ashurst et al. 1987; Kalelkar 2006).

Over the last three decades, the REE model has undergone several modifications. The
missing viscous effects have been included using the linear diffusion model of Martın,
Dopazo & Valiño (1998), and later, using the linear Lagrangian diffusion model of
Jeong & Girimaji (2003), which could control the finite-time singularity problem but
led to an over-amplified, exponential increase in the viscous effects. Recently Chevillard
& Meneveau (2006) proposed their recent fluid deformation closure by which they
encompass several essential physics, namely (i) inclusion of the anisotropic part of the
pressure-Hessian tensor and (ii) a significantly improved representation of the viscous
process. This not only addressed the finite-time singularity issue but also allowed the
modified model to capture various statistical behaviours related to the velocity gradients
and the pressure-Hessian tensor. Subsequently, Parashar, Suman & Srinivasan (2019)
suggested alternate modelling for some parts of the viscous processes applicable to
non-stationary flow fields.

Despite its current advanced form and maturity, the REE model is inherently unsuitable
for compressible flows because of its dependence on Poisson’s pressure equation.
Following a thermodynamic-based approach that uses the continuity, energy and the state
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equations of a compressible medium Suman & Girimaji (2009, 2011), and later Danish,
Suman & Srinivasan (2014), have proposed models for the dynamics of velocity gradients
in compressible turbulence as well. However, despite these attempts, there is a vast scope
for improvement of such models, especially for hypersonic flow fields wherein the impact
of thermal non-equilibrium is also expected to be significant, over and above the effects of
compressibility (Anderson 2000).

Flow fields past hypersonic vehicles, owing to the high-temperature, vibrational and
chemical non-equilibrium (thermal non-equilibrium) of the flow, add further complexity
to the turbulent flow field (Anderson 2000; Smits, Martin & Girimaji 2009). For air,
vibrational excitations become significant beyond 800 K, and disassociation of oxygen and
nitrogen molecules is probable beyond 2000 and 4000 K, respectively. As a consequence
of these phenomena, the specific heat capacity values of air do not remain constant. How
these affect turbulence is indeed of pertinence.

Recently, some fundamental DNS-based studies have been performed to understand the
influence of thermal non-equilibrium on turbulence. Neville et al. (2014) studied the effects
of thermal non-equilibrium processes on decaying isotropic turbulence, wherein they
examined the influence of the Damköhler number on the flow field. Donzis & Maqui (2016)
and Khurshid & Donzis (2019) performed a comparative study of isotropic turbulence in
thermal equilibrium and non-equilibrium modes. In another recent study, Zheng et al.
(2021) explained the transfer of internal energy fluctuation in isotropic turbulence under
thermal non-equilibrium conditions. Even though these studies have contributed towards
an improved understanding of the influence of thermal non-equilibrium on turbulence, to
the best of the authors’ knowledge, no previous attempt has been made to investigate in
detail the influence of thermal non-equilibrium directly on the evolution of the velocity
gradient and the pressure-Hessian tensor. Such is the objective of this paper.

Specifically, we focus on understanding the unclosed pressure-Hessian tensor under the
influence of vibrational non-equilibrium in the velocity gradient equation. Toward this
goal, we identify the following tasks for this study:

(i) Derivation of the exact pressure-Hessian evolution equation in a vibrational
non-equilibrium state of a gaseous medium.

(ii) Identification of new unclosed processes appearing in this evolution equation.
(iii) Performing DNS of homogeneous turbulence, including the phenomenon of

vibrational non-equilibrium over a range of Damköhler number (ratio of the relevant
fluid time scale to the time scale of vibrational relaxation) and the ratio of initial
mean temperature to the mean vibrational temperature in the flow field.

(iv) Employing the generated DNS database to identify, isolate and understand the
influence of the vibrational non-equilibrium phenomenon on the velocity gradient
and the pressure Hessian fields.

This paper is organized as follows. In § 2, we derive the exact evolution equation
of the pressure-Hessian tensor in the presence of vibrational non-equilibrium in the
flow field. Section 3 identifies the closure problem associated with the pressure Hessian
equation. In § 4, we present details of the DNS employed in this work. Section 5
discusses the vibrational relaxation process and the plan of study. Section 6 examines the
influence of vibrational non-equilibrium on various aspects of the velocity gradient and the
pressure-Hessian tensors. Section 7 examines the behaviour of the vibrational mechanism
itself along with the influence of the initial Damköhler number and the ratio of vibrational
temperature to local temperature. Finally, § 8 concludes the paper with a summary.
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2. Velocity gradient dynamics in the presence of vibrational non-equilibrium

In this section, we derive the evolution equation of the velocity gradient (A)
and the pressure-Hessian (P) tensors under vibrational non-equilibrium conditions.
Mathematically, these tensors are defined as

Aij = ∂ui

∂xj
and Pij = ∂

∂xj

(
1
ρ

∂p
∂xi

)
, (2.1a,b)

where ui and xi represent the ith velocity component and ith spatial coordinate in the
Eulerian description of the flow field. The symbol ρ represents density, and p is pressure.

We start with the governing equations of mass and momentum for a viscous
compressible medium

∂ρ

∂t
+ uj

∂ρ

∂xj
= −ρ

∂uj

∂xj
, (2.2)

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂p
∂xi

+ 1
ρ

∂τji

∂xj
. (2.3)

The viscous stress (τji) is expressed using the following relationship:

τji = 2μ

[
1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)]
+ δjiζ

∂uk

∂xk
, (2.4)

where, δji is the Kronecker delta symbol, μ denotes dynamic viscosity and ζ is the bulk
viscosity of the fluid medium. Bulk viscosity (ζ ) is taken to be equal to −(2/3)μ (White
1979).

The governing equation of the total energy per unit mass (e) is

∂e
∂t

+ ui
∂e
∂xi

= − 1
ρ

∂

∂xi
(uip) + 1

ρ

∂

∂xj
(uiτij) − 1

ρ

∂qi

∂xi
− 1

ρ

∂qv,i

∂xi
, (2.5)

where e represents the total energy (per unit mass), which equals the sum of the kinetic
energy, translational–rotational energy and vibrational energy (ev) per unit mass. It is
expressed as

e = uiui

2︸︷︷︸
Kinetic energy

+ 5
2

RT︸︷︷︸
Translational-rotational energy

+ ev︸︷︷︸
Vibrational energy

. (2.6)

The symbol T is the temperature of the gas, and R is the gas constant (J kg−1 K−1). The
symbols qi and qv,i are the thermal and vibrational heat fluxes (J s−1 m−2) in the ith
direction.

In order to understand the influence of vibrational non-equilibrium on compressible
flows, an additional equation of the evolution of vibrational energy per unit mass is
introduced

∂ev

∂t
+ ui

∂ev

∂xi
= − 1

ρ

∂qv,i

∂xi
+ wv

ρ
. (2.7)

This equation uses a source term (wv) that governs the energy transfer between
translational–rotational and vibrational modes. We employ the Landau–Teller model for
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the source term (wv) expressed as (Vincenti & Kruger 1982)

wv = −ρ
(ev − e∗

v)

τ
, (2.8)

where e∗
v is the vibrational energy per unit mass in equilibrium with local temperature (T)

e∗
v =

hν

kBT

exp
(

hν

kBT

)
− 1

RT. (2.9)

The symbol h represents Plank’s constant, ν is the vibrational frequency of molecules
of the gas and kB is the Boltzmann constant. The quantity τ appearing in (2.8) is the
vibrational relaxation time (Park 1993)

τ = 1
p

exp[A(T−1/3 − B) − 18.42], (2.10)

where p is in atm. Coefficients A and B are calculated using (2.11) and (2.12), respectively,

A = 1.16 × 10−3
√

Mθ4/3, (2.11)

B = 0.015M1/4. (2.12)

The symbol M is the molecular weight of the gas in gram/mol, and θ is the characteristic
vibrational temperature of the gas in K. The values of A and B for nitrogen (N2) are 221.46
and 0.029, respectively (Park 1993). In line with (2.9), we can express ev also as a function
of new variable Tv , the so-called local vibrational temperature

ev =
hν

kBTv

exp
(

hν

kBTv

)
− 1

RTv. (2.13)

Finally, the thermodynamic variables like pressure (p), density (ρ) and temperature (T)
are related algebraically through the state equation of a perfect gas

p = ρRT. (2.14)

Equation set (2.2)–(2.14) describes a compressible flow field under the vibrational
non-equilibrium condition with density (ρ), pressure (p), temperature (T), velocity (ui)
and vibrational energy (ev) as seven dependent variables.

