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ABSTRACT

Quadratic optimization is the classical approach to optimal control of pension
funds. Usually the payment stream is approximated by a diffusion process.
Here we obtain semiexplicit solutions for quadratic optimization in the case
where the payment process is driven by a finite state Markov chain model com-
monly used in life insurance mathematics. The optimal payments are affine in
the surplus with state dependent coefficients. Also constraints on payments and
surplus are studied.
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1. INTRODUCTION

Stochastic control in life and pension insurance concentrated until recently on
control of pension funds. Defined contribution schemes and defined benefit
schemes leave the benefits and the contributions, respectively, as variables partly
decided by the fund manager. In addition, decisions on allocation of assets may
be integrated in the problem. The institutional conditions for pension funds
may be rather involved. It is by no means clear how the objectives of the fund
manager, the employer who pays (parts of) the premium, and the employed
who receives the benefits, should be reflected in the objective of the control
problem.

The usual framework of control of pension funds is the one given in prob-
ably the most studied control problem, the linear quadratic optimal control
problem or the linear regulator problem. The object in this class of control problems
is to control, at the same time, the position of a certain process and the force
with which this process is regulated. The object function punishes quadratic
deviations from some targets of the controlled process and the controlled rate
of regulation, respectively. This object function is widely used partly because
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of its mathematical tractability and partly because it makes sense in certain
engineering applications.

In the context of pension funding the regulated process represents some
notion of surplus whereas the regulation itself represents payments. These
are premiums or benefits depending on the type of scheme. Obviously, only pay-
ments which are allowed to depend on the performance of the pension fund,
are open for regulation. Defined payments like e.g. guaranteed benefits do not
count as decision variables. A state of the art exposition of stochastic control
of pension funds is given in Cairns (2000) which is partly a survey article gath-
ering results of several authors. The literature contains solutions to several
variants of the problem. From the reference list in Cairns (2000) we draw the
reader’s attention to the contributions by O’Brien (1986), Dufresne (1989), and
Haberman et al. (1994).

The linear regulator approach has been standard in engineering and has
found its application in insurance through pension funding. However, it was
not widely used as an approach to dynamic financial decision problems like
e.g. consumption-investment problems. There, the most popular approach is the
one taken by Merton (1969, 1971). This is based on optimal utility of future
wealth or surplus, or, in case of introduction of consumption, utility of future
consumption rates.

In Steffensen (2004), this utility optimization approach to financial decision
making was applied to the problem of the life insurance company regulating
surplus by adjusting regulative payments. There the set-up differs from the
classical one in finance by formalizing the process of accumulated consump-
tion as an insurance payment stream. This stream includes payment rates
and lump sum payments linked to the state of an insurance policy (portfolio).
Modelling the policy by a general finite state Markov chain allows for various
applications in various types of insurance and on various levels of individua-
lization of policies in the portfolio.

In the linear regulator approach to stochastic control of pension funds, the
payments are usually modelled on an aggregate portfolio level by modelling the
risk in payments by a diffusion term. Steffensen (2004) shows that for power
utility optimization, the structure of the object function is reflected in a state-
dependent value function and state-dependent optimal payments. A natural
question is now: Taking the linear regulator approach, will the structure of
the object function again be reflected in a state-dependent value function and
state-dependent optimal payments? This article answers yes to this question.

This answer is a part of the motivation for this article. A strong conclusion
is that the insurance company can apply the quadratic optimization criteria for
regulation of payments at any sub-portfolio level, even at the level of the indi-
vidual, and maintain a simple regulation rule. This is useful if the insurance
company wishes to, or is forced to, account for or manage each sub-portfolio
separately. A weaker conclusion is that if the insurance company applies the
linear regulation of payments based on diffusion modelling, then this regula-
tion can partly be argued for even at a sub-portfolio level. Apart from these
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immediate applications to individualization of accounts, the article is a con-
tribution to the general discussion on optimal design of payments.

One general drawback of quadratic approaches to investment problems is
the counter-intuitive conclusion that if the surplus is above the surplus target,
then one should try to loose money on the financial market. This drawback
appears in quadratic hedging approaches in finance as well as in linear regula-
tion of pension funds. One could then choose to act only when the surplus is
below its target. In Steffensen (2001), this problem is resolved by punishing devi-
ations of the deflated surplus instead of the nominal surplus. In this article,
we resolve the problem simply by disregarding the asset allocation as a deci-
sion variable. Anyway, our object is to generalize the modelling of payments.

In general, linear regulator problems lose their mathematical tractability
when introducing constraints on the controls or the controlled processes. Some
constraints can be allowed for while some other constraints, with clear appli-
cations, make the problem much harder. An important example is to constrain
the regulation of payments to be to the policy holder’s benefit. This means
that the fund manager or insurance company is allowed to pay out positive
surplus only (by increasing benefits or decreasing premiums) and is not allowed
to collect deficits. Steffensen (2001) obtains results in this direction and also
shows that a terminal expectation condition is easily taken care of by a
Lagrange multiplier. We approach some tractable constraints on the surplus and
the payments at the end of the article.

