H-EXTENSION OF RING

BERTRAND I-PENG LIN

(Received 20 February 1968; revised 23 July 1968)

A ring R is called an H-ring if for every $x \in R$ there exists an integer $n=n(x)>1$ such that $x^{n}-x \in C$, where C is the center of R. I. N. Herstein proved that H-rings must be commutative [See $3 \mathrm{pp} .220-221$]. We now introduce the following definition.

Definition. R and R^{\prime} are two rings, we say R is an H-extension of R^{\prime} if R^{\prime} is a subring of R and for any $x \in R$, there exists an integer $n>1$ (depending on x) such that $x^{n}-x \in R^{\prime}$.

In this paper we shall show how the Jacobson radical of R is related to that of R^{\prime} (Theorem 1) and then we shall give some information about H-extension of a commutative one-sided ideal (Theorem 2). An example is also given at the end of section 2 to show in general we can not arrive at the sharper conclusion that an H-extension of commutative ideal is commutative.

1

In this section, we denote R as an H-extension of a subring R^{\prime} and $J(R)$, the Jacobson radical of the ring R. It is well known $J(R)$ can be characterized as the intersection of all primitive ideals of R or it is the set $\{x \in R \mid x R$ is a right quasi-regular right ideal of $R\}$. We shall prove the theorem 1 as follows, the proof was patterned after the argument of the paper of Armendariz [1].

Lemma 1.1. (1). For any $x \in R$, there exists an arbitrarily high n such that $x^{n}-x \in R^{\prime}$.
(2). All nilpotent elements of R belong to R^{\prime}.

Proof. (1) If this is false we have an integer m which is the largest m such that $x^{m}-x \in R^{\prime}$. Let us choose another $n>1$ which satisfies $\left(x^{m}\right)^{n}-x^{m} \in R^{\prime}$, then $x^{m n}-x=\left(x^{m n}-x^{m}\right)+\left(x^{m}-x\right) \in R^{\prime}$. This is contradictory to the maximality of m. (2) Let $x^{m}=\mathbf{0}$. Choose $N>m$ so that $x^{N}-x \in R^{\prime}$, since $x^{N}=0$, and we have $x \in R^{\prime}$.

We now consider the n-square matrix ring $\Gamma_{n}(n>1)$ over a ring Γ with unit element. If Γ_{n} is an H-extension of a subring B, then by

Lemma 1.1 B contains all nilpotent elements, in particular, the matrices $E_{i j} d(i \neq j, d \in \Gamma)$ and therefore the matrices $E_{i i} d=E_{i j} d E_{j i}$. So we have:

Lemma 1.2. If the n-square matrix ring $\Gamma_{n}(n>1)$ is an H-extension of a subring B. Then $\Gamma_{n}=B$.

Lemma 1.3. If R is a division ring, then R^{\prime} is also a division ring.
Proof. Let $0 \neq x \in R^{\prime}$, then there exists an integer $n>1$ such that $b=\left(x^{-1}\right)^{n}-x^{-1} \in R^{\prime}$. Multiplying b by x^{n} and x^{n-1} respectively, we see that 1 and x^{-1} belong to R^{\prime}. So R^{\prime} is a division ring.

Now let R be a primitive ring and $R^{\prime} \neq 0$. By the theorems appearing in [3] chapter II, R can be considered as a dense subring of the ring of all linear transformations of a vector space V. If the dimension of V is one, R is a division ring. Then by Lemma $1.3 R^{\prime}$ is also a division ring. This proves R^{\prime} is a primitive ring. If the dimension of V is larger than one, then considering V as a right faithful module over R^{\prime} we shall prove it is an irreducible module as follows: Let v_{1} be a non-zero fixed element of V and v_{2} any element of V. There exists a 2 -dimensional vector subspace V_{2} which contains v_{1} and v_{2}. Let $U=\left\{x \in R \mid V_{2} x \subseteq V_{2}\right\}, K=\left\{x \in R \mid V_{2} x=(0)\right\}$, $U_{1}=U \cap R^{\prime}$. Because R is dense, U / K is isomorphic to the full ring of linear transformations of V_{2}. Moreover, it is clear that U / K is still an H-extension of its subring $\left(U_{1}+K\right) / K$. So by Lemma 1.2 we have $U / K=\left(U_{1}+K\right) / K$. This assures there exists a linear transformation $x \in R^{\prime}$ that sends v_{1} to v_{2}. From this we see any element of V is the form $v_{1} x$ for some $x \in R^{\prime}$, in other words V is a cyclic R^{\prime}-module with every non-zero element as a generator. This proves V is irreducible. So we have the following:

Lemma 1.4. If R is a primitive ring and $R^{\prime} \neq 0$, then R^{\prime} is a primitive ring.

