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To the memory of TADASI NAKAYAMA

In the first part of the present paper, we shall make some simple obser-

vations on the ideal class groups of algebraic number fields, following the

group-theoretical method of Tschebotarew1}. The applications on cyclotomic

fields (Theorems 5, 6) may be of some interest. In the last section, we shall

give a proof to a theorem of Kummer on the ideal class group of a cyclotomic

field.

1. For any prime numbers p and q, let

d(q,p)=2, ίor p = q,

= the order of p mod q, for p^ q.

For any integer w>l, we then define

din,p) = the minimum of d(q,p) for all prime factors q of n.

THEOREM 1. Let G be a finite group of order n. Let M be a G-module over

the prime field P with p elements, and let d be the dimension of M over P.

Suppose that the action of G on M is non-trivial. Then

d>d(n,p).

Proof. Let a be an element with minimal order in G such that the action

of a on M is non-trivial. Let q be a prime dividing the order of a. Put

H=Gi/G2, where d and G2 denote the subgroups of G generated by a and aq

respectively. Then M is also an //-module over P, and the action of H on M

is non-trivial. If q=p, we see immediately that d^2 = d(p,p). Suppose that

. Then M is completely reducible, and it has an irreducible submodule on
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which the action of H is again non-trivial. As is well-known, such an irre-

ducible submodule is obtained by decomposing FLEβ, the group ring of H over

P. Let o denote the maximal order of the cyclotomic field of g-th roots of unity.

Identifying H with the group of q-th roots of unity in o, we may consider the

o-module o/βo as an //-module over P. We then see easily that

Here P denotes the 1-dimensional trivial //-module, and £1, . . . , pg are the

prime ideals of o containing p. Since o/p, is a field, it is an irreducible o-module.

Hence it is also irreducible as an ϋΓ-module over P, and the action of H on it

is non-trivial. It is known that the dimension of o/fo over P, namely, the degree

of the extension o/p, over P, is equal to d(q,p), the order of p mod q. Since

M contains such a submodule o/ί>, , we have d>d(q,p), q.e.d.

We note that if p = 2, then d(q,p)>2 for every prime q so that d(n,p)^>2

for any integer n^l. Hence we also have d>2 in Theorem 1.

2. Let H e a finite algebraic number field, and let m be an integral divisor

of k, namely, a product of a finite number of prime divisors of k, archimedean

or non-archimedean2). Let Im(k) denote the group of all ideals of k which are

prime to m, and let Hm(k) be the subgroup of all principal ideals (<χ) with or == 1

mod m. We put Cm(k) = Im(k)/Hm(k), and denote the order of Cm(k) by

hχn(k). For m = l, C(k) =^Ci(k) is the ideal class group of k, and h(k) = hΛk)

is the class number of k.

Let Mbe a factor group of Cm(k) : M=Im(h)/Ht Hm(k)c:Hc:Im(k). Let

G be a group of automorphisms of k. If both Im(k) and H are invariant under

the action of G, we may consider M as a G-group (or G-module). In such a

case, we shall simply say that M is G-invariant.

3. Throughout this section, F will denote a finite algebraic number field,

K a finite Galois extension of F with degree n, and G the Galois group of KjF.

THEOREM 2. Let m be an integral divisor of F, and let p be a prime number

such that (p, n) - (p, hm(F)) = 1. Let M be a G-inυariant factor group of Cm(K)

2> For the classical class field theory used here and in the following, see H. Hasse's
"Klassenkόrperbericht" in Jahresbericht D. M.-V., 1926, 1927, 1930.
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with order a power of p, and let M^ 1. Then the rank r of the finite abelian

group M is at least equal to d(nf p):

r>d(n,p).

Proof. We first note that m may be considered also as a divisor of K in

the obvious manner so that the group Cm(K) is well defined. Let N-M/Nft.

Then N* 1, and it has the same rank as M Hence, replacing M by N if

necessary, we may assume that M^ = 1. Since M is a G-invariant factor group

of Cm(K), we may then consider M as a G-module over P. By Theorem 1, it

is sufficient to show that the action of G on M is non-trivial.

