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Controlled Homeomorphisms Over
Nonpositively Curved Manifolds
Bruce Hughes, Larry Taylor and Bruce Williams

Abstract. We obtain a homotopy splitting of the forget control map for controlled homeomorphisms over
closed manifolds of nonpositive curvature.

1 Introduction

The theme of controlled topology is to take standard objects in geometric and algebraic
topology, such as homotopy equivalences and h-cobordisms, and introduce estimates on
the size of these objects measured via a map to an auxiliary metric space. There are many
implications for classical topology and geometry—see Weinberger [11] for a recent expo-
sition.

In this paper we study controlled homeomorphisms when the auxiliary space is a closed
manifold of nonpositive curvature (i.e., a closed Riemannian manifold whose sectional
curvatures are all less than or equal to zero) and the map is a fibre bundle projection (or,
more generally, a manifold approximate fibration) defined on a closed manifold.

To illustrate our main result, let h : F → F be a homeomorphism on a closed manifold
F and let B be a closed manifold of nonpositive curvature. Suppose h × idB is isotopic to
idF×B. Since h need not be isotopic to idF , the isotopy h × idB � idF×B need not be fibre
preserving over B; that is, when the isotopy is composed with projection to B× I, the result
might differ from the projection. However, we prove (assuming dim F + dim B ≥ 5) that
if the composition (of the isotopy with projection) is at least homotopic to the projection
rel F × B × ∂I, then we can choose isotopies which are arbitrarily close to being fibre
preserving; that is, for every ε > 0 there exists an isotopy Hε from h × idB to idF×B such
that pBHε(x, y, t) is within ε of y for each (x, y, t) ∈ F×B×I where pB denotes projection to
B (see Corollary 5.2 for a precise statement and see Example 5.3 for homeomorphisms h to
which this result applies). Because close maps are homotopic, this ε condition is obviously
sufficient for having an isotopy as above whose composition with projection is homotopic
to the projection rel F × B× ∂I.

This follows from a general result about the injectivity of a ‘forget control’ map from
the space of controlled homeomorphisms to the space of homotopically controlled home-
omorphisms. We work in the generality of a manifold approximate fibration p : M → B
(see [5]), but our results are new and interesting for the special case of a fibre bundle projec-
tion p : M → B (or even, as in the paragraph above, for a product projection F × B→ B).
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The spaces of controlled and homotopically controlled homeomorphisms are denoted
by TOPc(p : M → B) and TOPh(p : M → B), respectively (see Sections 2, 3 for the precise
definitions as simplicial sets). A vertex of TOPh(p : M → B), a homotopically controlled
homeomorphism, is a homeomorphism h : M → M together with a homotopy ph � p.
This space fits into a fibration sequence

ΩMap(M,B) −−−−→ TOPh(p : M → B)
forget
−−−−→ TOP(M)

where the forget map forgets the homotopy (of course, the image of this map need not
meet all components of TOP(M)) and ΩMap(M,B) is the loop space of the space of all
maps from M to B based at p : M → B.

A vertex of TOPc(p : M → B), a controlled homeomorphism, is a homeomorphism
h : M → M together with a parametrized family of homeomorphisms {ht | 0 ≤ t < 1}
such that h = h0 and limt→1 pht = p. The family induces a homotopy ph � p so that
there is a ‘forget control’ map ψ : TOPc(p : M → B)→ TOPh(p : M → B).

Main Theorem If p : M → B is a manifold approximate fibration, dim M ≥ 5, and B is a
closed manifold of nonpositive curvature, then the forget control map

ψ : TOPc(p : M → B)→ TOPh(p : M → B)

is homotopy split injective. That is, there exists a simplicial map

r : TOPh(p : M → B)→ TOPc(p : M → B)

such that r ◦ ψ is homotopic to idTOPc(p : M→B).

This is restated and proved as Theorem 5.1 below.
Two special cases help illustrate the spaces of homeomorphisms involved (although the

theorem is trivial in these two cases). First, if B is a point, then

TOPc(M → point) � TOPh(M → point) � TOP(M).