The outline of the article is as follows. In Section 2 the dynamics of the
surplus are introduced, and in Section 3 these dynamics are motivated by
considering some notions of surplus introduced previously in the literature.
In Section 4 the preferences are formalized in the object function. Section 5
contains the main results of the article. In Section 6 and Section 7 we show
how to handle certain constraints on the payments and the surplus, respec-
tively. At the end of Sections 3, 5, 6, and 7 we present a cross-sectional con-
tinued example which presents the machinery at work. This example also serves
as motivation.

2. THE DYNAMICS OF THE SURPLUS

We take as given a probability space (W,F,P). On the probability space is defined
a process Z = (Z(t))0 ≤ t ≤ T taking values in a finite set J = {0,…, J} of possible
states and starting in state 0 at time 0. We define the J-dimensional counting
process N = (Nk)k ! J by

Nk(t) = #{s | s ! (0, t ], Z(s–) ! k,Z(s) = k},

counting the number of jumps into state k until time t. Assume that there exist
deterministic functions m jk(t), j, k ! J , such that Nk admits the stochastic inten-
sity process (mZ(t)k(t))0 ≤ t ≤ T for k ! J , i.e.
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constitutes a martingale for k ! J. Then Z is a Markov process. The reader
should think of Z as a policy state of a life insurance contract, see Hoem (1969)
for a motivation for the set-up.

Based on the probability theoretical framework above we now go directly
to the dynamics of the surplus. This will allow the reader to accept the dynamics
and comprehend the control problem without necessarily having it grounded
in the notions of surplus studied by Norberg (1999) and Steffensen (2000).
In the following section we link the surplus dynamics introduced below with
the notions of surplus studied there. However, already now we need some
clarification of terminology: Throughout the article, the contributions are added
to the surplus. Working with e.g. the notion of surplus introduced in Section 3,
these contributions stem from the realized payments compared to what is taken
into account in the liability valuation. This is in contrast to the usual terminology
of pension funding where the contributions are usually the premium payments.
The dividends, which may in general be positive or negative, are subtracted
from the surplus. The dividends regulate the payments that are taken into
account in the liability valuation, and adapt these payments to the development
of the policy.

We introduce the nominal surplus process X� given by

dX�(t) = r(t)X�(t)dt + dC�(t) – dD�(t), (1)

X�(0–) = 0,

where r is a deterministic interest rate process and the contributions C� and the
dividends D� follow the dynamics

,

,
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where en(t) = I (t ≥ n) indicates that t ≥ n. Here the coefficients of the contri-
butions c j�(t), c jk�(t), and DC j�t are deterministic functions. The coefficient
c j�(t) represents the rate of contributions during sojourn in state j at time t.
The coefficient c jk�(t) represents the lump sum contribution when jumping
from state j to state k at time t. Finally, the coefficient DC j�(t) represents a lump
sum contribution at the deterministic time point t during sojourn in state j.
We allow for lump sum contributions at deterministic time points only at time 0
and T.

In (1) the initial condition X�(0 –) = 0 defines the surplus just prior to time 0
such that the surplus at time 0 can be expressed through the dynamics of C
and D, namely, X�(0) = DC�(0) – DD�(0). The source of surplus contributions
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is a possible difference between an anterior measure and a posterior measure
of a set of assumed payments. As future payments turn into past payments,
the contributions are realized. Depending on the measures these contributions
may be systematic and/or purely erratic. In the next section we consider a sur-
plus definition with a concrete example of these measures.

The stochastic differential equation for the surplus (1) can be considered
as a controlled stochastic differential equation with the control being the
coefficients in the dividend process D�. The insurance company is allowed to
choose these coefficients such that there exists a solution to the stochastic dif-
ferential equation (1). Then we say the dividend process D� belongs to a set A .

We have decorated the nominal processes above with a prime to ease the
notation for the corresponding discounted processes introduced below. We
namely, instead of working with nominal contributions, nominal dividends,
and nominal surplus, work with the discounted versions defined by

,

.

.
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Note that the deterministic quantities c j(t) = 0e rt
- # c j�(t), c jk(t) = 0e rt

- # c jk�(t) etc.
are hereby defined. Then, given a dividend process D�!A , the controlled sto-
chastic differential equation describing the surplus is given by

dXD(t) = dC(t) – dD(t), (2)

XD(0–) = 0.

Note that, in contrast to the usual situation in finance where the surplus
(wealth) and the dividend payments (consumption) are constrained to be pos-
itive, we impose no such constraints at this stage. This is one fundamental dif-
ference between the set-up in this article and the set-up in Steffensen (2004).
There the surplus and the dividend payments were constrained to be positive
such that a certain solvency constraint was fulfilled and such that dividends
were to the benefit of the policy holder.

The absence of constraints on the surplus and the dividends (and the tech-
nical valuation basis) limits our results to pension funding. This is in contrast
to participating life insurance where the insurance company would need a pos-
itive surplus to fulfill certain solvency requirements and where the dividends
are restricted to be to the benefit of the policy holder. In practice there may
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also be constraints in pension funding. Though similar in structure to partic-
ipating life insurance, they will be less strict and we choose to disregard these.
See also Steffensen (2000) for a similar clear distinction between participating
life insurance and pension funding.

Note that depending on the final form of D, the dividends may both change
premiums and/or benefits. Thus, we do not specify whether we have a so-called
defined contributions scheme, using this term for the situation where the pre-
miums are fixed and dividends affect the benefits only, or a so-called defined
benefits scheme, using this term for the situation where the benefits are fixed
and dividends affect the premiums only. Below we see how these different cases
are obtained by an according specification of the preferences.