Suppose that G acts trivially on M. Let L be the abelian extension of K

which corresponds by class field theory to the ideal class group M. Since M

is G-invariant, L/F is a Galois extension. Let A and B denote the Galois

groups of L/F and L/K respectively. Then A/B = G, and B is canonically

isomorphic to M so that G also acts trivially on B. Since the order of B is a

power of p and is prime to the order n of G, the group extension A/B splits,

and we have A = BxC, C~G. Let Ebe the intermediate field of F and L such

that the Galois group of LIE is C. Then E is an abelian extension of F with

Galois group A/C= B = M. Let $ be a prime divisor of L, prime to m, and let

T be the inertia group of $ for the extension L/F. Since L/K is the abelian

extension corresponding to the factor group M of Cm(K), $ is unramiίied by

the extension L/K so that TΠB = 1. Since the orders of B and C are prime

to each other, it follows that T is contained in C. Therefore, if p is any prime

divisor of F, prime to m, then p is unramified in K. By class field theory, the

abelian extension EIF then corresponds to a factor group of Cm(F), isomorphic

to the Galois group A/C^M. Since M"Φl, this implies that the order of Cm(F)

is divisible by p, and it contradicts the assumption (p, h\n(F)) = 1. Therefore

the action of G on M is not trivial, and the theorem is proved.

COROLLARY. Let p be a prime number such that (p, n) - (p, h{F)) = 1. Let

M be a G-invariant factor group of CiK) with order a power of p, and let M # 1.

Then the rank r of M is at least equal to d{n}p):

r>d(nyp).

In Theorem 2, suppose further that (p — 1, n) =1. For any prime factor q

of n, we then have p^β 1 mod q so that diq,p) Ξ>2. Hence din, p) ^ 2 , and it
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follows from Theorem 2 that Mis a non- cyclic group. Note that for p = 2, the

above assumption is always satisfied.

THEOREM 3. Let m and p be as stated in Theorem 2 : [p, n) = (/>, hm(F)) = 1.

If p divides hm(K), then the rank of the Sylow p-subgroup of Cm(K) is at least

equal to d(n,p).

Proof. This follows immediately from Theorem 2, because Cm(K) has a

G-invariant factor group isomorphic to its Sylow ^-subgroup.

COROLLARY. Let p be a prime number such that (/>, n) -= (p, h(F)) = 1. If p

divides the class number h(K), then the rank of the Sylow p subgroup of the

ideal class group C{K) is at least equal to din,p).

Under the additional assumption (p — 1, n) = 1, we see that the Sylow p-

subgroup in Theorem 3 and its corollary is non-cyclic. In particular, if n =

IK: F] is odd, h(F) is odd, but h(K) is even, then the Sylow 2-subgroup of

C{K) is a non-cyclic group. We can also prove by using the corollary of

Theorem 2 that under the same assumption, if h(K) is exactly divisible by an

odd power of 2, then the rank of the Sylow 2-subgroup is at least equal to 3.

For example, if h(K) is exactly divisible by 8 = 23, then the Sylow 2-subgroup

is an abelian group of type (2,2,2).

4. Since MQ) = 1 for the rational field Q, we obtain the following result

from the corollary of Theorem 3

THEOREM 4. Let K be a unite Galois extension of Q with degree ny and

let p be a prime number^ prime to n. Suppose that the class number h(K) is

divisible by p. Then the rank of the Sylow p-subgroup of the ideal class group

CiK) is at least equal to din, p).

COROLLARY. Let K be a finite Galois extension of Q with an odd degree n.

Suppose that the class number h(K) is even. Then the Syloiv 2-subgroup of the

ideal class group C(K) is non-cyclic, and its rank is at least equal to d{n>2).

The assumption (p, n) = 1 in Theorem 4 can be replaced by various other

conditions on K. As a typical example, we consider the following case of

cyclotomic fields.

THEOREM 5. Let I be a prime number and let K be the cyclotomic field of

f-th roots of unity (e>l). Suppose that the class number h(K) is divisible by
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a prime number p, and let

=pan, (p,n)=l,

Then the rank of the Sylow p subgroup of the ideal class group C( K) is at least

equal to d(nyp).

Proof Let F be the intermediate field of Q and K such that ίK : F ] = n,

IF: QR=pa. Since we know that h(F) is not divisible by p3), the theorem

follows from the corollary of Theorem 3

COROLLARY. Let K be as in Theorem 5. Suppose that the class number

h(K) is even, and let

Then the Sylow 2-subgroup of the ideal class group C(K) is non-cyclic, and its

rank is at least equal to din, 2).