Second, if M = B and p = idM , then TOPc(idM : M → M) is contractible (it is essentially
the space of paths in TOP(M) based at idM) and there is a fibration sequence

ΩMap(M,M) −→ TOPh(idM : M → M) −→ TOP(M).

The components of TOP(M) in the image of this fibration consist of those homeomor-
phisms which are homotopic to idM . When M = B is a closed manifold of nonpositive
curvature these components are not contractible (see Farrell and Jones [2] for explicit cal-
culations).

When M is assumed to be aspherical or, even stronger, nonpositively curved then more
explicit information about controlled, and homotopically controlled, homeomorphisms is
available. See Example 2.1 and Corollaries 5.4 and 5.5.

This paper is part of a series dealing with controlled topology over manifolds of nonpos-
itive curvature [6], [7]. Future installments will deal with controlled homotopy-topological
structures, controlled unstable L-theory, and generalized Novikov conjectures for surgery
and concordance theory [8], [9].
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2 Delooping Homotopically Controlled Homeomorphisms

The goal of this section is to define TOPh(p : M → B) and show that it is homotopy equiv-
alent to the loop space of a certain simplicial set Spaces(B) which we will define below.

Let B be a topological space. Let M be a finite dimensional, separable metric space with a
fixed closed embedding i : M → �2 such that for some positive integer N , i(M) is a subspace
of the standard RN ⊆ �2. For notational simplicity, we will also let i denote the embedding
i × id∆k : M ×∆k → �2 ×∆k.

Homeomorphisms and Maps

Let TOP(M) be the simplicial group of homeomorphisms on M. Thus, a k-simplex is a home-
omorphism h : M ×∆k → M ×∆k which is fibre preserving over∆k.

Let Map(M,B) be the simplicial set of maps from M to B. Thus, a k-simplex is a map
f : M × ∆k → B × ∆k which is fibre preserving over ∆k. The fibre preserving condition
is a matter of convenience for this particular simplicial set: Map(M,B) as we have defined
it, is homotopy equivalent to the similarly defined simplicial set with a blocked (instead of
fibre preserving) condition.

Fix a map p : M → B. Thus, p is a vertex in Map(M,B). Define a simplicial map
Ψ : TOP(M)→ Map(M,B) by

Ψ(h) = (p × id∆k ) ◦ h : M ×∆k → B×∆k.

Our convention for the standard simplices is that∆k+1 is the span 〈v0, . . . , vk+1〉 and the
k + 1-face is ∂k+1∆

k+1 = 〈v0, . . . , vk〉 = ∆k.

Homotopically Controlled Homeomorphisms

Let TOPh(p : M → B) = TOPh(p) denote the homotopy fibre of Ψ over p. Thus, a k-
simplex of TOPh(p) consists of an ordered pair (h, g) where h : M × ∆k → M × ∆k is a
k-simplex of TOP(M) and g : M × ∆k+1 → B × ∆k+1 is a (k + 1)-simplex of Map(M,B)
such that

1) g|(M × vk+1) = p, and
2) g|(M × ∂k+1∆

k+1) = (p × id∆k ) ◦ h.

For example, a vertex of TOPh(p) essentially consists of a homeomorphism h : M → M
together with a homotopy from ph to p. This is why we call the elements of TOPh(p)
homotopically controlled.

The fibration TOPh(p : M → B) → TOP(M)
Ψ
−→ Map(M,B) induces a long exact

sequence of homotopy groups:

· · · → πn+1 Map(M,B)→ πn TOPh(p : M → B)→ πn TOP(M)→ · · ·

→ π1 Map(M,B)→ π0 TOPh(p : M → B)→ π0 TOP(M)→ π0 Map(M,B).
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Example 2.1 Let p : M → B be a map with M and B (connected and locally compact)
aspherical ANRs. Fix basepoints in M and B and let Map∗(M,B) be the simplicial set of
based maps so that there is a fibration

Map∗(M,B)
inclusion
−−−−→ Map(M,B)

evaluation
−−−−−→ B.