Remark. Some one may wonder in Lemma $1.4 R^{\prime}$ is always equal to R. Here we give a primitive ring which is an H-extension of some proper subring. Let Z_{p} be the prime field of characteristic p and R be a ring of linear transformations of an infinite dimensional vector space M over Z_{p}. Here R is so chosen that the matrices of its elements have the form

$$
\left[\begin{array}{llllll}
A & & & & & \\
& d & & & & \\
& & d & & & \\
& & & d & & \\
\\
& & & \cdot & & \\
& & & & \cdot & \\
& 0 & & & & \cdot
\end{array}\right]
$$

and R^{\prime} is the ring of the form

$$
\left[\begin{array}{llllll}
A & & & & & \\
& 0 & & & & \\
& & 0 & & & \\
& & & 0 & & \\
& & & & 0 \\
& 0 & & & & \\
& & & & & \\
& & & & &
\end{array}\right]
$$

where A is an arbitrary finite square matrix and d is any element of Z_{p}. Then for any $a \in R$, we have $a^{p}-a \in R^{\prime}$. Moreover R is a primitive ring [See 3 p. 36 example 3].

Theorem 1. If R is an H-extension of a subring R^{\prime}, then

$$
J(R) \cap R^{\prime}=J\left(R^{\prime}\right)
$$

Proof. Let $x \in J(R) \cap R^{\prime}$. We want to prove that any $y \in x R^{\prime}$ has a right quasi inverse in R^{\prime}. Since $y \in x R^{\prime} \subseteq x R$, there is $z \in R$ such that

$$
\begin{equation*}
y+z-y z=0 \tag{*}
\end{equation*}
$$

Now for some $n=n(z)>1, z^{n}-z \in R^{\prime}$. Then $y\left(z^{n}-z\right)=y z^{n}-z-y \in R^{\prime}$. This implies $y z^{n}-z \in R^{\prime}$. Multiply (*) from right by z^{n-1} and we get $y z^{n-1}=y z^{n}-z^{n}=y z^{n}-z-\left(z^{n}-z\right) \in R^{\prime}$. Again multiply y on the left and z^{n-2} on the right of $y=y z-z$ and we get $y^{2} z^{n-2} \in R^{\prime}$. Repeating the process $n-1$ times, we get

$$
y^{n-1} z \in R^{\prime}, z=y z-y=y(y z-y)-y=\cdots=y^{n-1} z-y^{n-1}-\cdots y \in R^{\prime}
$$

Consequently $x R^{\prime}$ is a right quasi-regular right ideal of R^{\prime}, so $x \in J\left(R^{\prime}\right)$.
The opposite inclusion can be proved as follows: If P is a primitive ideal of $R, R / P$ is a primitive ring and an H-extension of $\left(R^{\prime}+P\right) / P$. By Lemma $1.4\left(R^{\prime}+P\right) / P \cong R^{\prime} /\left(P \cap R^{\prime}\right)$ is a primitive ring, so $P \cap R^{\prime}$ is a primitive ideal of R^{\prime}. We have:

$$
J(R) \cap R^{\prime}=\left(\bigcap_{P: \text { primitive ideal of } R} P\right) \cap R^{\prime}=\cap\left(P \cap R^{\prime}\right) \supseteqq J\left(R^{\prime}\right) .
$$

Corollary. R is semi-simple if and only if R^{\prime} is semi-simple.
W. S. Martindale III defined an γ-ring as a ring R in which $w^{n(w)}-w$ belongs to the center C of R for every commutator w of R and proved in his paper [4] that every commutator of an γ-ring is contained in the center.

In this section we can obtain a parallel result about an H-extension of an one-sided ideal.

We first cite a theorem which is proved in Carl Faith's [2 p. 47] as follows. Let $\phi[X]$ be the polynomial ring over the field ϕ and $\left[\alpha_{1}, \cdots, \alpha_{r}, X\right]$ denote the subring of $\phi[X]$ generated by X and r fixed non-zero elements $\alpha_{1}, \cdots, \alpha_{r}$ in the field ϕ, and set:
(*) $N\left(\alpha_{1}, \cdots, \alpha_{r}\right)=\left\{X^{n}-X^{n+1} P(X) \mid P(X) \in\left[\alpha_{1}, \cdots, \alpha_{r}, X\right], n=1,2, \cdots\right\}$.
Theorem (Faith). Let D be a division algebra over the field ϕ, and let Δ be a subalgebra such that to each $d \in D$ there corresponds non-zero elements $\alpha_{1}, \cdots, \alpha_{r} \in \phi$ (depending on d) such that for each $a \in \phi(d)$ there exists $f_{a}(X) \in N_{d}$ satistying $f_{a}(a) \in \Delta$, where $N_{d}=N\left(\alpha_{1}, \cdots, \alpha_{r}\right)$ is a set of the type (*). Then D is a field.

If R is a division ring and an H-extension of a commutative subring R^{\prime}, by Lemma 1.2 R^{\prime} is a division subring. So R^{\prime} contains the prime field ϕ of R. We can consider R as a division algebra over ϕ and R^{\prime} its subalgebra. Furthermore it is clear that every $x \in R$ satisfies the condition of the above theorem if we take all α_{i} are 1 . So R is commutative.

Lemma 2.1. If R is a semi-simple H-extension of a commutative subring R^{\prime}, then R is commutative.