3. THE SURPLUS AND LIFE INSURANCE PAYMENT STREAMS

In this section we link the surplus dynamics introduced in the previous section
with some notions of surplus studied in Norberg (1999) and Steffensen (2000).
This is to be seen as examples of how the coefficients of the contribution process
could be specified.

One part of the payment process of an insurance contract is the guaran-
teed payment process. Denoting by B(t) the accumulated guaranteed payments
to the policy holder over [0, t], the guaranteed payments are described by

.dB t b t dt b t dN t t d tB eD
,

Z t Z t k

k

k Z t

n T

n

J 0

= + +
! !

-! !] ] ] ] ] ] ] ] ]g g g g g g g g g! +

See Steffensen (2004) for an interpretation of the various elements of B, not-
ing that there the process of guaranteed payments B is denoted by B̂.

The guaranteed payment process B constitutes typically only one part of
the total payment process. The insurance company adds to the guaranteed
payments an additional dividend payment process depending on the performance
of the insurance policy or a set of policies. The insurance company decides on
this additional payment process within any legislative constraints there may be.
The dividend process was introduced in the previous section. The guaranteed
payments B and the dividend payments D constitute the total payment process
experienced by the policy holder.

Since different notation has been used for guaranteed payments and divi-
dends in the literature we present here a small notation translator:

Steffensen (2000, 2004) Norberg (1999), here

Guaranteed payments B̂ B

Dividends B̂ D

Total payments B = B̂ + B̂ B + D.
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We introduce a notion of surplus along the lines of Steffensen (2000). There,
the surplus is defined for a given deterministic valuation basis, i.e. a set of dis-
count rate and intensity processes (r*, m*), by

* ,X t e d B s D s V trt
Z t

0

s

t

= - + -
-

� # #] ] ]^ ] ]g g gh g g (3)

where the statewise reserves according to the valuation basis (r*, m*) are given by
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-* * # #] ] ]g g g; E

Here, E* denotes expectation with respect to the probability measures under
which Nk admits the intensity processes (m*Z(t–)k(t))0 ≤ t ≤ T. Definition (3) cor-
responds to the surplus introduced in Steffensen (2000) for the case where the
payments are invested in a portfolio with return rate on investment r. Definition
(3) follows the lines of the (individual) surplus introduced in Norberg (1999)
as well. However, in Norberg (1999) the dividends paid in the past are not
accounted for on the asset side and the valuation basis (r*, m*) is fixed to be the
first order valuation basis (r̂, m̂) introduced below.

The insurance company lays down the guaranteed payment process B on
a so-called first order valuation basis (r̂, m̂). This means that the guaranteed
payments are set to fulfill the so-called equivalence relation V*0(0–) = 0 for
(r*, m*) = (r̂, m̂). In participating life insurance one would usually impose a con-
straint on the first order basis such that the first order reserves V*j(t) are on
the safe side, i.e. larger than some corresponding market values. However, in
this article where we have pension funding in mind, such constraints are not
needed.

The surplus defined in (3) will follow the dynamics given by (1) with the fol-
lowing specification of the contributions and initial surplus (see Steffensen
(2000)),
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(4)

where

R*jk(t) = b jk(t) + V *k(t) – V *j(t).
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Note that with this specification of surplus contributions we can write the
dynamics of the surplus contributions for t > 0 as

*
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dC t r t r t V t dt t t R t dt
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hereby decomposing the contribution into a systematic increment and a
martingale increment. For comparison with Norberg (1999), note that he
uses the letter C to denote the process which contains only the systematic part
of C�.

We emphasize that the coefficients of the contribution process specified in
(4) is just an example coming out of defining the surplus as in (3). One can
easily imagine other specifications of the surplus contributions in the previous
section. One obvious choice is inspired directly from the previous paragraph:
Disregard the martingale term of (5) and define instead
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The corresponding surplus could naturally be called the systematic surplus.

Example 1. We consider the survival model with two states corresponding to a
policy holder being alive (state 0) or dead (state 1). For the sake of simplicity, we
consider a T-year endowment insurance. In this case we can simplify the nota-
tion: N / N1, m / m01, and for all other quantities and functions the specification of
state 0 is skipped, i.e. b / b0 (the negative premium rate), b1 / b01 (the life insur-
ance sum), DB / DB 0 (the endowment sum), c�(t) / c 0�(t), c1�(t) = c01�(t) etc.
Assuming that we wish to control the systematic surplus, we have that

c�(t) = ((r – r*)V*(t) + (m*(t) – m(t)) (b1 – V*(t))),

c1�(t) = 0,

where

* .V t e s b b ds e Bm D* * * *r

t

T rm m1
s T

= + +
- + - +* t t# # #] ]`g g j

If, in particular the technical basis and the market basis coincide, we get that
c�(t) = 0, and thus C(t) = 0.
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4. PREFERENCES AND UTILITY PROCESSES

Our scope is to search for optimal dividend payment processes. We are going
to formulate our preferences over payment processes in terms of a so-called util-
ity process U. Denoting by U(t) the accumulated utilities over [0, t], the utility
process is described by

.dU t u t dt u t dN t U t d teD
,

Z t Z t k k Z t

n Tk

n

J 0

= + +
!!