To derive the exact evolution equation of the velocity gradient tensor A under a
vibrational non-equilibrium condition, we take the gradient of (2.3) to arrive at the
following equation:

DAij

Dt
= −AikAkj − Pij + Γij. (2.15)

The symbol, D/Dt = ∂/∂t + uk(∂/∂xk) in (2.15) is the material derivative representing the
change in Aij following the motion of the local small fluid element. The first term on the
right-hand side is the self-stretching term, representing the inertial action on the local state
of the velocity gradient tensor. The second term is the pressure-Hessian tensor (P). The
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pressure-Hessian tensor represents the process by which density and pressure gradients
directly influence the evolution of velocity gradients in compressible flows. The third term
is the viscous transport term

Γij = ∂

∂xj

{
1
ρ

∂

∂xk

[
μ

(
Aik + Aki − 2

3
Appδki

)]}
. (2.16)

Our interest is in having a simple dynamical equation set to represent the dynamics
of velocity gradients. While (2.15) describes the exact evolution of the velocity gradient
tensor (A), it is mathematically unclosed. The unclosed terms are Pij and Γij. In
incompressible flows, pressure is completely governed by Poisson’s pressure equation.
However, in compressible flows, the acoustic time scale responsible for pressure evolution
may not be significantly smaller than the fluid time scale, and thus pressure behaves like a
bonafide thermodynamic variable. Therefore, in compressible flows, it is desirable to have
an evolution equation of the pressure-Hessian tensor (P) as well. Suman & Girimaji (2011)
derived the exact evolution equation of the pressure-Hessian tensor using the continuity,
energy and the state equations for compressible flows with no reference to the vibrational
excitation of the constituent molecules. Consequently, their evolution equation of the P
tensor does not account for the effects of vibrational non-equilibrium in a flow field. In
contrast, in this work, we aim to derive the exact evolution equation of the pressure Hessian
for a compressible flow under the influence of the vibrational non-equilibrium process.

To derive such an evolution equation of the pressure Hessian, we first express the
material derivative of the pressure Hessian as

DPij

Dt
= D

Dt

{
∂

∂xj

(
1
ρ

∂p
∂xi

)}

= 2
ρ3

Dρ

Dt
∂ρ

∂xj

∂p
∂xi

− 1
ρ2

∂p
∂xi

D
Dt

(
∂ρ

∂xj

)
− 1

ρ2
∂ρ

∂xj

D
Dt

(
∂p
∂xi

)

− 1
ρ2

Dρ

Dt

(
∂2p

∂xj∂xi

)
+ 1

ρ

D
Dt

(
∂2p

∂xj∂xi

)
. (2.17)

Using (2.14) we write

Dp
Dt

= Dρ

Dt
RT + ρR

DT
Dt

. (2.18)

Next, we derive the material derivative of temperature. Equation (2.5) is the evolution
equation of total energy [e = uiui/2 + 5

2 RT + ev]. The governing equation for kinetic
energy is obtained by multiplying (2.3) with ui. Subsequently, subtracting the evolution
equation of kinetic energy and that of vibrational energy (2.7) from the total energy
equation (2.5) leads us to the evolution equation of the temperature (T)

∂T
∂t

+ ui
∂T
∂xi

= −2
5

T
∂ui

∂xi
+ 2

5
τij

ρR
∂ui

∂xj
+ 2

5
k

ρR
∂

∂xk

(
∂T
∂xk

)
− 2

5
wv

ρR
, (2.19)

where k is the thermal conductivity of the medium (J s−1 m−1 K−1), and it appears
when the thermal flux qi is represented using Fourier’s law of heat conduction: (qi =
−k(∂T/∂xi)). Now, using (2.19) in (2.18) along with (2.2) leads to the evolution equation
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of pressure under the vibrational non-equilibrium conditions

∂p
∂t

+ ui
∂p
∂xi

= −7
5

p
∂ui

∂xi
+ 2

5
τij

∂ui

∂xj
+ 2

5
k
R

∂

∂xk

{
∂

∂xk

(
p
ρ

)}
− 2

5
wv. (2.20)

We subject (2.20) to the gradient operator successively to arrive at the equation
(D/Dt)(∂p/∂xi) and (D/Dt)(∂2p/∂xi∂xj). Subsequently, employing (2.17), we finally
arrive at the exact evolution equation of the pressure-Hessian tensor in the presence of
vibrational non-equilibrium

DPij

Dt
= −AkjPik − AkiPkj − 2

5
AkkPij

− 7
5ρ

∂Akk

∂xj

∂p
∂xi

− 7
5ρ

∂Akk

∂xi

∂p
∂xj

− 1
ρ

∂Aki

∂xj

∂p
∂xk

+ 1
ρ

∂Akk

∂xj

∂p
∂xi

− 7
5

p
ρ

(
∂2Akk

∂xi∂xj
− 1

ρ

∂Akk

∂xi

∂ρ

∂xj

)
+

(
2

5R

)
∂

∂xj

{
1
ρ

∂2

∂xi∂xk

[
k

∂

∂xk

(
p
ρ

)]}

+ 2
5

∂

∂xj

[
1
ρ

∂τkm

∂xi
Akm + 1

ρ
τkm

∂Akm

∂xi

]
− 2

5
∂

∂xj

(
1
ρ

∂wv

∂xi

)
. (2.21)

To make further progress, we must have a closure model for wv . Employing the
Landau–Teller model in (2.21), the pressure-Hessian equation modifies to

DPij

Dt
= −AkjPik − AkiPkj − 2

5
AkkPij︸ ︷︷ ︸

(I)

− 7
5ρ

∂Akk

∂xj

∂p
∂xi

− 7
5ρ

∂Akk

∂xi

∂p
∂xj

− 1
ρ

∂Aki

∂xj

∂p
∂xk

+ 1
ρ

∂Akk

∂xj

∂p
∂xi︸ ︷︷ ︸

(II)

−7
5

p
ρ

(
∂2Akk

∂xi∂xj
− 1

ρ

∂Akk

∂xi

∂ρ

∂xj

)
︸ ︷︷ ︸

(III)

+
(

2
5R

)
∂

∂xj

{
1
ρ

∂2

∂xi∂xk

[
k

∂

∂xk

(
p
ρ

)]}
︸ ︷︷ ︸

(IV)

+ 2
5

∂

∂xj

[
1
ρ

∂τkm

∂xi
Akm + 1

ρ
τkm

∂Akm

∂xi

]
︸ ︷︷ ︸

(V)

+ 2
5

∂

∂xj

[
1
ρ

∂

∂xi

(ρev

τ

)]
︸ ︷︷ ︸

(VI)

− 2
5

∂

∂xj

[
1
ρ

∂

∂xi

(
ρe∗

v

τ

)]
︸ ︷︷ ︸

(VII)

, (2.22)

where e∗
v and ev are defined in (2.9) and (2.13), respectively.

To make this equation mathematically as well as physically more amenable to our
understanding, we have gathered various terms as groups (I − VII). We refer to these
groups as mechanisms that influence the evolution of the pressure-Hessian tensor (in line
with Suman & Girimaji 2011).
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The first mechanism on the right-hand side involves interactions between our primary
unknowns, the A and P tensors only. In line with the nomenclature for the −AikAkj term
in (2.15), this mechanism is called the local stretching of the pressure Hessian field by the
local velocity gradient field (Suman & Girimaji 2011).