Remark. By a theorem of Weber, the class number h(K) is odd for 1 = 2.

The above corollary can be further refined as follows. Let / denote the

automorphism of the cyclotomic field K, mapping each element in K to its

complex-conjugate. Clearly / induces an automorphism of C=C(K), J : C-+C.

Let C+ and C~ denote the kernels of the endomorphisms 1 — / : C-> C and 1 -f/ :

C-+C, respectively, so that we have

It follows that the class number h(K) is the product of the order h'(K) of C~

and the order h"(K) of Cι+J. h'(K) is called the first factor of h(K), and

h"(K) the second factor of h(K).

Let S2 = So(K) denote the Sylow 2-subgroup of C = C(K). Then Sϊ = S2nC+

and S2~ = S2ΓiC~ are the Sylow 2-subgroups of C+ and C~ respectively. We see

immediately from the definition that S2

+ Π S2" is the group of all x in S2

+ satis-

fying x2 = 1, and that it is also the group of all y in S2~ satisfying y2 = 1. Hence

S£ and S2~ have the same rank. It follows in particular that St = 1 if and only

if Sϊ =1. Suppose that S2

f = Sϊ = 1. Then we see from S2/SΪ = SΓ'cSΓ that

& = Ί. Therefore the three conditions Si = 1, S2

+ = 1, and S2~ = 1 are all equi-

3) K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem.
Univ. Hamburg, 20 (1956), pp. 257-258.
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valent to each other. This result was first obtained by Kummer in the form

that the class number h(K) is odd if and only if its first factor h'(K) is odd41.

THEOREM 6. Let K be as in Theorem 5 and suppose that the class number

h(K) is even. Then the groups St and S2~ are both non-cyclic, and they have

the same rank which is at least equal to din, 2), n being the same as in the

corollary of Theorem 5.

Proof. We have already noted that St and S2~ have the same rank. If

St = S2, then the theorem follows immediately from the corollary of Theorem

5. Suppose that St # S 2 . Let F be the intermediate field of Q and K such that

LK: F] = n, and let G denote the Galois group of K/F. Then the ideal class

group C(K) has a G-invariant factor group isomorphic to S2/St. Since h(F) is

odd5), it follows from the corollary of Theorem 2 that the rank of SjSt is at

least equal to din, 2) ^> 2. Since S2~ contains the subgroup S\~J which is iso-

morphic to S2/St, the theorem is proved also in the case St ^S 2 .

EXAMPLE. Let K be the cyclotomic field of 29-th roots of unity. It is known

that C" is a group of order 8 so that C" = S2"
6). Since 28 = 22 7, d(7,2) = 3, we

see immediately from the above that C~ is an abelian group of type (2,2,2).

5. Let K be the cyclotomic field of 41-st roots of unity. We know that

the class number h{K) is then divisible by 121 = 112.7) However, since d(4D, 11)

= d(5,11) = 1, we cannot see from Theorem 5 whether the Sylow 11-subgroup

of C(K) is cyclic or non-cyclic. In a paper of 1853, Kummer proved an inter-

esting theorem on cyclotomic fields by which we can settle in certain cases

such as above whether or not the subgroup C~(K) of C{K) is cyclic8). How-

ever, in his paper, Kummer worked with logarithums of ideals, not of ordinary

numbers, and it seems that his proof needs some further explanation^. There-

fore, we shall show in the following how Rummer's result can be justified from

our point of view.

4> For a more complete result in this direction, see H. Hasse, ΪJber die Klassenzahl
abelscher Zahlkόrper, Berlin, 1952, § 37.

5> Iwasawa, op. cit.
6> Hasse, Klassenzahl, p. 150.
7> Hasse, Klassenzahl, p. 152.
S) E. Kummer, Uber die Irregularitat der Determinanten, Monatsber. Akad. d. Wissen-

sch., Berlin, 1853, pp. 194-200.
9> Hasse, Klassenzahl, p. 99.
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Let / be an odd prime, and let K denote as before the cyclotomic field of

f-th roots of unity (e^l). The Galois group G of K/Q, is a cyclic group of

order m = (7— I)/ 6 ' 1, and it is isomorphic to the multiplicative group of integers

mod f, a canonical isomorphism being given by aa -+ a mod /* where aa denotes

the automorphism of K mapping each Λth root of unity C to Ca : <yβ( C) = ζa. Let

i?=Z[GJ be the group ring of G over the ring of rational integers Z. Let ω

be an element of the group ring QCG] defined by

and put

Further, let R~ denote the set of all a in R such that ( l + / ) α = 0, and let

I~ = IΓ\R~. Then both R~ and /" are ideals of R, and we have

h'(K) = LR~ : / " ] . 1 0 )

We shall next consider the exponent of the finite abelian group R~/I~.