- !!] ] ] ] ] ] ] ] ]g g g g g g g g g! +
In the utility process, u j(t) specifies the rate of utility in state j, each u jk(t)
specifies a lump sum utility upon transitions from state j to state k, and DU j(t)
specifies a lump sum utility during sojourns in state j. Below we specify how
the payment process D affects U. Our terminal goal is to find the payment
process D among a set of allowable payment processes that maximizes the
expected total utility,

.E dU s
T

0 -
# ] g; E (6)

Note that by the introduction of the utility process U, we can write the expected
total utility in a similar way as we usually write the expected future payments
when defining the statewise reserves. In that respect we can speak of (6) as the
utility reserve at time 0–.

A utility process of the present form was introduced in Steffensen (2004).
There, u j(t), u jk(t), and DU j(t) were defined as certain state-dependent power
functions of d�(t), dk�(t), and DD�(t). This set of preferences was inspired by
the classical Merton problem of optimal consumption and investment. In this
article the preferences are inspired by the classical pension fund optimization
problem. Thus, instead we work with a quadratic dis-utility function that punishes
quadratic deviations of payments from the payments in an artificial payment
target process combined with quadratic deviations of surplus from zero.

For specification of the dis-utility stemming from the payment process D and
the surplus X, we introduce three further processes A, P, and Q. These processes
are called the payment target process, the payment weight process, and the
surplus weight process, respectively. The processes A, P, and Q are given by

,
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and we assume that P and Q are increasing, i.e. all coefficients are positive.
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The preferences over the set of payments are now given by the following dis-
utility functions

uj(t) = p j(t) (d (t) – a j(t))2 + qj(t)X(t)2,

ujk(t) = p jk(t) (dk(t) – a jk(t))2 + qjk(t)X(t)2,

DU j(t) = DPj(t) (DD(t) – DAj(t))2 + DQj(t)X(t)2.

The coefficient uj(t) represents the rate of dis-utilities during sojourn in state j
at time t. This rate of dis-utilities stems from a deviation of d(t) from a j(t) weighted
with pj(t) and from a deviation of X (t) from 0 weighted with qj(t). The coef-
ficient u jk(t) represents the lump sum dis-utility when jumping from state j to
state k at time t. This lump sum dis-utility stems from a deviation of dk(t) from
ajk(t) weighted with pjk(t) and from a deviation of X(t) from 0 weighted with
qjk(t). Finally, the coefficient DUj(t) represents a lump sum dis-utility at a deter-
ministic point in time during sojourn in state j. This lump sum dis-utility stems
from a deviation of DD(t) from DAj(t) weighted with DPj(t) and from a devia-
tion of X(t) from 0 weighted with DQj(t). We allow for lump sum dis-utility
at the deterministic time points 0 and T only. One may find it odd to add lump
sum dis-utility corresponding to qjk and DQj. Actually, these are also a burden
from a mathematical point of view as we see below. However, for the sake of
symmetry, we keep them as far as we can.

Note that the payment processes A, P, and Q are not in general real pay-
ment processes experienced by the policy holder or the insurance company.
Their only role is to specify the preferences over payment streams D. Thus, we
could simply have introduced all the coefficients of A, P, and Q directly as
state-dependent functions. However, for the comprehension of the structure of
these coefficients it is beneficial to have these artificial payment processes in mind.
Furthermore, whereas P and Q really have not much to do with payments, the
process A may be equal or related to a real payment process.

One may suggest the introduction of a surplus target process Y, say, with
dynamics given by 

,dY t y t dt y t dN t Y t d teD
,

Z t Z t k

k

k Z t

n T

n

J 0

= + +
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-! !] ] ] ] ] ] ] ] ]g g g g g g g g g! +
and replace X(t)2 by (X(t) – Y(t))2 in the coefficients of the utility process. This
formulation, however, is covered by the construction above by simply redefining
the surplus and the contribution processes by

X̂ = X – Y,

Ĉ = C – Y.

We end this section with a comment on the idea of penalizing deviations of X
from 0. At the end of the previous section we emphasized that one could choose
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to work with several notions of surplus. Obviously, controlling different notions
of surplus would have to be motivated in different ways. Consider the individual
surplus introduced in the previous section, containing both a systematic and
an erratic term. A policy holder contributes to this surplus in two different
ways. Firstly, he contributes to the surplus systematically according to the dif-
ference between the technical assumptions and realized mortality and return.
Secondly, he contributes erratically according to his own course of life. If we
control the individual surplus, we think that his dividends should be affected, not
only by the systematic contributions, but also by this course of life. Controlling
the individual surplus reduces the risk of the other parties involved i.e. the insur-
ance company and/or the employers, compared to the alternative below.

Alternatively, consider the systematic surplus explained at the end of the pre-
vious section. This surplus simply disregards the erratic term of the individual sur-
plus. Now, the policy holder does not contribute to the surplus erratically by
his course of life. Only systematic contributions are accounted for and, thus,
distributed in terms of dividends. This construction leaves all the unsystematic
risk to the other parties involved.