The second mechanism involves higher-order gradients of the velocity gradient
components and the first gradient of the pressure field. In contrast, mechanism III involves
terms in which higher-order gradients of A interact with the raw thermodynamic field
p/ρ itself. Suman & Girimaji (2011) argued that the presence of the raw thermodynamic
variable p/ρ (rather than its gradients) makes the underlying physics dependent on an
acoustic time scale (and, accordingly, a Mach number). Indeed, the authors subsequently
modelled the essential physics incumbent in this mechanism to recover the well-known
Mach number effects from their enhanced homogenized Euler equation model of the
compressible velocity gradient tensor. Mechanism IV involves thermal conductivity (k).
This clearly represents the influence of thermal conduction on the pressure-Hessian
evolution. On the other hand, mechanism V involves the effect of viscous heating
on the evolution of the P tensor. Mechanisms I to V were discussed by Suman &
Girimaji (2011) as well. However, the authors examined a compressible flow field in the
absence of any vibrational excitation. Their total energy equation involved changes in
the kinetic energy and translational–rotational energy only. In contrast to mechanisms
I to V , mechanisms VI and VII are the ‘new’ mechanisms appearing in the evolution
equation in the presence of vibrational non-equilibrium. These two ‘new’ mechanisms
show the explicit influence of vibrational energy on the evolution of the dynamics of
the pressure-Hessian field and, in turn, that on the velocity gradient field, as well. These
mechanisms are attributable to the employment of the Landau–Teller model (2.8) for the
interconversion of translational–rotational and vibrational energy modes. In subsequent
sections, we wish to understand how these mechanisms affect the pressure-Hessian and
the velocity gradient tensors.

3. The closure problem

We now examine (2.22) from the point of view of mathematical closure. This examination
is motivated by the eventual goal of having a computationally viable set of ordinary
differential equations for the A and P tensors. Among mechanisms I to V , all are
mathematically unclosed except for mechanism I. Suman & Girimaji (2011) and Danish
et al. (2014) have already addressed this closure problem and proposed some models. In
this paper, we focus on the ‘new’ mechanisms VI and VII. These mechanisms are also
mathematically unclosed for multiple reasons: the algebraic involvement of higher-order
gradients of the velocity gradients, density, pressure, temperature and the gradients of
vibrational temperature.

Danish et al. (2014) has earlier employed a DNS database of isotropic compressible
turbulence to examine the relative importance of mechanisms I to V of the evolution
equation of the P tensor for a compressible medium without any vibrational excitation.
To identify the dominant mechanisms, they contracted the evolution equation of Pij and
arrived at the evolution equation of (D/Dt)(PijPij). All the original mechanisms were still
present on the right-hand side of that equation; however, they appeared in their contracted
scalar forms. The relative significance of these scalar forms was then compared by plotting
the PDFs of the relative magnitudes of these mechanisms using a DNS database. In line
with this approach, we, too, first contract equation (2.22) with Pij and arrive at the scalar
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version of (2.22)

1
2

D
Dt

(PijPij) =
(

−AkjPik − AkiPkj − 2
5

AkkPij

)
Pij︸ ︷︷ ︸

(I′)

−
(

7
5ρ

∂Akk

∂xj

∂p
∂xi

+ 7
5ρ

∂Akk

∂xi

∂p
∂xj

+ 1
ρ

∂Aki

∂xj

∂p
∂xk

− 1
ρ

∂Akk

∂xj

∂p
∂xi

)
Pij︸ ︷︷ ︸

(II′)

− 7
5

p
ρ

(
∂2Akk

∂xi∂xj
− 1

ρ

∂Akk

∂xi

∂ρ

∂xj

)
Pij︸ ︷︷ ︸

(III′)

+
(

2
5R

)
∂

∂xj

[
1
ρ

∂2

∂xi∂xk

{
k

∂

∂xk

(
p
ρ

)}]
Pij︸ ︷︷ ︸

(IV ′)

+
(

2
5

∂

∂xj

[
1
ρ

∂τkm

∂xi
Akm + 1

ρ
τkm

∂Akm

∂xi

])
Pij︸ ︷︷ ︸

(V ′)

+ 2
5

∂

∂xj

[
1
ρ

∂

∂xi

(ρev

τ

)]
Pij︸ ︷︷ ︸

(VI′)

− 2
5

∂

∂xj

[
1
ρ

∂

∂xi

(
ρe∗

v

τ

)]
Pij︸ ︷︷ ︸

(VII′)

. (3.1)

In this equation, mechanisms VI′ and VII′ are the scalar counterparts of mechanisms VI
and VII of (2.22). On the other hand, mechanisms I′ to V ′ are the scalar counterparts
of the non-vibration mechanisms I to V of (2.22). We intend to examine the relative
importance of the collective action of the vibrational mechanisms VI′–VII′ to that of the
inertial mechanisms I′, II′, III′. At this point, the physics related to the viscous processes
(IV ′ and V ′) are not of interest. Thus, for a direct and unambiguous study, we define a
fraction f

f = |VI′ − VII′|
|I′ + II′ + III′| + |VI′ − VII′| . (3.2)

Examining f can be useful to quantify the extent to which the evolution of the pressure
Hessian is affected by the vibrational non-equilibrium process, if at all. The natural
algebraic range of f is [0, 1]. A small (near-zero value) of f would imply that the
contribution of the vibrational mechanism is negligible in the governing equation of the
pressure Hessian. On the other hand, a high magnitude of f would imply a substantial
contribution of the vibrational mechanism in governing and shaping the pressure-Hessian
tensor in a compressible flow field.

4. Direct numerical simulations of isotropic turbulence with vibrational
non-equilibrium

We have employed the hy2Foam solver of Casseau et al. (2016) and Casseau (2017) to
perform DNS for our study. hy2foam is an open-source (Git 2022) solver that has been
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developed on the OpenFOAM platform and has the capability to handle both vibrational
and chemical non-equilibrium. Even though the solver offers various turbulence models
to perform Favre-averaged simulations, no turbulence model has been used to generate
a well-resolved direct numerical simulation database. In this case, the solver solves the
instantaneous continuity equation (2.2), velocity equation (2.3) and total energy equation
(2.5). The state equation of a perfect gas is used as given by (2.14). Further, the evolution
equation of vibrational energy (ev) (2.7) is solved using the Landau–Teller model as
presented in (2.8). The vibrational relaxation time scale appearing in (2.8) is calculated
using the Millikan–White equation, as detailed in (2.10).

The computational domain is a cubical box with each side of length 2π. The
computational grid is uniform, with the number of nodes being 1923/2563/5123. Periodic
boundary conditions are imposed on the opposite sides of the cubic domain. A random
initial velocity field is generated with zero mean and zero divergence. The initial spectrum
of turbulent kinetic energy E(κ) is

E(κ, t = 0) = A0κ
4 exp(−2κ2/κ2

0 ), (4.1)

where A0 represents the spectrum constants. The symbol κ is the magnitude of the
wavenumber vector, and κ0 is the κ where E(k) is maximum at t = 0.

In homogeneous isotropic decaying turbulence, the Reynolds number based on the
Taylor microscale (Reλ) and initial turbulent Mach number (Mt) are defined as

Reλ =
√

20
3ηε

K and Mt =
√

2K
nR〈T〉 , (4.2a,b)

where η, ε and K represent kinematic viscosity, dissipation rate and turbulent kinetic
energy, respectively, and 〈T〉 is the volume-averaged temperature. The symbol n represents
the ratio of the specific heat capacity at constant pressure to that at constant volume.

