A ring \(R \) is called an \(H \)-ring if for every \(x \in R \) there exists an integer \(n = n(x) > 1 \) such that \(x^n - x \in C \), where \(C \) is the center of \(R \). I. N. Herstein proved that \(H \)-rings must be commutative [See 3 pp. 220—221]. We now introduce the following definition.

DEFINITION. \(R \) and \(R' \) are two rings, we say \(R \) is an \(H \)-extension of \(R' \) if \(R' \) is a subring of \(R \) and for any \(x \in R \), there exists an integer \(n > 1 \) (depending on \(x \)) such that \(x^n - x \in R' \).

In this paper we shall show how the Jacobson radical of \(R \) is related to that of \(R' \) (Theorem 1) and then we shall give some information about \(H \)-extension of a commutative one-sided ideal (Theorem 2). An example is also given at the end of section 2 to show in general we can not arrive at the sharper conclusion that an \(H \)-extension of commutative ideal is commutative.

1

In this section, we denote \(R \) as an \(H \)-extension of a subring \(R' \) and \(J(R) \), the Jacobson radical of the ring \(R \). It is well known \(J(R) \) can be characterized as the intersection of all primitive ideals of \(R \) or it is the set \(\{x \in R \mid xR \text{ is a right quasi-regular right ideal of } R\} \). We shall prove the theorem 1 as follows, the proof was patterned after the argument of the paper of Armendariz [1].

LEMMA 1.1. (1). For any \(x \in R \), there exists an arbitrarily high \(n \) such that \(x^n - x \in R' \).

(2). All nilpotent elements of \(R \) belong to \(R' \).

Proof. (1) If this is false we have an integer \(m \) which is the largest \(m \) such that \(x^m - x \in R' \). Let us choose another \(n > 1 \) which satisfies \((x^m)^n - x^m \in R'\), then \(x^{mn} - x = (x^m)^n - x^m + (x^m - x) \in R' \). This is contradictory to the maximality of \(m \). (2) Let \(x^m = 0 \). Choose \(N > m \) so that \(x^N - x \in R' \), since \(x^N = 0 \), and we have \(x \in R' \).

We now consider the \(n \)-square matrix ring \(\Gamma_n \) \((n > 1)\) over a ring \(\Gamma \) with unit element. If \(\Gamma_n \) is an \(H \)-extension of a subring \(B \), then by
Lemma 1.1 B contains all nilpotent elements, in particular, the matrices $E_{ij}d(i \neq j, d \in \Gamma)$ and therefore the matrices $E_{i}d = E_{ii}dE_{ii}$. So we have:

Lemma 1.2. If the n-square matrix ring $\Gamma_n (n > 1)$ is an H-extension of a subring B. Then $\Gamma_n = B$.

Lemma 1.3. If R is a division ring, then R' is also a division ring.

Proof. Let $0 \neq x \in R'$, then there exists an integer $n > 1$ such that $b = (x^{-1})^n x^{-1} \in R'$. Multiplying b by x^n and x^{n-1} respectively, we see that 1 and x^{-1} belong to R'. So R' is a division ring.

Now let R be a primitive ring and $R' \neq 0$. By the theorems appearing in [3] chapter II, R can be considered as a dense subring of the ring of all linear transformations of a vector space V. If the dimension of V is one, R is a division ring. Then by Lemma 1.3 R' is also a division ring. This proves R' is a primitive ring. If the dimension of V is larger than one, then considering V as a right faithful module over R' we shall prove it is an irreducible module as follows: Let v_1 be a non-zero fixed element of V and v_2 any element of V. There exists a 2-dimensional vector subspace V_2 which contains v_1 and v_2. Let $U = \{x \in R|V_2x \subseteq V_2\}$, $K = \{x \in R|V_2x = (0)\}$, $U_1 = U \cap R'$. Because R is dense, U/K is isomorphic to the full ring of linear transformations of V_2. Moreover, it is clear that U/K is still an H-extension of its subring $(U_1+K)/K$. So by Lemma 1.2 we have $U/K = (U_1+K)/K$. This assures there exists a linear transformation $x \in R'$ that sends v_1 to v_2. From this we see any element of V is the form v_1x for some $x \in R'$, in other words V is a cyclic R'-module with every non-zero element as a generator. This proves V is irreducible. So we have the following:

Lemma 1.4. If R is a primitive ring and $R' \neq 0$, then R' is a primitive ring.