One cannot say that one construction is right and the other is wrong. They
are just different constructions based on different ideas with different levels of
insurance in the sense of averaging away the risk of the policy holder. As the
preferences over the surplus should be interpreted differently for different notions
of surplus, so should also possible constraints on X. We return to constraints
on X in Section 7.

5. MARKOV CHAIN PENSION FUND OPTIMIZATION

We define the optimal value function V by

j , ,infV t x E dU s, ,
D

t x j
t

T

A
=

!
#] ]g g; E (7)

where Et,x, j denotes conditional expectation given that X(t) = x and Z(t) = j.
We can speak of V j(t,x) as the statewise optimal value function.

A fundamental system of differential equations in control theory is the
Bellman system for the optimal value function. The Bellman system is here
given as the infimum over admissible controls of partial differential equations
for the optimal value function. We shall not derive the Bellman equation here
but refer to Steffensen (2000) for a derivation of partial differential equations
for relevant conditional expected values. It can be realized that for all j ! J ,

xt
j j

k

, ,

, ,

supV t x V t x c t p t a t q t x

t R t x

d d

m

!

!

, ,

;

k j

j j j j

j j

k j

d d

2 2

k

= - - - - -

-
k k!

] ] ]` ] ]` ]
] ]

g g g j g gj g
g g

:
V

X

W
WW

(8)
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and for t !{0,T},

, ,sup R t xD0
D

j

D
= - ] g8 B (9)

where subscript denotes the partial derivative and where

Rjk(t,x) = pjk(t) (dk – a jk(t))2

+ q jk(t) (x + c jk(t) – dk)2

+ Vk(t,x + c jk(t) – dk) – V j(t,x),

DRj(t,x) = DPj(t) (DD – DAj(t))2

+ DQj(t) (x + DCj(t) – DD)2

+ V j(t, x + DCj(t) – DD) – V j(t –, x).

The differential equality in (8) maximizes the partial derivative in t at any point
in the state space and the equality in (9) maximizes the jump in the value func-
tion at time 0 and at time T. Together the equalities minimize the conditional
expected value in (7) and hence characterize the value function.

It should be emphasized that the Bellman system is actually a system of J
differential equations with J conditions at time 0 and at time T. The Bellman
system contains the terms present in the Bellman equation for the classical
pension fund optimization problem and an additional term stemming from
the uncertainty in the process Z.

The system of J differential equations is comparable with the classical so-
called Thiele’s differential equation for the state wise reserves, see e.g. Steffen-
sen (2000). This motivates partly the notation Vj and Rjk: The statewise reserve
is usually denoted by Vj and the risk sum in Thiele’s differential equation is usu-
ally denoted by Rjk. Here, the contents of these terms is different but the struc-
ture is partly the same. The term DRj(t, x) has similarities with a risk sum and
is used to specify the development of the utility reserve at deterministic points
in time with a lump sum dis-utility. For a given lump sum DD, the relation
DRj(t, x) = 0 updates the utility reserve at such a point in time. E.g. at time T,
since V j(T, x) = 0 for all x, the relation gives the terminal condition

V j(T–, x) = DPj(T ) (DD – DAj(T ))2 + DQ j(T ) (x + DC j(T ) – DD)2.

The Bellman equation plays two different roles in control theory. One role is
that if the optimal value function is sufficiently smooth, then this function
satisfies the Bellman system. However, usually it is very difficult to prove a
priori the smoothness conditions. Instead one often works with the verification
result stating that a sufficiently nice function solving the Bellman system actu-
ally coincides with the optimal value function. In fact, it is not even necessary
to come up with a classical solution to the Bellman system. One just needs a
so-called viscosity solution with relaxed requirements on differentiability which
will then coincide with the optimal value function.
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We now guess a solution to the Bellman system based on a separation of x in
the same way as in the classical case. We try the solution

V j(t, x) = f j(t) (x – gj(t))2 + hj(t).

This form leads to the following list of partial derivatives,

Vt
j(t, x) = ft

j(t) (x – gj(t))2 – 2 f j(t)gt
j(t) (x – gj(t)) + ht

j(t),

Vx
j(t, x) = 2 f j(t) (x – gj(t)).

A candidate for the optimal D is found by solving (8) for the suprema with
respect to the decision variables in D, for j, k ! J , k ! j,

0 = 2f j(t) (x – gj(t)) – 2pj(t) (d – aj(t)),

0 = 2pjk(t) (dk – ajk(t)) – 2qjk(t) (x + cjk(t) – dk)

– 2 fk(t) (x + c jk(t) – dk – gk(t)),

0 = 2DPj(t) (DD – DAj(t)) – 2DQj(t) (x + DCj(t) – DD)

– 2 f j(t) (x + DCj(t) – DD – gj(t)).

This leads to the candidates, abbreviating Sjk(t) = pjk(t) + qjk(t) + fk(t) and DSj(t)
= DPj(t) + DQj(t) + f j(t),

d j(t,x) = aj(t) +
p t
f t

j

j

]] gg (x – gj(t)),

d jk(t,x) =
j

jS t
p t

k

k

]] gg ajk(t) +
j

jS t
q t

k

k

]] gg (x + c jk(t)) + jS t
f t

k

k

]] gg (x + c jk(t) – gk(t)), (10)

DDj(t,x) =
j

jS t
P t

D
D ]] gg DAj(t) +

j

jS t
tQ

D
D ]] gg (x + DCj(t)) + jS t

f t
D

j

]] gg (x + DCj(t) – gj(t)),

where the notation is evident and exposes d, dk, DD as functions of (t, j,x).