In addition to Mt and Reλ, two more non-dimensional numbers characterize a simulation
in the presence of vibrational non-equilibrium: (i) the initial Damköhler number (D),
and the initial ratio of the mean vibrational temperature to mean temperature (ξ). These
numbers are defined as in (4.3) and (4.4), respectively,

D = τLE

τ
, (4.3)

ξ = 〈Tv〉
〈T〉 , (4.4)

where τLE is the large eddy-turnover time defined as τLE = λ/u′. The root mean squared
value of the fluctuating velocity, denoted as u′, is defined as

u′ =
√√√√〈

u2
1 + u2

2 + u2
3

3

〉
, (4.5)

where 〈 〉 represents the volume-averaged value of the quantity of interest (equivalently,
the mean of the quantity), and λ is the Taylor microscale, equal to (Honein & Moin 2004)

λ =
√

u′2

〈(∂u1/∂x1)2〉 . (4.6)

The definition of the Damköhler number (D) used in this study is defined in line with the
similar dimensionless number used in chemically reacting flows to relate the characteristic
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Case Mt Reλ D A0 × 10−4 κ0 ξ CFL Grid size

A 0.3 30 — 3.74 4 — 0.025 2563

B1 0.5 60 4 3.74 4 0.5 0.00625 1923

B2 0.5 60 4 3.74 4 0.5 0.00625 2563

B3 0.5 60 4 3.74 4 0.5 0.00625 5123

B4 0.5 60 4 3.74 4 0.5 0.0125 2563

C 0.5 60 1 3.74 4 0.5 0.025 2563

D 0.5 60 0.25 3.74 4 0.5 0.025 2563

E 0.5 60 4 3.74 4 0.75 0.00625 2563

F 0.5 60 4 3.74 4 0.125 0.00625 2563

G 0.5 60 — 3.74 4 — 0.025 2563

Table 1. The DNS employed in this study.

time scale of chemical reactions to that of the advective transport phenomenon (or the
flow time scale) rate occurring therein (Fogler 2006). As the initial Damköhler number
becomes large, the disparity between the fluid time scale and the vibrational relaxation
time scale increases, and an initial vibrational non-equilibrium state will more rapidly
tend to approach its equilibrium state. In the limit of the Damköhler number being zero,
the vibrational state of the flow will remain effectively frozen even though the flow itself
evolves. In this study, our objective is to examine the influence of this parameter having
a value in the moderate range of 0.25 to 4, wherein both turbulence and vibrational
relaxation processes are expected to evolve substantially.

The range of ξ used in our simulation set spans from 0.125 to 0.75. In hypersonic
aerospace applications, a shock upstream of a solid obstruction typically causes a
substantial disparity in the vibrational temperature values upstream and downstream
of the shock front. The translational energy rapidly attains its Maxwellian equilibrium
state immediately downstream of the shock. This increases the temperature immediately
downstream of the shock front. However, the vibrational temperature after the shock might
remain at its pre-shock value. Downstream of such a shock front, the ratio of vibrational
temperature to the local temperature is less than unity. Indeed, our chosen range for ξ

reflects such typical and realistic scenarios that initiate a vibrational relaxation process
alongside the evolution of the background flow field.

In table 1, we present the list of simulation cases employed in our study. Simulation
A has identical initial conditions as employed by Honein & Moin (2004) and is used to
validate the hy2FOAM solver against the results of Honein & Moin (2004). Like Honein &
Moin (2004), in simulation A, the viscosity dependence on temperature is modelled using
a power law with the exponent being 0.76. This simulation does not involve any vibrational
non-equilibrium process. On the other hand, simulation cases B1–B4 and C–F all have the
vibrational relaxation process included in the simulation. Simulation cases B1–B4 have
been performed for the most ‘severe’ combination of the initial parameters employed in
our study. For all these simulations, the turbulent Mach number, the Reynolds number, the
Damköhler number and ξ have been set as 0.5, 60, 4 and 0.125, respectively. While B1–B3
differ only in terms of the grid size (1923, 2563 and 5123), case B4 differs from B2 only in
terms of the Courant–Friedrich–Lewy (CFL) number.

Cases B2, C and D are employed to evaluate the influence of the initial Damköhler
number on the physics of interest since these sets of simulations differ only in terms of that
parameter. The initial turbulent Mach number and the Taylor microscale-based Reynolds
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number are 0.5 and 60, respectively, for these simulations. The initial value of ξ equals
0.5. On the other hand, cases B2, E and F differ in terms of ξ . Simulation case G has
its settings identical to B2, but has the vibrational relaxation processes switched off. This
simulation is used as the baseline case with which the results from the simulation cases
involving vibrational relaxation processes are compared.

In all these simulations (B1–B4 and C–G) the gaseous medium is chosen to be nitrogen
(N2). In these simulations, we have kept the coefficient of viscosity (μ) a constant (as
determined by the initial Reynolds number). This is a deliberate choice because we wish
to isolate and identify the direct influence of the variation in the Damköhler number and
ξ on the velocity gradient and the pressure-Hessian dynamics. We wish to mention that
our simulations are different from those of Khurshid & Donzis (2019), who not only use
a temperature-dependent viscosity coefficient, but also allow the flow field to decay from
an initial state which has been extracted from an already fully developed state of forced
turbulence. We plan to include a variable viscosity coefficient in our future work.

Subject to the availability of the library of discretization schemes in the hy2Foam
package, we have employed the second-order accurate central-upwind scheme developed
by Kurganov, Noelle and Petrova (Kurganov, Noelle & Petrova 2001; Greenshields
et al. 2010) for the advection term, whereas the diffusive fluxes utilize the central
difference method. For temporal discretization, a second-order accurate, backward implicit
formulation is used. Uniform time stepping is used in all the simulations. The interpolation
schemes employed are of second-order and unbounded. The value of the time step is
chosen to be such that, initially, the CFL number is in the range of 0.00625–0.025
(case-specific values are listed in table 1).

Before discussing the results related to the vibrational non-equilibrium phenomenon,
we first assess the capability of the hy2Foam solver in simulating standard compressible
isotropic turbulence (case A). We compare the results from this simulation against the
results of Honein & Moin (2004). In figure 1(a–c), we present comparisons in terms
of the temporal evolution of appropriately normalized turbulence kinetic energy (K),
root-mean-square (r.m.s.) pressure fluctuations (p′) and the r.m.s. of the temperature (T ′).
The normalizing quantities in figure 1(a–c) are the initial value of the turbulent kinetic
energy, the initial values of (npoM2

t ) and the initial values of (n − 1)(ToM2
t ), respectively.

The subscript o denotes the initial value of the respective quantity. In each case, the time
axis is normalized by the eddy-turnover time (τLE = λ/u′) calculated based on the initial
flow field. The initial condition set for these simulations corresponds to Honein & Moin
(2004), wherein all thermodynamic fluctuations are zero initially. This choice explains
the steep variations in the thermodynamic quantities during the first few time steps of the
simulations. In figure 1(d), we present the evolution of skewness (Su) from case A

Su =

〈[(
∂u1

∂x1

)3

+
(

∂u2

∂x2

)3

+
(

∂u3

∂x3

)3
]

/3

〉
〈[(

∂u1

∂x1

)2

+
(

∂u2

∂x2

)2

+
(

∂u3

∂x3

)2
]

/3

〉3/2 . (4.7)

The included reference results in figure 1(a–d) are the digitized versions of the data
available in Honein & Moin (2004) and Chen et al. (2020) (for Su). Evidently, the results
of the case A simulation agree quite well with the reference DNS results.