Let F denote the cyclotomic field of ra-th roots of unity. For each character

X of the multiplicative group of integers mod Ie, we define an element ex of the

group ring FίGJi by

, (a, /) = 1.

Then the elements s% form a set of orthogonal idempotents in FCG~] such that

with
e Σ \ fee F.

By the classical class number formula,

where X ranges over all characters mod f such that X{ -1) = — 1. Therefore

fe^O for £ ( - ! ) = - 1 .

10> K. Iwasawa, A class number formula for cyclotomic fields, Ann, of Math., 76 (1962),
pp. 171-179,
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THEOREM 7. Let t be the exponent of the finite abelian group R~/Γ, and

let N denote the least positive rational integer such that N/hχ is an algebraic

integer for every character 7 with Z( — 1) = — 1. Then N is a factor of 2t, and

t is a factor of ^mN.

Proof. For each character X with YΛ - 1 ) = - 1, let

Then gχ is an algebraic integer in F. Since 1 - / is an element of R~, t(l-J)

is contained in Γ. Hence /(I - / ) = ωa with some a in R. Let aε% = axεχ with

ax in F. Since a is in R, a* is an algebraic integer in F. On the other hand,

( l - / ) e χ = 2eχ for /( - 1) = - 1. Therefore 2tεx = t(l ~J)εχ - ωaεχ = ωeχαex =

hxεxaxεχ = aχh%εχ, and we have

2t = axhχ, 7Λ-1) = - 1 .

Therefore 2t/h% is an algebraic integer for every character Z with Z( — 1) = — 1,

and we see from the definition of N that iV is a factor of 2£.

Let

ζ = m^Σ

where 7 ranges over all characters with X{ - l) = - 1. It is clear that ξ is a

linear combination of the elements of G with all coefficients algebraic integers

in F. We also see easily that these coefficients are invariant under the Galois

automorphisms of F/Q. Therefore ξ is contained in R = Z[G], and hence in

R~. Since

x > 7Λ - 1 ) = -
X

we obtain

Therefore -g-mMl-/) is contained in i?~Πωi? = 7". Since R =(1-J)R9

~2~mNR~ is then contained in 7", and we see that Ms a factor of -^-mN.

We now prove the following theorem of Kummer mentioned in. the above.

THEOREM 8. The exponent of the group C~ = C~{K) is a factor of tnN, and

the exponent of C ι~J is a factor of ~γmN.
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Proof. The group ring R = Z[G] may be considered as an operator domain

on C in the obvious manner. It is well known that xa = 1 for any x in C and

for any a in /. Since -^-mN{l — J) is contained in I" by Theorem 7, we have

-ι mN{i-J)
X2 = 1

for any x in C. Therefore the exponent of C w is a factor of ~ψmN.

Now, let y be any element of C~. Since yli~J = 1, we have jy w — y2. Hence

it follows from the above that ymN = 1. Therefore the exponent of C~ is a

factor of mN.

COROLLARY. Suppose that C~(K) is a cyclic group. Then h'(K) is a factor

of mN.

Proof. This is obvious, because h'(K) is the order of C~(K).

Let p be a prime number. For any rational integer α ^ l , let (a)p denote

the highest power of p dividing a. Then it follows from Theorem 7 that (t)p

= (N)p for any p with (p, m) = 1. We also see from Theorem 8 and from its

corollary that for any prime number p, the exponent of the Sylow ^-subgroup

of C~ is a factor of {mN)p> and that if the Sylow ^-subgroup is cyclic, then

(h'(K))p must be a factor of {mN)p. By using this fact and by computing

h'(K) and mN, Kummer was able to see that the Sylow 11-subgroup of C~ for

the cyclotomic field of 41-st roots of unity is non-cyclic. He also verified that

the group C is cyclic for every prime jί> < 100, i>^29, 4i.Π)

Massachusetts Institute of Technology

ll) Kummer, op. cit
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