The optimal control variables in (10) can be interpreted as follows:

d j(t) is equal to its target aj(t) adjusted with a correction term which takes into

account the future. X(t) is corrected towards gj(t), and the ratio 
( )

( )

p t

f t
j

j

determines

the weight of this correction. If pj(t) is large (relative to f j(t)), there is a high
consideration for the present preference to have d j close to aj, and vice versa.
d jk(t) is a weighted average of three considerations. Firstly, d jk(t) is preferred
to be close to ajk(t) and this is weighted with pjk(t). Secondly, after a possible
jump from j to k, X(t–) + cjk(t) (the position after the jump but before con-
trolling) is preferred to be close to 0 and this is weighted with qjk(t). Thirdly,
also the future after the jump must be taken into consideration and for this
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X(t–) + cjk(t) should be corrected towards gk(t), and f k(t) determines the weight
of this correction.

DDj(t) is a weighted average somewhat similar to d jk(t). Firstly, DDj(t) is
preferred to be close to DAj(t) and this is weighted with DPj(t). Secondly, at
time t,X(t–) + DCj(t) (the position at time t but before controlling) is preferred
to be close to 0 and this is weighted with DQ j(t). Thirdly, also the future must
be taken into consideration and for this X (t–) + DC j(t) should be corrected
towards gj(t), and f j(t) determines the weight of this correction.

We see that both d j, d jk, and DDj are linear functions of the surplus as the
controllable parameter is it in the classical case. However, the coefficients involve
the payment processes A and C and the functions f and g. Inserting the opti-
mal candidate in the Bellman system gives, after several rearrangements, the
following partial differential equations for f j(t) and gj(t),

(11)

j j

k

k

,

, , ,

( ) ,

, , ,

f t
p t
f t

q t t R t

R t t T

g t r t g t c t a t t R t

R t t T

m

m

D

D

0 0

0 0

!

!

;

;

;

;

;

;

t j

j
j k

k j

f j

f j

t
j j j j j j

k j

g j

g j

2

!

!

= - -

=

+ - -

=
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k k

!

!

] ]] ] ] ]
]

] ] ] ] ] ]
]

g gg g g g
g

g g g g g g
g

!

!

+

+ (12)

where

,r t
f t
q tj

j

j

=* ] ]]g gg

and the risk sums in the differential equations for f and g are given by

,

( ),

R t
S t
p t

q t f t f t

R t
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Q t f t f tD
D
D

D

;

;
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j

j
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j
j j j
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k] ]] ] ]` ]

] ]] ] ]`
g gg g gj g
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(13)
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( )
( )

( )

( )
( )

( )

( )
( )

( ) .

R t
S t
P t

f t
Q t f t

A t C t g t
f t
f t

g t

f t
R t f t

A t C t g t
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;

;
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j j
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j j j
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j
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N

P

O
Og gg g g g g j g g

g g g j

g gg g g
g g g gg g (14)

The last equality follows from (11). The system of differential equations for f is
a J-dimensional Riccati equation. For a given terminal condition, this has a
unique positive solution under certain assumptions on the coefficients. We see
that the terminal condition for f must be f j(T ) = 0, whereas we take the ter-
minal condition for g to be gj(T) = 0 by convention. We emphasize that we could
introduce any terminal condition for g. Following (11), (12), (13), and (14), the
terminal conditions f j(T ) = 0 and gj(T ) = 0 lead to

( )
( ) ( )
( ) ( )

,

( ) ( ) ( ).

f T
P T Q T
P T Q T

g T A T C T

D D
D D

D D

j
j j

j j

j j j

- =
+

- = -

Given f, the system of differential equations for g has similarities with Thiele’s
differential equation, see Steffensen (2000). However, the quantity Rg; jk is not
a risk sum in the same sense as in Thiele’s differential equation and DRg; j(t)
does not lead to a usual adjustment of the conditional expected value for a
lump sum payment at a deterministic point in time. Nevertheless, it is possible to
derive a stochastic representation formula for the solution to the differential equa-
tion in the case where qjk(t) = DQj(t) = 0. This is done in the rest of this section.

In the case qjk(t) = DQj(t) = 0, Rf; jk(t), DRf; j(t), Rg; jk(t) and DRg; jk(t) above
simplify to

p
p

g g

g g
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] ] ]] ]] ] ] ] ]`
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g g g g

One realizes then that g can be written as a conditional expectation of the pre-
sent value of the payment process A-C under the particular state-dependent
discount rate r* and under a particular measure P* defined below, i.e.
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,t
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j ,g t E e d A C sr u du

t

T Z u

t

s
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-*j # #] ] ] ] ]g g g g g; E (15)

where E* denotes expectation with respect to the measure P*.

Define the likelihood process L and the corresponding jump kernel by
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Then we can change measure from P to P* by the definition LT = *
dP

dP , and it fol-
lows from Girsanov’s theorems (see e.g. Björk (2004)) that Nk under P* admits
the intensity process

.t t tm g m1
( ) ( ) ( )Z t k Z t k Z t k

= +
- - -* ] ]` ]g gj g

We can finally write
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g g g g g
which is precisely a version of Thiele’s differential equation for a reserve defined
by (15).