In figures 2(a–c) and 3(a–c) we present results from simulation cases B1–B3.
Figure 2(a–c) shows the temporal evolution of the turbulent kinetic energy and
the thermodynamic fluctuations, whereas figure 3(a–c) shows the temporal evolution
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Chen et al. (2020)
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〉/(
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–
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)(
T 0

M
t2
)

Figure 1. Simulation case A. Temporal evolution of (a) turbulent kinetic energy, (b) pressure fluctuations,
(c) temperature fluctuations and (d) skewness. Symbols represent the results of Honein & Moin (2004) and
Chen et al. (2020).

involving different aspects of the velocity gradient field: skewness (Su), r.m.s. of vorticity
(ω

′
) and r.m.s. of dilatation rate (θ

′
)

ω
′ = 〈ωiωi〉1/2, (4.8)

θ ′ =
〈(

∂ui

∂xi

)2
〉1/2

, (4.9)

where ωi represents the ith component of the instantaneous vorticity vector. All these
time-dependent statistics have been normalized by their respective initial values. The
difference between the results obtained on the 2563 grid and those obtained on the 5123

grid is small. The maximum error percentage of ω
′

between the 2563 grid and the 5123

grid is less than 3.5 % over the entire duration of 4 eddy-turnover times. Similarly, the
maximum error percentage of θ

′
between the 2563 grid and the 5123 grid is less than 3.0 %

over the entire duration of 4 eddy-turnover times. Based on these results, we deem the
results of simulation B2 (2563) to be adequately grid independent. Thus, other simulations
(cases C–G) have also been performed on a 2563 grid. We have performed a similar
grid-independence study corresponding to the initial conditions of the simulation case
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Case B1
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ρ
′ /

M
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Figure 2. Grid independence. Temporal evolution of (a) turbulent kinetic energy, (b) r.m.s. of density,
(c) r.m.s. of temperature fluctuations in simulation cases B1, B2 and B3.

G, as well. Even though those results are not included in the paper, the 2563 grid is found
to be adequate there too.

We have performed a time-step-independence study using the results of the simulation
cases B2 and B4. In simulation B4, the employed time step is twice that of the time step
used in B2. The corresponding difference in the results (turbulent kinetic energy, p

′
, T

′
,

Su, ω
′

and θ
′
) from these two simulations is found to be insignificant (results not included

here to avoid repetition). Thus, the time step employed in all other simulations of table 1
is chosen to be the same as employed in the simulation case B2.

In figure 4, we present the evolution of skewness for simulations B2, C, D, E, F and
G (4.7). We observe that, beyond t/τLE > 1.5, in every case, the skewness stabilizes to a
value close to −0.45, indicating that, beyond that time, the nonlinear turbulent processes
are in full effect. In figure 5 we present the decay of Reλ and turbulent Mach number (Mt,
4.2a,b) in various simulations that differ in terms of initial Damköhler number and the
initial value of ξ . Evidently, there is no influence of these initial parameters on the decay
of Reλ and Mt.
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Figure 3. Grid independence: (a) skewness, (b) vorticity fluctuations and (c) dilatational fluctuations in
simulation cases B1, B2 and B3.

5. The vibrational relaxation process and plan of study

To visualize the vibrational relaxation process in our simulations, we first present the
temporal evolution of the statistics of temperature and the vibrational temperature. In
figure 6(a) we present the temporal evolutions of mean temperatures (〈T〉 and 〈Tv〉) in the
sets of simulations B2, C and D, which differ in terms of the initial Damköhler number.
In figure 6(b) we present the temporal evolutions of the r.m.s. of the two temperature

quantities (
√

〈T ′T ′ 〉 and
√

〈T ′
vT ′

v〉) in the same set of simulations. In figure 7(a) we
present the temporal evolutions of mean temperatures (〈T〉 and 〈Tv〉) in the sets of
simulations B2, E and F, which differ in terms of the initial ξ . In figure 7(b) we
present the temporal evolutions of r.m.s. of fluctuations in the two temperature quantities

(
√

〈T ′T ′ 〉 and
√

〈T ′
vT ′

v〉) in the same set of simulations. The mean temperature profiles
have been non-dimensionalized with To, whereas the r.m.s. values of fluctuations have
been normalized with the factor (n − 1)ToM2

t .
In all these simulations (figures 6(a) and 7(a)), it is evident that the mean

translational–rotational energy (represented by 〈T〉) of the flow is diverted to the mean
vibrational energy (represented by 〈Tv〉). Consequently, the mean vibrational temperature
increases with a simultaneous decrease in the mean temperature. In simulation B2,
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Figure 4. Temporal evolution of skewness for simulation cases (a) B2, C, D and G and (b) B2, E, F and G.
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Figure 5. Temporal evolution of (a) Taylor micro-scale Reynolds number and (b) turbulent Mach number in
simulation cases B2, C, D, E and F.
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Figure 6. (a) Evolution of mean temperature (with symbols) and mean vibrational temperature (without
symbols) in simulation cases B2, C and D. (b) Evolution of r.m.s. of temperature (with symbols) and that
of the vibrational temperature (without symbols) in simulation cases B2, C and D.
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Figure 7. (a) Evolution of mean temperature (with symbols) and mean vibrational temperature (without
symbols) in simulation cases B2, E and F. (b) Evolution of r.m.s. of temperature (with symbols) and that
of the vibrational temperature (without symbols) in simulation cases B2, E and F.

(D = 4), by the end of 1.5 eddy-turnover times, 〈T〉 and 〈Tv〉 become almost equal,
indicating the achievement of a vibrational equilibrium state for the mean flow field.
However, this does not necessarily mean that the fluctuating flow field has also attained
vibrational non-equilibrium. In figures 6(b) and 7(b), we observe that the r.m.s. values of
the two temperatures tend to differ substantially from each other even at later times (up to
5 eddy-turnover times).

The new vibrational mechanisms appearing in (2.22) can be expressed in terms of the
instantaneous and fluctuating energies. To understand the significance of contributions to
these mechanisms from the mean and the fluctuating flow fields separately, we perform
the Reynolds decomposition of ev and e∗

v

ev = 〈ev〉 + e
′
v and e∗

v = 〈e∗
v〉 + e∗′

v . (5.1a,b)

Substituting these in the vibrational mechanism VI
′
–VII

′
in (2.22) gives

2
5

∂

∂xj

[
1
ρ

∂

∂xi

(ρ

τ
ev

)]
− 2

5
∂

∂xj

[
1
ρ

∂

∂xi

(ρ

τ
e∗
v

)]

= 2
5

∂

∂xj

[
1
ρ

∂

∂xi

(ρ

τ
〈ev〉 + ρ

τ
e

′
v

)]
− 2

5
∂

∂xj

[
1
ρ

∂

∂xi

(ρ

τ
〈e∗

v〉 + ρ

τ
e∗′
v

)]
, (5.2)

which, upon regrouping, leads to

2
5

∂

∂xj

[
1
ρ

∂

∂xi

(ρ

τ
ev

)]
− 2

5
∂

∂xj

[
1
ρ

∂

∂xi

(ρ

τ
e∗
v

)]

= 2
5

∂

∂xj

[
1
ρ

∂

∂xi

(ρ

τ
〈ev〉 − ρ

τ
〈e∗

v〉
)]

+ 2
5

∂

∂xj

[
1
ρ

∂

∂xi

(ρ

τ
e

′
v − ρ

τ
e∗′
v

)]
. (5.3)

Equation (5.3) shows that the vibrational mechanisms take two kinds of contributions:
(i) from the disparity of 〈ev〉 − 〈e∗

v〉, and (ii) from the disparity of e
′
v − e∗′

v . To gauge the
temporal variation in the relative importance of the two contributions, we define, with
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reference to (5.3), the following fraction (χ ):

χ = |FijFij|
|FijFij| + |MijMij| , (5.4)

where

Mij = 2
5

∂

∂xj

[
1
ρ

∂

∂xi

(ρ

τ
〈ev〉 − ρ

τ
〈e∗

v〉
)]

, (5.5)

and

Fij = 2
5

∂

∂xj

[
1
ρ

∂

∂xi

(ρ

τ
e

′
v − ρ

τ
e∗′
v

)]
. (5.6)