Since πn(B) vanishes for n �= 1 and Map∗(M,B) is homotopy equivalent to the dis-
crete set of group homomorphisms hom(π1M, π1B), it follows from this fibration that
πn Map(M,B) = 0 for n ≥ 2. Thus, the induced forgetful homomorphism

πn TOPh(p : M → B) −→ πn TOP(M)

is an isomorphism for n ≥ 2, and an injection for n = 1. See Corollaries 5.4 and 5.5 for an
application.

Spaces

Let Spaces(B) be the simplicial set of spaces over B. A k-simplex consists of a closed subset X
of RL × B×∆k ⊆ �2 × B×∆k for some L depending on X, such that the composition

X ⊆ �2 × B×∆k proj
−→ ∆k

is the projection of a locally trivial fibre bundle. The restriction of the projection �2 × B×
∆k → B×∆k defines a map X → B×∆k, so a k-simplex is essentially a k-parameter family
of spaces over B.

There is a closed embedding j : M → �2 × B defined by x �→
(
i(x), p(x)

)
. In this way,

p : M → B determines a vertex of Spaces(B) which we will denote by p. We will also use j
to denote the embedding j × id∆k .

Delooping

We will now define a simplicial map Γ : TOPh(p)→ Ω Spaces(B) where the loops are based
at p, and then prove that Γ is a homotopy equivalence. We begin with the following version
of the well-known Klee trick (see e.g. [10, p. 74]).

For any space Y , let Iso(Y ) denote the simplicial set of isotopies on Y . Thus, a k-simplex
is a homeomorphism h : Y ×∆k × I → Y ×∆k × I which is fibre preserving over∆k × I
and h|Y × ∆k × {0} = idY×∆k×{0}. Recall N is an integer such that i(M) ⊆ RN . The
following proposition says that every homeomorphism of M can be realized by an isotopy
of R2N .

Proposition 2.2 There exists a simplicial map α : TOP(M) → Iso(R2N ) such that for each
k-simplex h of TOP(M),

α(h)1 ◦ i ◦ h = i

where i denotes the embedding i × id∆k : M ×∆k → RN ×∆k.
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Proof Consider the graph of ihi−1 : i(M)→ i(M) as a subset of R2N . As usual, push up to
this graph, over to the image, then back over to the diagonal and down to the domain.

Given a k-simplex (h, g) of TOPh(p), we will describe a closed embedding

β(h, g) = β : M ×∆k+1 → �2 × B×∆k+1

and then define Γ
(
(h, g)

)
to be the image of β.

For u ∈ ∆k+1, write u = tvk+1 + (1− t)w where w ∈ ∆k and 0 ≤ t ≤ 1. Then for x ∈ M,
define

β(x, u) =
(
proj�2

◦α(h)t ◦ i ◦ h(x,w), g(x, u)
)
.

Note that
β|M ×∆k = jh and β|M × vk+1 = j.

Lemma 2.3 β : M ×∆k+1 → �2 × B×∆k+1 is a closed embedding.

Proof Consider the composition

β ′ : M ×∆k+1 β
−→ �2 × B×∆k+1 proj

−→ �2 ×∆
k+1.

We begin by showing that β ′ is a closed embedding.
To this end, let q : ∆k×I → ∆k+1 be the quotient map given by (w, t) �→ tvk+1 +(1−t)w.

Define β ′ ′ to be the composition

β ′ ′ : M ×∆k × I
h×idI−−−−→ M ×∆k × I

i×id I−−−−→ �2 ×∆k × I
α(h)
−−−−→ �2 ×∆k × I.

Note that β ′ ′ is a closed embedding. The usual transgression lemma then implies that
β ′ is an embedding.