Example 2. We now continue Example 1. We are now interested in paying out
dividends optimally and need for this purpose to specify the three processes A, P,
and Q. We take the target process A to be 0. This means that the policy holder
has a target process for his total payments B + D equal to B. For the weight
process P, we take the coefficients corresponding to state 1 (dead) to be positive.
We skip the specification of state 0 for the other elements of P and take p / p0,
p1/ p01, and DP/DP0 to be constant. For the weight process Q we take the coef-
ficients corresponding to state 1 to be zero. Furthermore, we take q / q0, q1 / q01,
and DQ / DQ0 to be constant. Plugging in all these coefficients in the differen-
tial equations for f and g, we see that the differential equations corresponding to
state 1 are solved by f 1 = g1 = 0. Hereafter, the differential equations and terminal
conditions for f / f 0 and g / g0 are reduced to
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The Riccati equation for f must be solved numerically, while the solution for g is
given by

( ) .g t e c s ds
t

T mf
q

t

s

= -
- +# #] g

We can now write down the optimal dividend payments in terms of f and g,

, ,

( ) ,

( ) .

t x p
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x g t

x
p q

q
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D x P Q
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x

d

d

D D D
D
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1 1

1

1

= -

=
+

=
+

] ] ]^g g gh

The lump sum dividend payments upon death or termination whatever occurs
first, have the same structure. It is easy to verify that these dividend payments
simply minimize the final lump sum penalties given by p1(d1)2 + q1(x – d1)2 and
DPDD2 + DQ (x – DD)2, respectively. The ratio q1/ ( p1 + q1) determines the pref-
erences between two extreme situations: Either one could get d1 = 0 by having no
preferences for X i.e. q1 = 0, or one could obtain X = 0 after death or termination
whatever occurs first, by having no preferences for d1, i.e. p1 = 0. A similar inter-
pretation goes for the ratio DQ / (DP + DQ).

6. CONSTRAINED PAYMENTS

In section 5 we had no constraints on the dividend payments. In this section
we show how it is possible to solve problems where certain payments are con-
strained to be equal to certain values. One can think of several examples where
such constraints are relevant. Consider the optimization problem under the
constraint that for s ≤ t ≤ u

d(t) = âZ(t)(t).
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Under this constraint, we have that the term in dU(t) involving d(t) for s ≤ t ≤ u
is given by

pZ(t)(t) (âZ(t)(t) – aZ(t)(t))2 dt.

For a given weight pZ(t)(t) and a given target aZ(t)(t), this is a deterministic func-
tion of (t,Z(t)) and therefore plays no role for the decision of the optimal
strategy. We can therefore choose pZ(t)(t) and aZ(t)(t) freely, and in particular
search for coefficients such that the unconstrained problem has a solution
where the constraint is fulfilled for the optimal dividend process. If we find such,
we have then a solution for our constrained problem. From the optimal dividends
in the unconstrained problem (10) we see that if we for s ≤ t ≤ u choose

pZ(t)(t) = n, (16)
aZ(t)(t) = âZ(t)(t),

and let n "3, then we get in the limit that for s ≤ t ≤ u (and all other weights
and targets fixed),

,
p t
f t

0( )

( )

Z t

Z t

=]] gg
and, thus,

d(t) = âZ(t)(t),

such that the constraint is fulfilled. The artificial set of weight and target func-
tions given in (16) has the obvious interpretation that, in the limit, deviations
from the target given by the constraint are punished infinitesimally severely.
Obviously, to avoid an infinite value function in the limit, the constraint is
therefore fulfilled by the optimal control.

For constraints on lump sum payments upon transition and at deterministic
points in time the argument goes in almost the same way. Here we go through
the argument for a constrained lump sum payment upon transition. Consider
the optimization problem under the constraint that

dk(t) = âZ(t –)k(t).

Under this constraint, we have that the term in dU(t) involving dk(t) is given by

p
k J!

! Z(t –)k(t) (âZ(t –)k(t) – aZ(t –)k(t))2dNk(t).

For a given weight pZ(t –)k(t) and a given target aZ(t –)k(t), this is a deterministic
function of (t,Z(t–)) and therefore plays no role for the decision of the optimal
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strategy. We can therefore choose pZ(t –)k(t) and aZ(t –)k(t) freely. If we find coef-
ficients such that the unconstrained problem has a solution where the constraint
is fulfilled for the optimal dividend proces, then we have a solution for our
constrained problem. From the optimal dividends in the unconstrained prob-
lem (10) we see that if we choose

pZ(t –)k(t) = n, (17)
aZ(t –)k(t) = âZ(t –)k(t),

and let n"3, then we get in the limit that (for all other weights and targets fixed)

j

j

j

j

j, , ,
S t
p t

S t
q t

S t
f t

1 0 0k

k

k

k

k

k

= = =]] ]] ]]gg gg gg

and, thus,

dk(t) = âZ(t –)k(t),

such that the constraint is fulfilled. Again, the interpretation of the weight and
target functions given in (17) is that deviations from the target are punished
infinitesimally severely in the limit. To avoid an infinite value function, the
constraint is therefore fulfilled by the optimal control.