Remark. Some one may wonder in Lemma 1.4 R' is always equal to R. Here we give a primitive ring which is an H-extension of some proper subring. Let Z_p be the prime field of characteristic p and R be a ring of linear transformations of an infinite dimensional vector space M over Z_p. Here R is so chosen that the matrices of its elements have the form

\[
\begin{bmatrix}
A \\
d & 0 \\
& d \\
&& d \\
& & & \ddots \\
0 & & & & & d \\
& & & & & 0 \\
& & & & & & \ddots \\
\end{bmatrix}
\]
and \(R' \) is the ring of the form

\[
\begin{bmatrix}
A & 0 \\
0 & 0 \\
0 & 0 \\
0 & \ddots
\end{bmatrix}
\]

where \(A \) is an arbitrary finite square matrix and \(d \) is any element of \(\mathbb{Z}_d \). Then for any \(a \in R \), we have \(a^2 - a \in R' \). Moreover \(R \) is a primitive ring [See 3 p. 36 example 3].

Theorem 1. If \(R \) is an \(H \)-extension of a subring \(R' \), then

\[
J(R) \cap R' = J(R').
\]

Proof. Let \(x \in J(R) \cap R' \). We want to prove that any \(y \in xR' \) has a right quasi inverse in \(R' \). Since \(y \in xR' \subseteq xR \), there is \(z \in R \) such that

\[
y + z - yz = 0.
\]

Now for some \(n = n(z) > 1 \), \(z^n - z \in R' \). Then \(y(z^n - z) = yz^n - z - y \in R' \). This implies \(yz^n - z \in R' \). Multiply (\(*) \) from right by \(z^{n-1} \) and we get

\[
yz^{n-1} = yz^n - z^n = yz^n - z - (z^n - z) \in R'.
\]

Again multiply \(y \) on the left and \(z^{n-2} \) on the right of \(y = yz - z \) and we get \(y^2 z^{n-2} \in R' \). Repeating the process \(n-1 \) times, we get

\[
y^{n-1} z \in R', \ z = yz - y = y(yz - y) - y = \cdots = y^{n-1} z - y^{n-1} - \cdots y \in R'.
\]

Consequently \(xR' \) is a right quasi-regular right ideal of \(R' \), so \(x \in J(R') \).

The opposite inclusion can be proved as follows: If \(P \) is a primitive ideal of \(R \), \(R/P \) is a primitive ring and an \(H \)-extension of \((R' + P)/P \). By Lemma 1.4 \((R' + P)/P \approx R'/(P \cap R') \) is a primitive ring, so \(P \cap R' \) is a primitive ideal of \(R' \). We have:

\[
J(R) \cap R' = \bigcap_{P: \text{primitive ideal of } R} (P \cap R') \cap R' = \bigcap (P \cap R') \supseteq J(R').
\]

Corollary. \(R \) is semi-simple if and only if \(R' \) is semi-simple.

W. S. Martindale III defined an \(\gamma \)-ring as a ring \(R \) in which \(\omega^{n(\omega)} - \omega \) belongs to the center \(C \) of \(R \) for every commutator \(\omega \) of \(R \) and proved in his paper [4] that every commutator of an \(\gamma \)-ring is contained in the center.
In this section we can obtain a parallel result about an H-extension of an one-sided ideal.

We first cite a theorem which is proved in Carl Faith’s [2 p. 47] as follows. Let $\phi[X]$ be the polynomial ring over the field ϕ and $[x_1, \ldots, x_r, X]$ denote the subring of $\phi[X]$ generated by X and r fixed non-zero elements x_1, \ldots, x_r in the field ϕ, and set:

$$(\ast) \quad N(x_1, \ldots, x_r) = \{X^n - X^{n+1}P(X)\mid P(X) \in [x_1, \ldots, x_r, X], n = 1, 2, \ldots\}.$$

Theorem (Faith). Let D be a division algebra over the field ϕ, and let A be a subalgebra such that to each $d \in D$ there corresponds non-zero elements $x_1, \ldots, x_r \in D$ (depending on d) such that for each $a \in \phi(d)$ there exists $f_a(X) \in N_d$ satisfying $f_a(a) \in A$, where $N_d = N(x_1, \ldots, x_r)$ is a set of the type (\ast). Then D is a field.