Now note that (idM ×q)β ′ ′ = β ′(idM ×q). Since ∆k × I is compact, it follows that
idM ×q and, hence (idM ×q)β ′ ′, are closed maps. Also, since β ′ ′|M × ∆k × 1 = i =
β ′|M × vk+1, it follows that Im(β ′) = Im

(
(idM ×q) ◦ β ′ ′

)
. Hence, Im(β ′) is closed in

�2 ×∆k+1 and β ′ is a closed embedding.
In order to see that β itself is an embedding, let γ : Im(β ′) → M ×∆k+1 be the (con-

tinuous) inverse for β ′. Then it is easy to check that the composition

Im(β)
proj
−→ Im(β ′)

γ
−→ M ×∆k+1

is an inverse for β.
Finally, to see that Im(β) is closed in �2 × B×∆k+1, consider the composition

g ′ : M ×∆k+1 g
−→ B×∆k+1 proj

−→ B.

Then, up to permutation of coordinates, β is given by x �→
(
β ′(x), g ′(x)

)
. Therefore,

Im(β) is essentially the graph of a map (g ′) from a closed subset
(
Im(β ′)

)
of �2 ×∆k+1 to

B. Hence, Im(β) is closed.

Lemma 2.4 Im(β) ⊆ �2×B×∆k+1 is a k-simplex ofΩ Spaces(B) where the loops are based
at p.
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Proof Let W = Im(β). We first need to observe that W is a (k+1)-simplex of Spaces(B). It
follows from 2.3 and the definition of β that W is closed in R2N×B×∆k+1. Moreover, since
β is fibre preserving over∆k+1 and β is an embedding, it follows that proj | : W → ∆k+1 is
a bundle projection.

We also have to check that W is a loop in Spaces(B) based at p. For this we have to look at
the vertex ∂k+1

0 W and the face ∂k+1W . In the first case, we have ∂k+1
0 W =W∩�2×B×vk+1 =

β(M × vk+1). Since β|M × vk+1 = j, it follows that ∂k+1
0 W is the basepoint p of Spaces(B).

Likewise, it is easy to check that the face ∂k+1W = W ∩ �2 × B × ∆k = β(M × ∆k)
equals j(M ×∆k) which is the base k-simplex of Spaces(B).

Theorem 2.5 Γ : TOPh(p) → Ω Spaces(B), defined by Γ(h, g) = Im
(
β(h, g)

)
, is a homo-

topy equivalence.

Proof It is straightforward to check that Γ is a simplicial map. Moreover, TOPh(p) and
Spaces(B) satisfy the Kan condition. Hence, it suffices to show that Γ induces an isomor-
phism on homotopy groups (and a bijection between components). To this end, suppose
we have a k-simplex X ⊆ �2 × B ×∆k+1 of Ω Spaces(B), k ≥ 0, such that each of the faces
of X making up the boundary ∂X ⊆ �2 × B × ∂Λk+1 is in the image of Γ. Here Λk+1 is
the horn ∂∆k+1 − int∆k. After amalgamating the various (k − 1)-simplices of TOPh(p)
which map to ∂X, we have (h, g) with Γ(h, g) = ∂X where h : M × ∂∆k → M × ∂∆k is a
homeomorphism (fibre preserving over ∆k) and g : M × Λk+1 → B × Λk+1 is a map such
that g|M × vk+1 = p and g|M × ∂∆k = (p × id∂∆k ) ◦ h.

We need a k-simplex (h̃, g̃) of TOPh(p) such that ∂(h̃, g̃) = (h, g) and Γ(h̃, g̃) � X
rel ∂X. The definition of Γ implies that the pair (h, g) gives rise to a closed embedding
β : M × Λk+1 → �2 × B × Λk+1 such that Im(β) = ∂X. Recall that proj | : X → ∆k+1 is a
bundle projection, and note that β is a partial trivialization of this bundle. It follows that
there is a homeomorphism β̃ : M × ∆k+1 → X which is fibre preserving over ∆k+1 and
β̃|M × Λk+1 = β. Define h̃ to be the composition

M ×∆k β̃|
−→ j(M ×∆k)

j−1

−→ M ×∆k.

Define g̃ to be the composition

M ×∆k+1 β̃
−→ X

proj
−→ B.

Clearly, (h̃, g̃) is a k-simplex of TOPh(p) such that ∂(h̃, g̃) = (h, g). So it remains to show
that Γ(h̃, g̃) � X rel ∂X.