Clearly, at a given location in the flow field, the quantity MijMij represents a scalar measure
of vibrational disparity in the mean flow, whereas FijFij represents a scalar measure of
vibrational disparity in the fluctuating flow in the context of the vibrational mechanisms
VI–VII. With the initial thermodynamic fluctuations in the flow field being zero in our
simulations, the value of χ is not well defined at that instant. However, as the flow field
evolves, χ starts assuming meaningful values. An increasing value of χ at a location
in the flow field would indicate the reducing significance of the disparity in the mean
flow. In figures 8 we present the evolution of the volume-averaged (or the mean) value
of χ . In figure 8(a) we present the results from simulations B2, C and D, which differ
only in terms of the initial Damköhler number. In figure 8(b) we present the results from
simulations B2, E and F, which differ only in terms of the initial value of ξ . We observe
that, in both sets of simulations, 〈χ〉 grows and tends to reach the asymptotic value of
unity. In the first set of simulations (B2, C and D), the approach towards unity is most
rapid for the case with D = 4 and is the slowest for the case with D = 0.25. For the D = 4
case, 〈χ〉 reaches its asymptotic state within one eddy-turnover time, which coincides with
the mean vibrational temperature equilibrating with the mean temperature (figure 6a).
Similarly, for other simulations, the time instant when 〈χ〉 reaches its asymptotic state
coincides with the mean vibrational temperature equilibrating with the mean temperature.
Furthermore, we observe that, in figure 8(a), 〈χ〉 crosses the value of 0.5 quite early
(within two eddy-turnover times) in all the simulations. This is clear evidence that,
beyond two eddy-turnover times, in all three simulations (B2, C and D), the disparity
in the fluctuating flow field (represented by FijFij) is actually the major contributor to
the vibrational mechanisms (VI–VII). The same conclusion emerges from figure 8(b),
wherein we have included the results of the simulations B2, E and F, which differ only
in terms of the initial value of ξ . In all these cases, 〈χ〉 reaches its asymptotic state at the
same time (in all cases, the initial Damköhler number is identical). Evidently, beyond one
eddy-turnover time, the disparity in the fluctuating flow field is almost the sole contributor
to the vibrational mechanisms (VI–VII) in the pressure Hessian equation (2.22). These
results demonstrate that the disparity in the fluctuating field persists for a long time in
decaying turbulence (long after the mean vibrational temperature has equilibrated with
the mean temperature in decaying turbulence). This, in turn, means that the vibrational
mechanism would remain active throughout the simulation time even when the kinetic
energy has decayed to a much lower level compared with its initial state.

Our goal is to examine if the presence of the vibrational non-equilibrium phenomenon
affects the velocity gradients and the pressure-Hessian tensors at all in a compressible
flow field. Accordingly, in §§ 6 and 7, we examine the influence of the Damköhler
number on these tensors. Specifically, we examine (i) the principal strain-rate components
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Figure 8. Temporal evolution of χ . (a) Influence of Damköhler number. (b) Influence of ξ .

(eigenvalues of the strain-rate tensor), (ii) the magnitude of the velocity gradient tensor and
(iii) the magnitude of the pressure-Hessian tensor relative to that of the velocity gradient
tensor with varying Damköhler number. Flow fields from simulation cases B2, C, D and
G are employed for this study.

Subsequently, in § 7, to gain deeper insight into the exact mechanisms by which the
vibrational non-equilibrium phenomenon influences the evolution of the pressure Hessian
tensor (and in turn the velocity gradient tensor itself), we perform a detailed parametric
study of the ‘new’ mechanisms VI–VII appearing in the governing equation of the pressure
Hessian tensor (2.22). Here, we examine the influence of the initial Damköhler number
ξ on these mechanisms. Further, we also discuss the influence of the sign of the local
dilatational state on the vibrational mechanism.

6. Influence of vibrational non-equilibrium on the velocity gradient and
pressure-Hessian tensors

In compressible turbulence, the scalar aspects of the fluctuating velocity gradient tensor
are often examined in terms of the so-called solenoidal dissipation (εs) and the dilatational
dissipation (εd) of the turbulent kinetic energy

εs = 〈μωiωi〉, εd =
〈

4μ

3

(
∂ui

∂xi

)2
〉

, (6.1a,b)

where ωi represents the ith component of the instantaneous vorticity vector and (∂ui/∂xi)
is the velocity divergence. While, in general, the variation in μ could also alter the
temporal variations of εs and εd, for our simulations (B2, C, D, E, F and G) it is held
constant. Thus, the temporal changes in εs and εd must be directly attributable to the
changes in ω

′2 and θ
′2. Accordingly, we directly examine the temporal evolutions of ω

′

and θ
′
in these simulation cases to identify and understand the influence of the vibrational

parameters D and ξ .
In figure 9(a,b), we present the temporal evolutions of θ ′2 and ω′2 from the simulation

cases B2, C and D (which differ in terms of the initial Damköhler number alone). In
figure 9 (c,d), we present the temporal evolutions of θ ′2 and ω′2, from the simulation
cases B2, E and F (which differ in terms of the initial ratio of vibrational temperature to
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Figure 9. Temporal evolutions in simulation cases B2, C, D and G; (a) θ
′2 and (b) ω

′2. Temporal evolutions
in simulation cases B2, E, F and G;(c) θ

′2 and (d) ω
′2.

local temperature (ξ ) alone). For reference, we also present the results from simulation
case G, which has the same initial Mach number and Reynolds number but no vibrational
relaxation process present therein. For each curve, the instantaneous variable has been
normalized by the initial value of ω′2.

We observe that the influence of the Damköhler number (over the range of this
parameter considered in this work) on ω′2 is negligible. In contrast, the initial Damköhler
number does affect the evolution of θ ′2. We observe that, as the initial Damköhler
number increases, the magnitude of θ ′2 decreases, and this difference tends to become
larger at later times. In contrast, figure 9(c,d) shows that changes in the initial value
of ξ influence neither the statistics of dilatational fluctuations (θ ′2) nor the vortical
fluctuations (ω′2).

It is well known that, in an isotropic turbulent flow field, the probability density function
(PDF) of Aii shows a single peak distribution centred at zero. However, the distribution
becomes wider in a simulation with a higher initial turbulent Mach number (Suman &
Girimaji 2013). This tendency indicates the existence of a significant number of fluid
elements having non-zero Aii. While Aii < 0 indicates contracting fluid elements, Aii > 0
indicates expanding fluid elements. We wish to examine if such a distribution of Aii is
affected by the presence of vibrational non-equilibrium processes. In figure 10, we present
the PDFs of Aii extracted from simulations B2, C, D and G at a representative time of
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Figure 10. The PDF of Aii. Influence of initial Damköhler number (D). Cases B2, C, D and G.

t/τLE = 3.5. As the vibrational process becomes more rapid (represented by higher D), the
distribution of Aii is indeed affected. The distributions become narrower with an increase
in D. This shrinking of the distribution function explains the reduction in θ ′2 evident in
figure 9(a).