Example 3. We now continue Example 2. Consider the case where the dividend rate
is constrained to be zero. This case could appropriately be spoken of as Defined
Contribution since the premium rate is not regulated through dividends but benefits
are. This is handled by considering the controls for p "3. The optimal dividends
in the limit turn into

=
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=
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]
]
]

g
g
g

Alternatively, consider the case where lump sum dividends are constraint to be zero. This
case could appropriately be spoken of as Defined Benefits since the benefits are not
regulated through dividends but the premium rate is. This is handled by considering the
controls for p1 "3 and DP"3 . Then the optimal dividends in the limit turn into

=
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The differential equation for f becomes

t ,

.

f t p
f t

t q f t q

f T Q

m
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2
1

= - - -

- =

] ] ] ]`
]

g g g gj
g

7. CONSTRAINED SURPLUS

In this section we explain how it is possible to solve problems where the ter-
minal surplus is constrained to equal zero. If X is the systematic surplus, this
relates to the individual fairness criterion as described by Norberg (1999) since
this constraint sees to it that the surplus is emptied completely at termination
for a given insurance contract or portfolio of contracts. Thus, we consider the
optimization problem under the constraint that

X(T ) = 0.

Under this constraint, we have that the term in dU(T) involving X(T) equals 0.
Therefore, for a given weight DQj(T), this plays no role for the decision of the
optimal strategy. We can therefore choose DQj(T) freely. If we find a coefficients
such that the unconstrained problem has a solution where the constraint is
fulfilled for the optimal dividend process, then we have a solution for our con-
strained problem. From the optimal dividends in the unconstrained problem
(10) we see that if we choose

DQj(T) = n, (18)

and let n"3, then we get in the limit that (for all other weights and targets fixed)

j

j

j

j

j( )
( )

,
( )
( )

,
( )

( )
,

S T
P T

S T
Q T

S T
f T

D
D

D
D

D
0 1 0

j

= = =

and, thus,

DDj(T ) = X(T–) + DC j(T ),

leading to

X(T ) = X(T–) + DCZ(T)(T ) – DDZ(T)(T ) = 0.

which exactly obeys our constraint. The artificial weight given in (18) has the
obvious interpretation that in the limit, deviation from zero is punished infinites-
imally severely. Obviously, to avoid an infinite value function in the limit, the
constraint is then fulfilled.
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Maybe even more interesting is a situation where the constraint X(T) = 0 is
combined with a constraint on the terminal lump sum dividend

DD(T ) = DÂZ(T)(T ).

Then

dU(T ) = DPZ(T)(T ) (DÂZ(T)(T ) – DAZ(T)(T ))2,

and the ideas in the present and the previous sections are combined by choos-
ing

DPj(T ) = n,

DAZ(t)(t) = DÂZ(T)(T ),

DQj(T ) = n,

and examine what happens for n "3. Consider the terminal dividend payment
DDj(T) and the terminal value of X(T). Since f j(T) = 0 and DPj(T) / DSj(T) =
DQj(T) / DSj(T) = 1/2 for all v, we get

DDj(T) = 2
1 DÂ j(T ) + 2

1 (X(T–) + DC j(T )),

X(T ) = X(T–) + DCZ(T)(T ) – DDZ(T)(T ).

Putting these relations together we conclude that if X(T–) = DÂ Z(T)(T) – DCZ(T)(T),
then

DDj(T ) = DÂ j(T ),

X(T ) = 0,

which exactly obeys our constraint. Thus, it remains to argue that X (T–) =
DÂZ(T)(T ) – DCZ(T)(T ). However, since for n " 3,

,f T
P T Q T

P T Q T n
D D

D D
2

j
j j

j j

" 3- =
+

=] ] ]] ]g g gg g

we see that the continuous dividend rate 
p t

f t
j

j

]] gg (x–gj(t)) pushes X towards g infinites-
imally fast as t " T (for all other weights and targets fixed). Since g j(T–) =
DÂ Z(T)(T ) – DC j(T ), we have indeed X(T–) = DÂZ(T)(T ) – DCZ(T)(T ) in the
limit, and we are done.

An alternative to the constraint X(T) = 0 is to constrain the expected value
of X(T ), e.g. E [X(T )] = 0. If X is the systematic surplus, this relates to the
mean portfolio fairness criterion as described by Norberg (1999) since this
constraint sees to it that the surplus is emptied in expectation at termination
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for a given insurance contract or portfolio of contracts. We just mention here that
this type of constraint can be approached by a so-called Lagrange multiplier.
Steffensen (2001) contains results for the classical optimal pension funding set-up
in this direction. The techniques used there also applies to the control problem
studied in this article.

Example 4. We now return to Example 2. Consider the case where the surplus at
time T is constrained to be zero. This is handled by considering the controls for
q1 "3 and DQ "3. Then the optimal dividends in the limit turn into

d(t,x) = p
f t] g (x – g(t)),

d1(t,x) = x,

DD1(T,x) = x.

The differential equation for f becomes

ft(t) = p
f t 2] g – m(t) (p1 – f (t)) – q,

f (T–) = DP.

Note, in particular, that upon death or termination whichever occurs first, the sur-
plus X is fully paid out as lump sum dividend in order to fulfill the constraint
X(T ) = 0.
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