The definition of Γ implies that the k-simplex (h̃, g̃) gives rise to a closed embedding
β∗ : M ×∆k+1 → RN × B×∆k+1 ⊆ �2 × B×∆k+1, some N . Moreover, β∗|M × ∂∆k+1 =
β̃|. Now an elementary construction provides a homotopy from β∗ to β̃ through closed
embeddings into RL × B × ∆k+1, some L, with the homotopy being fibre preserving over
∆k+1 and rel M×∂∆k+1. (Start with any homotopy β̂ : M×∆k+1×I → RL×B×∆k+1 from
β∗ to β̃ which is fibre preserving over∆k+1 and rel ∂∆k+1. Then define β̄ : M×∆k+1× I →
RL × B×∆k+1 × RL by

(x, u, t) �−→
(
β̂(x, u, t), t(1− t)ρ(u)i(x)

)
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where ρ : ∆k+1 → R is any map satisfying ρ−1(0) = ∂∆k+1. The desired homotopy
comes from permuting the components of β̄.) This homotopy provides a homotopy in
Ω Spaces(B) from Γ(h̃, g̃) to X rel ∂X.

3 Controlled Homeomorphisms and the Forget Control Map

We use the same notation as in the previous section, so that in particular we have fixed a
map p : M → B for spaces M and B and a closed embedding i : M → RN ⊆ �2, some N .

Controlled Homeomorphisms

The simplicial group TOPc(p : M → B) = TOPc(p) of controlled homeomorphisms on p was
defined in [5]. A k-simplex is a homeomorphism

h : M ×∆k × [0, 1) −→ M ×∆k × [0, 1)

which is fibre preserving over∆k × [0, 1) and such that the compositions

M ×∆k × [0, 1)
h
−→ M ×∆k × [0, 1)

p×id
−→ B×∆k × [0, 1), and

M ×∆k × [0, 1)
h−1

−→ M ×∆k × [0, 1)
p×id
−→ B×∆k × [0, 1)

extend to continuous maps

M ×∆k × [0, 1] −→ B×∆k × [0, 1]

via p × id : M ×∆k × 1→ B×∆k × 1.
There is a forget control map ψ : TOPc(p) → TOPh(p) defined as follows. First define

q : ∆k × [0, 1)→ ∆k+1 by (w, t) �→ tvk+1 + (1 − t)w so that q is the restriction of the map
called q in the proof of 2.3. Now given a k-simplex h : M×∆k× [0, 1)→ M×∆k× [0, 1),

define a map p̂h : M ×∆k+1 → B×∆k+1 by{
(x, u) �−→ (p × q)h

(
x, q−1(u)

)
, if u �= vk+1

(x, vk+1) �−→
(

p(x), vk+1

)
, otherwise.

Finally, define ψ(h) = (h0, p̂h) where h0 = h|M × ∆k × 0. One can check that ψ is a
simplicial map.

Manifold Approximate Fibrations and Manifolds

Now assume that B is a (topological) manifold without boundary and fix a positive integer
m. The simplicial set MAF(B) of manifold approximate fibrations over B was defined in [5].
A k-simplex is a subset W of RN × B×∆k ⊆ �2 × B×∆k, some N , so that the restriction
of the projection defines a map f : W → B×∆k such that the composition

W
f
−→ B×∆k proj

−→ ∆k
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is a fibre bundle projection with fibres m-dimensional manifolds without boundary, and
for each t ∈ ∆k, f | : f−1(B × t) → B × t is a manifold approximate fibration. (Actually,
in [5] W was only required to be embedded in �2 × B×∆k as a set of small capacity. This
technicality can be safely ignored for finite dimensional W ).

The simplicial set MAN(B) of manifolds over B was defined in [7]. It is the sub-simplicial
set of Spaces(B) consisting of those k-simplices X ⊆ �2 × B × ∆k such that the fibres of
X → ∆k are m-manifolds without boundary. Thus, MAN(B) is actually a union of certain
components of Spaces(B) and for the map Γ of Section 2 we have the following immediate
consequence of Theorem 2.5:

Corollary 3.1 Γ : TOPh(p)→ ΩMAN(B) is a homotopy equivalence.