To further examine the influence of the Damköhler number on the velocity gradient
field, we turn our attention to the strain-rate tensor. We specifically examine the locally
normalized strain-rate tensor (sij), where

sij = 1
2
(aij + aji) and aij = Aij√

AmnAmn
. (6.2a,b)

The eigenvalues of the locally normalized strain-rate tensor may not give direct
information about the absolute magnitudes. Still, they are an excellent indicator of the
relative stretching/compression of a small fluid element in the principal coordinate system
of sij. We express these self-normalized eigenvalues of the s tensor ((6.2a,b), Suman &
Girimaji 2009)

α∗ = α√
α2 + β2 + γ 2

, β∗ = β√
α2 + β2 + γ 2

, γ ∗ = γ√
α2 + β2 + γ 2

, (6.3a–c)

where the eigenvalues (α, β, γ ) satisfy the condition

α ≥ β ≥ γ. (6.4)

In incompressible turbulence, it is a well-known behaviour that the ratio α∗ : β∗ : γ ∗
attains a most-probable state of 3:1:–4 (Ashurst et al. 1987). This presents the physical
picture of a small fluid element being severely stretched and severely compressed in two
mutually perpendicular directions. In contrast, the third direction still has a moderate
stretching to ensure that the volume of the fluid element is preserved (α∗ + β∗ + γ ∗ = 0).
In compressible turbulence, however, there would be an obvious departure from these
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Figure 11. The PDFs of normalized strain-rate eigenvalues (α∗ ≥ β∗ ≥ γ ∗). Cases B2, C, D and G.

proportions because the velocity field is no longer divergence free (α∗ + β∗ + γ ∗ /= 0).
Our intent here is to identify whether the presence of vibrational non-equilibrium in a
compressible flow field further influences the proportionality of the three eigenvalues or
not. In line with this objective, in figure 11(a–c) we present the PDFs of α∗, β∗ and γ ∗
extracted from simulations which differ in terms of the initial Damköhler number at a
representative time t/τLE = 3.5. Figure 11(a) includes PDFs of α∗, figure 11(b) includes
PDFs of β∗ and figure 11(c) includes PDFs of γ ∗. All the simulations represented here
have identical Reynolds number (Reλ = 60) and Mach number (Mt = 0.5). Considering
the no-vibration case (simulation case G) to be our datum for comparison at the specified
Mach number and Reynolds number, we observe that the Damköhler number does have
an influence on the distributions of normalized eigenvalues. The overall trend is that,
at increased Damköhler number, the extreme eigenvalues (α and γ ) tend to decrease in
terms of their intensity, but they still retain predominantly positive and negative signs,
respectively. On the other hand, the intermediate eigenvalue PDFs seem to be mostly
unaffected as the Damköhler number increases.

To further understand how a change in the Damköhler number results in the changes
observed in figure 9, we examine the evolution equation of the instantaneous rotation-rate
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component Wij and the trace of the velocity gradient tensor Aii

DWij

Dt
= −SikWkj − WikSkj − 0.5(Pij − Pji) + 0.5(Γij − Γji), (6.5)

DAii

Dt
= −AikAki − Pii + Γii, (6.6)

where
Sij = 1

2 (Aij + Aji) and Wij = 1
2(Aij − Aji). (6.7a,b)

In (6.5), Sij is the strain-rate tensor, Wij is the rotation-rate tensor, Pij is the
pressure-Hessian tensor and Γij is the viscous transport term. While some aspects of the
dynamics of θ ′2 can be understood with reference to the evolution equation of Aii, the
evolution equation of the components of the rotation-rate tensor (Wij) can prove to be
helpful in understanding the behaviour of ω′2. Using (6.5) and (6.6), we write the evolution
equation for the magnitude of the vorticity vector (Wilczek & Meneveau 2014) and that
for AiiAmm (neglecting the viscous processes on the right-hand sides)

D
Dt

(ωiωi) = Sikωkωi − 2εijkP̃jkωi, (6.8)

D
Dt

(AiiAmm) = −AikAkjAmm − PiiAmm, (6.9)

where P̃ij = 1
2(Pij − Pji), ωi = −εijkWjk, and εijk is the Levi-Civita tensor.

We have neglected the viscous processes in (6.8) and (6.9) as our immediate focus in
this study to examine the roles of the inertial and pressure-related processes only. On the
right-hand side of these equations, we identify the presence of two types of mechanisms:
inertial (the respective first terms in the two equations) and pressure related (the respective
second terms in the two equations). To better understand how the initial Damköhler
number influences the evolution of θ

′2 in figure 9(a) but does not influence the evolution
of ω′2 in figure 9(b), we examine the behaviour of these inertial and pressure mechanisms
in the simulation cases B2, C, D and G.

In figure 12(a,b), we plot the temporal variations in the mean values of the inertial
(〈|Sikωkωi|〉) and pressure mechanisms (〈| − 2εijkP̃jkωi|〉) in (6.8). The symbol | | denotes
the absolute value of the scalar quantity in context. Every plot in these figures has been
normalized with the initial value of ω

′3. In figure 12(a), the inertial mechanism of (6.8) is
not much affected by the changed Damköhler number. On the other hand, in figure 12(b),
even though the pressure mechanism of (6.8) seems to be affected by the initial value
of the Damköhler number, its strength is evidently too small to have any consequence
compared with the inertial mechanism of ((6.8), figure 12a). The strength of the pressure
mechanism is small because it takes a contribution from the antisymmetric part of the
pressure-Hessian tensor (6.5). Danish et al. (2014) demonstrate that, in compressible
decaying turbulence, the generation of the antisymmetric portion of the pressure-Hessian
tensor is directly influenced by the occurrence of shocklets. With the Mach number of
our current simulations being small, the antisymmetric part of the pressure Hessian must
be quite small, and thus (even though it might be influenced by the initial Damköhler
number) is not large enough to have any consequence for the evolution of the strength of
the vorticity vector (figure 9b).

In figure 13(a,b) we plot the temporal variations in the mean values of the corresponding
inertial (〈| − AikAkjAmm|〉) and pressure mechanisms (〈| − PiiAmm|〉) of (6.9). We observe
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Figure 12. Temporal variation in (a) the inertial mechanism and (b) the pressure mechanism in the evolution
equation of (6.8). Simulation cases B2, C, D and G.
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Figure 13. Temporal variation in (a) the inertial mechanism and (b) the pressure mechanism in the evolution
equation of (6.9). Simulation cases B2, C, D and G.

that a change in the initial Damköhler number has negligible influence on the inertial
mechanism of (6.9), as well (like figure 12a). However, the pressure mechanism does
show substantial influence of the initial Damköhler number. Further, unlike the behaviour
observed in figure 12(a,b), the order of magnitude of the pressure mechanism in
figure 13(b) is indeed comparable to that of the inertial mechanism in figure 13(a). Based
on these observations, we conclude that the perceivable influence of the initial Damköhler
number on the magnitude of the dilatation fluctuations in figure 9(a) is attributable to the
changes in the pressure-Hessian tensor induced by the initial Damköhler number.

Suman & Girimaji (2011) have examined the statistics of an aptly normalized form of
the algebraic sum of the inertial and pressure mechanisms in the evolution equation of
Aii (6.6). This algebraic sum does represent the rate of change in the dilatation rate (Aii)
following a local small fluid element (while neglecting the role of viscous processes). The
authors reported that, as the initial turbulent Mach number increases in their simulation
(even with no vibrational physics included therein), the PDF of this quantity spreads,
implying the presence of higher rates of changes in the dilatation rates of fluid elements.
Following a similar line of investigation as followed by those authors, in this work, we
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Figure 14. Temporal evolution of 〈δ2〉 in simulation cases (a) B2, C, D and G and (b) B2, E, F and G.

define a quantity, δ

δ = −AikAki − Pii. (6.10)

In figure 14(a), we present the temporal evolution of the mean of δ2 from the simulation
cases B2, C, D and G. All these curves are normalized by the initial value of ω′4. We
observe that, in figure 14(a), as the initial Damköhler number increases, there is indeed a
suppression in the magnitude of δ. This suppression does provide an explanation for the
suppression in θ ′2 observed earlier in figure 9(a). In figure 14(b) we present the temporal
evolution of the mean of δ2 in simulation cases B2, E, F (which differ in terms of initial
ξ alone) and G. Evidently, the initial value of ξ has no consequence for the evolution of
the mean of δ2. This observation is consistent with the observation made in figure 9(c)
wherein no influence of ξ has been observed on the evolution of θ ′2.