If R is a division ring and an H-extension of a commutative subring R', by Lemma 1.2 R' is a division subring. So R' contains the prime field ϕ of R. We can consider R as a division algebra over ϕ and R' its subalgebra. Furthermore it is clear that every $x \in R$ satisfies the condition of the above theorem if we take all x_i are 1. So R is commutative.

Lemma 2.1. If R is a semi-simple H-extension of a commutative subring R', then R is commutative.

Proof. It is sufficient to prove this for a primitive ring, because R is a subdirect sum of primitive rings and the H-extension property is inherited by homomorphic images. In this case R ought to be a division ring, otherwise, by [3 p. 33 proposition 3] it contains a subring U which has a homomorphic image isomorphic to the complete matrix ring Γ_n $(n > 1)$ over a division ring Γ. As Γ_n is an H-extension of the homomorphic image U' of $U \cap R'$, by Lemma 1.2, we have $\Gamma_n = U'$. But U' is still commutative since it is the homomorphic image of the commutative ring $U \cap R'$. This is contradictory. So R is a division ring. Now by Faith’s theorem we see R is commutative.

Lemma 2.2. If R is an H-extension of a commutative subring R', then every commutator $w = xy - yx$ of R belongs to $J(R)$.

Proof. $R/J(R)$ is an H-extension of its commutative subring $(R' + J(R))/J(R)$, where $(R' + J(R))/J(R)$ is isomorphic to $R'(J(R) \cap R')$. By Theorem 1 $R'(J(R) \cap R') = R'/J(R')$ which is semi-simple. So $R/J(R)$ is commutative by Lemma 2.1. The residue class of a commutator w modulo $J(R)$ is zero. This implies $w = xy - yx \in J(R)$.

Lemma 2.3. If R is an H-extension of a commutative right ideal I, then every commutator $w = xy - yx$ is nilpotent.
PROOF. By Zorn’s Lemma we can find a maximal commutative subring R' of R, which contains I. Let $w = xy - yx$, $y \in R'$, there exists an integer $n = n(w) > 2$ such that $w^n - w \in I$, hence

$$(w^n - w)(xy - yx) = (w^n - w)xy - y(w^n - w)x = (w^n - w)xy - (w^n - w)xy = 0.$$

The quasi-regularity of w^{n-1} (by Lemma 2.2) forces: $w(xy - yx) = 0$, in other words $w^2 = 0$. These kinds of w belong to I by Lemma 1.1.

Now $J(R)$ shall be proved commutative as follows: If $a \in J(R)$, there exists an integer $m > 2$ such that $a^m - a \in I$. Then for any $y \in R'$

$$(a^m - a)(xy - yx) = (xy - yx)(a^m - a) = 0.$$

The quasi-regularity of a^{m-1} will yield $a(xy - yx) = 0$, $(xy - yx)a = 0$. Let $x = a$, then $a^2y = aya = ya^2$ for all $y \in R'$. Considering the subring R'' of R generated by R' and a^2 we get R'' is commutative containing R'. The maximal property of R' forces $R'' = R'$. So we have $a^2 \in R'$. If m is even, then $a^m - a \in R'$ implies $a \in R'$. If m is odd, $a^{m-1} \in R'$. The quasi-regularity of a^{m-1} and $a^m - a \in R'$ yield $a \in R'$. As a consequence we can see that $J(R)$ is contained in the commutative subring R'. So $J(R)$ is a commutative ideal.

Finally, by Lemma 2.2 w is contained in $J(R)$, we can conclude that:

$$w^3 = w^2(xy - yx) = w^2xy - w(wy)x = w^2xy - (wy)(wx) = w^2xy - (wx)(wy) = w^2xy - (wx)w) = w^2xy - w^2xy = 0.$$

Theorem 2. If R is an H-extension of a commutative one sided ideal I, then every commutator w belongs to I.

Proof. By Lemma 2.3 and Lemma 1.1 we can see that w belongs to I.

Remark. An example is given here to show that in general an H-extension of a commutative ideal is not necessarily commutative:

Let Z_2 be the prime field of characteristic 2 and R be the algebra over Z_2 generated by a, b satisfying

$$a^2 = a, ab = b^2 = 0, ba = b.$$

Then R is a non-commutative H-extension of its commutative ideal (o, b).

References