Also in [7] we defined a forget control map ϕ : MAF(B) → MAN(B) which indeed just
forgets the fact that the maps to B are manifold approximate fibrations. Of course, MAF(B)
is a sub-simplicial set of MAN(B) (but not necessarily a union of components) and ϕ is just
the inclusion map.

Assume from now on that the fixed map p : M → B is a manifold approximate fibration
so that j(M) is a vertex of MAF(B) which we continue to denote by p.

Now define a simplicial map Λ : TOPc(p) → ΩMAF(B), where the loops are based at
p, so that the following diagram commutes (on the nose):

TOPc(p)
ψ

−−−−→ TOPh(p)

Λ

� �Γ
ΩMAF(B)

Ωϕ
−−−−→ ΩMAN(B).

(∗)

More precisely, if h : M ×∆k × [0, 1)→ M ×∆k × [0, 1) is a k-simplex of TOPc(p), then

ψ(h) = (h0, p̂h) and the definition of Γ gives an embedding

β = β(h0, p̂h) : M ×∆k+1 → �2 × B×∆k+1

so that Γψ(h) = Im(β). Simply note that Im(β) is in fact a k-simplex of ΩMAF(B) and
define Λ(h) = Im(β).

4 Delooping Controlled Homeomorphisms

We continue to use the notation of the previous two sections, so that in particular p : M →
B is a fixed manifold approximate fibration and m = dim M.

In [5] we proved that TOPc(p) and ΩMAF(B) are homotopy equivalent (if m ≥ 5),
but we did not exhibit an explicit homotopy equivalence. In this section we show that the
map Λ defined in Section 3 is a homotopy equivalence. It is important to have a homotopy
equivalence making diagram (∗) in Section 3 commute.

Theorem 4.1 If m ≥ 5, then Λ : TOPc(p)→ ΩMAF(B) is a homotopy equivalence.

Proof Both of the simplicial sets satisfy the Kan condition, so the strategy is similar to that
of the proof of Theorem 2.5. So let W ⊆ �2 × B × ∆k+1 be a k-simplex of ΩMAF(B)
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such that the faces making up ∂W ⊆ �2 × B × Λk+1 are in the image of Λ. Thus, after
amalgamation, we have a controlled homeomorphism

h : M × ∂∆k × [0, 1) −→ M × ∂∆k × [0, 1)

such that Λ(h) = ∂W .
We need a k-simplex h̃ of TOPc(p) such that ∂h̃ = h and Λ(h̃) � W rel ∂W . The

constructions above yield a map p̂h : M × Λk+1 → B× Λk+1 and an embedding

β = β(h0, p̂h) : M × Λk+1 → �2 × B× Λk+1

such that ∂W = Λ(h) = Im(β) and proj ◦β = p̂h. Moreover, we have

β|M × ∂∆k = jh0,

β|M × vk+1 = j,

p̂h|M × (Λk+1 − vk+1) = (p × q) ◦ h ◦ (idM ×q−1|), and

p̂h|M × vk+1 = p.

Since β is a partial trivialization of W → ∆k+1, there is a homeomorphism β̃ : M×∆k+1 →
W which is fibre preserving over ∆k+1 and β̃|M × Λk+1 = β. Let f : M × ∆k+1 → B ×
∆k+1 be the composition proj ◦β̃. By controlled straightening [5, Section 14], there exists a
homeomorphism

H : M ×∆k+1 × [0, 1)→ M ×∆k+1 × [0, 1)

which is a controlled homeomorphism from p × id∆k+1 to f . Moreover, we can insist that
H|M × Λk+1 × [0, 1) is given by{

(x, u, t) �−→ (id×q)H−1
(
h((1−t)q−1(u)+t)(x), q−1(u)

)
, if u �= vk+1

(x, vk+1, t) �−→ (x, vk+1, t), otherwise.