Proof. It is sufficient to prove this for a primitive ring, because R is a subdirect sum of primitive rings and the H-extension property is inherited by homomorphic images. In this case R ought to be a division ring, otherwise, by [3 p .33 proposition 3] it contains a subring U which has a homomorphic image isomorphic to the complete matrix ring $\Gamma_{n}(n>1)$ over a division ring Γ. As Γ_{n} is an H-extension of the homomorphic image U^{\prime} of $U \cap R^{\prime}$, by Lemma 1.2, we have $\Gamma_{n}=U^{\prime}$. But U^{\prime} is still commutative since it is the homomorphic image of the commutative ring $U \cap R^{\prime}$. This is contradictory. So R is a division ring. Now by Faith's theorem we see R is commutative.

Lemma 2.2. If R is an H-extension of a commutative subring R^{\prime}, then every commutator $w=x y-y x$ of R belongs to $J(R)$.

Proof. $R / J(R)$ is an H-extension of its commutative subring $\left(R^{\prime}+J(R)\right) / J(R)$, where $\left(R^{\prime}+J(R)\right) / J(R)$ is isomorphic to $R^{\prime} /\left(J(R) \cap R^{\prime}\right)$. By Theorem $1 R^{\prime} /\left(J(R) \cap R^{\prime}\right)=R^{\prime} / J\left(R^{\prime}\right)$ which is semi-simple. So $R / J(R)$ is commutative by Lemma 2.1. The residue class of a commutator w modulo $J(R)$ is zero. This implies $w=x y-y x \in J(R)$.

Lemma 2.3. If R is an H-extension of a commutative right ideal I, then every commutator $w=x y-y x$ is nilpotent.

Proof. By Zorn's Lemma we can find a maximal commutative subring R^{\prime} of R, which contains I. Let $w=x y-y x, y \in R^{\prime}$, there exists an integer $n=n(w)>2$ such that $w^{n}-w \in I$, hence

$$
\left(w^{n}-w\right)(x y-y x)=\left(w^{n}-w\right) x y-y\left(w^{n}-w\right) x=\left(w^{n}-w\right) x y-\left(w^{n}-w\right) x y=0 .
$$

The quasi-regularity of w^{n-1} (by Lemma 2.2) forces: $w(x y-y x)=0$, in other words $w^{2}=0$. These kinds of w belong to I by Lemma 1.1.

Now $J(R)$ shall be proved commutative as follows: If $a \in J(R)$, there exists an integer $m>2$ such that $a^{m}-a \in I$. Then for any $y \in R^{\prime}$

$$
\left(a^{m}-a\right)(x y-y x)=(x y-y x)\left(a^{m}-a\right)=0
$$

The quasi-regularity of a^{m-1} will yield $a(x y-y x)=0,(x y-y x) a=0$. Let $x=a$, then $a^{2} y=a y a=y a^{2}$ for all $y \in R^{\prime}$. Considering the subring $R^{\prime \prime}$ of R generated by R^{\prime} and a^{2} we get $R^{\prime \prime}$ is commutative containing R^{\prime}. The maximal property of R^{\prime} forces $R^{\prime \prime}=R^{\prime}$. So we have $a^{2} \in R^{\prime}$. If m is even, then $a^{m}-a \in R^{\prime}$ implies $a \in R^{\prime}$. If m is odd, $a^{m-1} \in R^{\prime}$. The quasi-regularity of a^{m-1} and $a^{m}-a \in R^{\prime}$ yield $a \in R^{\prime}$. As a consequence we can see that $J(R)$ is contained in the commutative subring R^{\prime}. So $J(R)$ is a commutative ideal.

Finally, by Lemma $2.2 w$ is contained in $J(R)$, we can conclude that:

$$
\begin{aligned}
w^{3} & =w^{2}(x y-y x)=w^{2} x y-w(w y) x=w^{2} x y-(w y)(w x) \\
& =w^{2} x y-(w x)(w y)=w^{2} x y-((w x) w) y=w^{2} x y-w^{2} x y=0 .
\end{aligned}
$$

Theorem 2. If R is an H-extension of a commutative one sided ideal I, then every commutator welongs to I.

Proof. By Lemma 2.3 and Lemma 1.1 we can see that w belongs to I.
Remark. An example is given here to show that in general an H extension of a commutative ideal is not necessarily commutative:

Let Z_{2} be the prime field of characteristic 2 and R be the algebra over Z_{2} generated by a, b satisfying

$$
a^{2}=a, a b=b^{2}=0, b a=b
$$

Then R is a non-commutative H-extension of its commutative ideal $(0, b)$.

References

[l] E. P. Armendariz, 'On Radical Extension of Rings', J. Australian Math. Soc. 7 (1967) 552-554.
[2] C. Faith, 'Algebraic Division Ring Extension', Proc. Amer. Math. Soc. 11 (1960) 43-53.
[3] N. Jacobson, 'Structure of Rings', (Amer. Math. Soc. 1956).
[4] W. S. Martindale III, 'The Commutativity of a Special Class of Rings', Canadian J. Math. 12 (1960) 263-268.

National Taiwan University