Suman & Girimaji (2011) have demonstrated that, in the context of the velocity gradient
dynamics (2.15), normalizing the pressure-Hessian tensor (Pij) with the square of the
velocity gradient tensor’s magnitude is appropriate. This normalized form delineates the
relative importance of the pressure-Hessian process in comparison with the self-stretching
terms in (2.15). This relative magnitude is presented as φ = √

PmnPmn/(AijAij), which
is a dimensionless quantity. In figure 15(a), we present the PDF of ln φ extracted
from simulations B2, C, D and G at the time instant t/τLE = 3.5. All these PDFs are
single-peaked distributions. However, we do observe some perceivable effect on these
PDFs as the Damköhler number changes. With an increase in the value of the initial
Damköhler number, the peak of the distribution shifts to the left, indicating a general
decrease in the strength of the pressure-Hessian tensor compared with that of the velocity
gradient tensor. In figure 15(b), we present the PDF of ln φ extracted from simulations B2,
E, F and G at the time instant t/τLE = 3.5. Evidently, the influence of ξ on these PDFs is
negligible.

Based on the results of this section, we conclude that, even within the moderate range
of the Damköhler number considered in this work, there is a considerable influence of the
vibrational non-equilibrium process (represented by varying D) on the pressure-Hessian
tensor, which in turn, affects the velocity gradient statistics. Overall, an increased
Damköhler number suppresses the dilatational fluctuations, whereas the initial value of ξ

does not seem to have any significant effect. To gain further insights, in the next section, we
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Figure 15. The PDF of ln
√

PmnPmn/AijAij: (a) simulation cases B2, C, D and G and (b) simulation cases B2,
E, F and G.

directly examine the temporal behaviour of the ‘new’ vibrational mechanisms instrumental
in the evolution equation of the pressure-Hessian tensor (3.1).

7. Behaviour of vibrational mechanisms VI
′

and VII
′

In this section, we focus on the vibrational mechanisms that have emerged in the evolution
equation of the pressure-Hessian tensor (3.1). Accordingly, we examine the behaviour of f
(3.2) and attempt to understand how the initial Damköhler number affects the vibrational
mechanisms.

To understand the influence of the initial Damköhler number on f , we present the
temporal evolution of 〈| f |〉 from simulation cases B2, C and D in figure 16(a). We observe
that, in each case, 〈| f |〉 undergoes a two-phase evolution. In the first phase of evolution,
〈| f |〉 increases rapidly, reaches a peak value and then decays monotonically. The peak
value of 〈| f |〉 is higher in a simulation with a higher initial Damköhler number. Indeed,
over the entire duration of the simulations (up to 5 eddy-turnover times), there is an
apparent incremental shift in 〈| f |〉 with an increase in the initial Damköhler number at
all times. We observe the mean value of f is predominantly negative in all simulations at
all times. This implies that VI < VII in (2.22) at most locations of the flow domain. This
bias in the distribution is plausibly due to our choice of the initial state of the flow field
wherein Tv < T (or equivalently, ev < e), which means ξ < 1. Figure 16(a) shows that
such bias continues to exist in the flow field at later times too.

We have examined the influence of the initial ratio ξ = Tv/T , as well, on the vibrational
mechanisms VI′ and VII′. The temporal evolution of | f | from simulations B2, E and F
are presented in figure 16(b). Evidently, the influence of initial ξ on | f | is significantly
smaller than the influence of the initial Damköhler number (figure 16a). This contrasting
behaviour does provide an explanation for the observations made earlier in the previous
section wherein the statistics of the pressure-Hessian tensor and the velocity gradient
tensor seem to be affected by the initial Damköhler number but not much by the initial
value of ξ .

In incompressible fluid flows, the term aii is consistently zero for all fluid elements.
However, in compressible flows, aii can assume positive, negative or zero values. A value
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Figure 16. Temporal evolution of | f |. (a) Simulation cases B2, C and D and (b) simulation cases B2, E and F.

of aii > 0 signifies an expanding fluid element, aii < 0 indicates contraction and aii = 0
implies an instantaneously volume-preserving fluid element.

Suman & Girimaji (2011) demonstrated that some of the flow statistics (related to
velocity gradients) in a compressible flow field may not show any variation by changing
a global compressibility parameter like Mt. However, when examining the statistics of
the same quantities conditioned upon discrete levels of aii or even upon the sign of aii,
significant variations are observed. In our study, it is pertinent to examine whether f
exhibits any sensitivity to the local compressibility parameter aii. To examine this, we
focus on the simulation case B2 (Mt = 0.5). In figure 17, we present the PDF of the mean
of f conditioned upon the sign of instantaneous aii at the time instant t/τLE = 2.5. We
include two PDFs, separately conditioned upon (a) the contracting and (b) the expanding
fluid elements. Clearly, these evolutions do not show much difference compared with the
unconditional evolution (included in figure 17 for easy comparison). We have examined
the conditioned PDFs of aii at two more time instants (t/τLE = 1.5, and t/τLE = 3.5)
(results not included to avoid repetition). However, the PDFs of f remain identical for all
time instants. Based on these results, we conclude that the importance of the vibrational
mechanism in (3.1) seems to be similar for the contracting and the expanding fluid
elements. It is plausible to attribute these observations to the fact that there is no explicit
appearance of Aii and, for that matter, any component of Aij, in vibrational mechanisms VI
and VII in (2.22).

8. Conclusions

The overarching motivation behind this work is to enhance our understanding of
the velocity gradient dynamics in compressible turbulent flows. Specifically, we are
interested in flows wherein a non-equilibrium exists between the vibrational and the
translational–rotational energy modes of the constituent molecules. Such flow fields
typically exist past aerospace vehicles like missiles and spacecraft, which move through
planetary atmospheres at hypersonic speeds. Specifically, our interest is to understand how
the vibrational relaxation process influences the pressure-Hessian tensor and the velocity
gradient field.

In this work, we first derive the exact evolution equation of the velocity gradient and the
pressure-Hessian tensors in a vibrationally excited flow field. We identify ‘new’ unclosed
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Figure 17. Conditional PDF of f (3.2). Influence of normalized dilatation rate (aii) (case B2).

vibrational mechanisms that emerge in the evolution equation of the pressure-Hessian
tensor. To further understand the physics of these new mechanisms, we perform an
extensive set of DNS of compressible decaying turbulence. Besides the continuity,
momentum and energy equations, these simulations solve an evolution equation for the
vibrational energy, as well. The Landau–Teller model is used to simulate the exchange
of energy between the vibrational mode and the translational–rotational modes. These
simulations are performed over a range of Damköhler number and the initial ratio of
the mean vibrational temperature to the mean temperature. The simulations employ the
hy2Foam solver, which is based on the OpenFOAM platform.

The major findings of this study are:

(i) Among the two different non-dimensional parameters considered in this study, the
Damköhler number is found to be the major influencer on the ‘new’ vibrational
mechanisms of the pressure-Hessian tensor identified in this work. In contrast, the
other parameter, the initial ratio of the mean vibrational temperature to the mean
temperature of the flow field, does not seem to have any significant impact.

(ii) Even though the mean vibrational energy tends to reach an equilibrium
with the mean translational–rotational energy over a few (3–5) eddy-turnover
times, the difference in the fluctuating vibrational energy and the fluctuating
translational–rotational energy tends to persist in the flow field for a long time. This
keeps the vibrational mechanism active over a long duration, even when the turbulent
kinetic energy has diminished significantly.

(iii) The vibrational mechanisms are found to be unaffected by the sign of the dilatational
state of the local fluid element (expanding/contracting fluid elements).

(iv) As the vibrational relaxation becomes more rapid (in other words, as the initial
Damköhler number increases in a simulation), the vibrational mechanisms of the
pressure-Hessian equation become more pronounced. However, this pronouncement
has a mitigating effect on the strength of the pressure-Hessian tensor.
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(v) An increase in the Damköhler number causes a significant reduction in the strength
of the dilatational fluctuations of the flow field. However, the vortical fluctuations
are not affected by a change in the initial Damköhler number.
The findings of this study are expected to aid in the development of closure
models for the pressure-Hessian tensor in compressible flows under the influence
of vibrational non-equilibrium.
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