In particular,

H|M × ∂∆k × [0, 1) = (h−1
0 × id) ◦ h, and

H|M × Λk+1 × {0} = id .

Now let h̃ : M ×∆k × [0, 1)→ M ×∆k × [0, 1) be the composition

M ×∆k × [0, 1)
H|
−→ M ×∆k × [0, 1)

β̃|×id
−→ j(M ×∆k)× [0, 1)

j−1×id
−→ M ×∆k × [0, 1).

In particular, h̃ is a k-simplex of TOPc(p) and h̃|M × ∂∆k × [0, 1) = h, so that ∂h̃ = h.
The proof that λ(h̃) �W rel ∂W is similar to that part of the proof of Theorem 2.5 so we
omit further details.
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5 Conclusion

In this section we restate and prove the main theorem (Theorem 5.1) and derive some
consequences.

Theorem 5.1 If p : M → B is a manifold approximate fibration, dim M ≥ 5 and B is a closed
manifold of nonpositive curvature, then the forget control map ψ : TOPc(p) → TOPh(p) is
homotopy split injective.

Proof In [7] we showed that under these hypothesis, ϕ : MAF(B) → MAN(B) is homo-
topy split injective. The result then follows immediately from Corollary 3.1, Theorem 4.1
and the commutativity of diagram (∗) at the end of Section 3.

We now derive the application mentioned at the beginning of the introduction. If
f : X → Y is a map, Y has a specified metric and ε > 0, then an isotopy H : X× I → X× I
is an f−1(ε)-isotopy provided f Ht (x) is ε-close to f H0(x) for every (x, t) ∈ X × I.

Corollary 5.2 Let h : F → F be a homeomorphism on a closed manifold F, let B be a closed
manifold of nonpositive curvature such that dim F +dim B ≥ 5 and let p = proj : F×B→ B.
If G : F × B × I → F × B × I is an isotopy from h × idB to idF×B such that (p × idI)G is
homotopic to p × idI rel F × B × ∂I, then for every ε > 0 there exists a p−1(ε)-isotopy Hε

from h× idB to idF×B.

Proof Note that h × idB×[0,1) and idF×B×[0,1) are vertices of TOPc(p). We claim that
ψ(h× idB×[0,1)) and ψ(idF×B×[0,1)) are in the same component of TOPh(p). For if G : F ×
B× I → F×B× I is an isotopy from h× idB to idF×B such that (p× idI)G is homotopic to
p× idI , then it follows that there is a 2-simplex J : F×B×∆2 → B×∆2 of Map(F×B,B)
such that J|(F×B×∂2∆

2) = (p× idI)G and J|
(
F×B× (∂∆2 \∂2∆

2)
)
= p× id∂∆2\∂2∆2 .

Thus, (G, J) is a 1-simplex of TOPh(p) from ψ(h × idB×[0,1)) to ψ(idF×B×[0,1)). It follows
from Theorem 5.1 that h×idB×[0,1) and idF×B×[0,1) are in the same component of TOPc(p).
If H : F×B×I×[0, 1)→ F×B×I×[0, 1) is a 1-simplex of TOPc(p) between these two ver-
tices (where we are identifying I and∆1) and ε > 0 is given, then Hε = H|(F×B× I×{t})
is the desired (p × idB)−1(ε)-isotopy for t close enough to 1.

Example 5.3 Here are some general considerations which lead to specific examples of
homeomorphisms satisfying the hypotheses of Corollary 5.2. Start with any closed mani-
fold F for which there is a homeomorphism h : F → F which is concordant, but not iso-
topic, to the identity on F (for example, Hatcher [3, Section 4] shows that there are such
homeomorphisms on n-dimensional tori for any n ≥ 5). Let H : F × I → F × I be a con-
cordance from idF to h; that is, H is a homeomorphism such that H| : F × {0} → F × {0}
is the identity and h = H| : F × {1} → F × {1}. Now let B be any closed nonpositively
curved manifold with euler characteristic χ(B) = 0 (of course, this is the case for odd
dimensional closed nonpositively curved manifolds). By the product formula for concor-
dances (see Burghelea and Lashof [1, Section A] or Hatcher [3, App. I]), we may assume
that idF×I×B is isotopic to H × idB rel F × {0} × B (if dim(F × B) is sufficiently large).
Thus, there exists a homeomorphism G̃ : F × I × B× I → F × I × B× I such that:
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(1) G̃ is fiber preserving over the final I factor,
(2) G = G̃| : F × {1} × B× I → F × {1} × B× I is an isotopy from h× idB to idF×B,
(3) H × idB = G̃|F × I × B× {1},
(4) G̃ is the identity on F × {0} × B× I ∪ F × I × B× {0}.

It follows that for 0 ≤ s ≤ 1, the map F × B× I → B× I defined by

( f , b, t) �→ proj ◦G̃( f , s, b, t)

is a homotopy rel F×B×∂I from proj : F×B× I → B× I to proj ◦G : F×B× I → B× I.
Thus, h and G satisfy the hypotheses of Corollary 5.2.

When asphericity or stronger (curvature) conditions are placed on M, then more spe-
cific information about controlled homeomorphisms can be obtained as the next two re-
sults illustrate.

Corollary 5.4 Let p : M → B be a manifold approximate fibration with dim M ≥ 5 and B a
closed manifold of nonpositive curvature. If M is aspherical, then the forgetful homomorphism

πn TOPc(p : M → B) −→ πn TOP(M)

is injective for n ≥ 1 and split injective for n ≥ 2.

Proof Combine Example 2.1 and Theorem 5.1.

When M is also nonpositively curved, then Corollary 5.4 can be combined with the
deep results of Farrell and Jones [2] concerning πn TOP(M) in the stable range to give the
following specific results.

Corollary 5.5 Let p : M → B be a manifold approximate fibration with m = dim M ≥ 11
and M and B closed manifolds of nonpositive curvature.

(1) If 2 ≤ n ≤ (m− 7)/3 and n̂ = [(n + 4)/2]!, then

πn TOPc(p : M → B)⊗ Z
[

1
n̂

]
= 0.

(2) If the center of π1M vanishes, then

π1 TOPc(p : M → B)⊗ Z
[

1
2

]
= 0.

Proof Combine Corollary 5.4 with Farrell and Jones [2, 3.7 and 3.8].

Finally, we point out that π0 TOPc(p) is the domain of torsions of homeomorphisms
h : M → M with the property that ph is sufficiently close to p. This does not require a
curvature condition on B.

Proposition 5.6 Let p : M → B be a manifold approximate fibration where B is a closed
manifold with a fixed metric d and dim M ≥ 5. For every ε > 0 there exists a δ > 0 such
that if h : M → M is a homeomorphism with d(ph, p) < δ, then there exists an element
τε(h) ∈ π0 TOPc(p) satisfying:
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(1) if g, h : M → M are two homeomorphisms with d(pg, p) and d(ph, p) both less than δ,
then τε(g) = τε(h) if and only if there exists a p−1(ε)-isotopy from g to h,

(2) if h : M×[0, 1)→ M×[0, 1) is a controlled homeomorphism, then there exists t0 ∈ [0, 1)
such that τε(ht ) is defined and equal to [h] ∈ π0 TOPc(p) for all t ≥ t0.

Proof If h : M → M is a homeomorphism such that p is sufficiently close to ph, then
there exists a 1-parameter family of manifold approximate fibrations f : M × I → B × I
from p to ph [4]. Now Controlled Straightening [5, 14.4] implies that there exists a fibre
preserving homeomorphism G : M × I × [0, 1) → M × I × [0, 1) such that G|(M × I ×
{0}) ∪

(
M × {0} × [0, 1)

)
= id and f Gt → p × idI as t → 1 (Gt = G|(M × I × {t}).

Define H : M × [0, 1) → M × [0, 1) by H(x, s) = (h × id[0,1)) ◦ G(x, 1, s). Then H is a
vertex of TOPc(p) and we set τε(h) = [H] ∈ π0 TOPc(p). The properties follow from [4],
[5, Section 14].
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