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ON LARGE DEVIATIONS IN HILBERT SPACE

by NIGEL J. CUTLAND

(Received 2nd March 1990)

Nonstandard methods and a flat integral representation are used to give a simple and intuitive proof of the
large deviation principle for a Gaussian measure on a separable Hilbert space.
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Introduction and preliminaries

This brief note is to show how the ideas of [2] can be used to give a simple and
intuitive nonstandard proof of the large deviation principle for a Gaussian measure on a
separable Hilbert space. The general LDP for a Gaussian measure on a Banach space
was established in [7] by a very complicated proof. Our technique [2] for Wiener
measure was adapted in [3] to give an LDP for Levy Brownian motion; a key part of
that proof was a nonstandard version of Kolmogorov's continuity theorem used to
identify nearstandard members of C(W, U). Here a similar idea is used to identify
nearstandard members of I2, and is the key to the proof of (4.4) below.

The author would like to thank Dona Strauss for a helpful conversation about this
work.

Preliminaries. We assume knowledge of the basics of nonstandard analysis and the
Loeb measure construction (see [1], [4] or [5] for example). For xe*R we write x<oo
to mean that x is finite or negative infinite, and x^oo means x •if. ao; similarly with
x> -oo and x ^ — oo. For x^oo we set °x = st(x) = ooeU, the usual completion of U. If
v is an internal measure, vL denotes the corresponding Loeb measure.

Jf(n,a2) denotes the distribution of a Gaussian random variable with mean \i and
variance a2.

1. An elementary estimate

Lemma 1.1. Suppose that 9u...,6n are independent random variables with 0(~^V{0,a2),
and let
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62= £ Of, with 0^0 iff f l

TTten

where

Proof. Let £ = 0j + • • • + 0n ~ ^"(0, a2); we know from classical theory that

We will see that for all k

from which the result follows by dominated convergence, using the series for exp(^).
Note that 0 is symmetric about 0, so for k odd,

£(0*)=O = £(£").

If k is even, say k = 2m then

= 02m +terms of the form f l Of.

Now

hence

£(^)^£(0*) as required. •

Corollary 1.2. For a>0
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Proof. This is proved in the same way as the corresponding estimate for normal 6:
for any A>0, E(eXB) g ex*"2'2 (from Lemma 1.1) so

Now put X = a/a2. •

2. Gaussian measures on a separable Hilbert space

The following facts are well known (see [6] for example).

Theorem 2.1. Let (o2)n=ii2,... be a sequence of variances with <r = £<72<oo and let /in

be the probability p = Tlfin on UN, so that, writing x=(xn)neNeUN, then under n the
variables {xn)neN are independent, *¥{0,o2). Then /i(/2) = l.

E( t *l) = l™ E( I x2) = t a2
m

\m=l / n-*oo \m<n / m=X
Proof. E( t *l) = l™ E( I x2) = t a2

m<oo. •

Theorem 2.2. / / \i is a centred Gaussian measure on a separable Hilbert space H, there
is an orthonormal basis (en)n=12,.. for H and variances a2 with £f f 2 <oo such that the
variables xn=(x,en) are independent 2

Proof. See [6].

2.3. Definitions.

(a) The action functional for the measure \i on I2 given by Theorem 2.1 is

(b) The Cameron-Martin subspace is the space

tf0=(x:/(x)<oo}

with inner product
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and norm | • |0. The I2 norm | • | is a measurable norm on H0 in the sense of Gross
(see [6]), and I2 is the completion of Ho with respect to | • |.

3. Nonstandard representation of Gaussian measures on Hilbert space

The space I2 is naturally represented in *UN for any fixed infinite Ne*N as follows.

Definition 3.1.

(a) X = (Xn)n£N is nearstandard if

neN

Write X e ns to mean X is nearstandard.

(b) For Zens define °Ar = st(X) by

Remark 3.2.

(1) Xe *UN is nearstandard in the above sense if the sequence

JXn n^
0 n>N,ne*

(which is in *l2) is nearstandard in the I2 topology.

(2) An equivalent characterisation of X e ns is

n£N

and Xwsnsjv^n * 0 all infinite M.

Let F be the internal probability on *UN given by the variances (<T2)nzN;
i.e. r = n ^ = 1 *nn. Then we have the 'flat integral' formula for *Borel Ac*uN:

= KJexp - | X ^ ) dX
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where dX = *Lebesgue measure on *UN and K = Y\^=1[2na2)112.
We have:

Theorem 3.3. Suppose that a=£ff*<oo and \i is the probability on I2 given by
Theorem 2.2. Then

(a) X is near standard for TL-a.a. Xe*UN

Proof, (a) Since °Xn is JV(Q,O2) for finite n,

E(YJ°X2)=\imE(YJ°X2)=Y,l
\n e N / n-*oo \m^n / neN

and

N

E\ ( y x21— y ° v 2 ' — ••'" ri ° ^ v 2

\ V n S J V / nelM

n-»co m=n

Hence, for a.a. X under TL

n e N

(b) is obvious. •

Action. The counterpart for *UN of the action functional / is

n=l °n

The connection with / is given by:

Lemma 3.3. (a) If J(X) is finite then .Yens and

(b) IfX = *x\N for xel2, then

J(X)*I(x).
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Proof, (a) For any m

Put m=\ to obtain Xnsjv-^n finite, and putting m = M infinite we have YJM^SN^I«0.
Hence X e ns. The inequality follows from the fact that for finite n

(b) In this case we have

2/(x)= £ 4 ^ W ^ I
n=\an neN

4. The large deviation principle

Let fii(A) = fi(5~1A) for /4 s/2 . The large deviation principle gives estimates for ns{A)
as <5->0 for A open or closed. It is proved for a general Gaussian measure on a Banach
space in (7].

Theorem 4.1 (Open set). / / G is open, G £ I2, then

lim 52 log MG) ̂  - inf I(G).
s->o

5 2Proof. Let zeG with /(z)< oo; it is sufficient to show that lim<52log/*a(G)^ — /(z).
Pick 0>O such that the set A = {xel2:\x-z\f^p}^G and let

B = {X:\X-Z\<0}

where Z = *z \ N. Clearly

so for standard 5>0

Thus

) £ K J exp(-J(X))dX (definition of:
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Ci

(where Q = { y : | y | < 5 - ^ } and putting Y = X-b~x

= J exp I - 5 ~2 J(Z) - 6 -l £ YnZJai]
Cs \ n£N J

So (using Jensen's inequality)

Now J(Z)xI(z), and for the other terms on the right observe that for 8x0, Q 2 n s and
so r(C,)*l; finally

= Y -f«2/(z)<oo.

Hence lim d2logfis{G)^ —I(z), as required.

Theorem 4.2 (Closed Set). IfF^l2 is closed, then

Hm d2 log Hi(F) g - inf I(F).

Proof. Let y<inf (/(F)), it is sufficient to show that limd2logfis(F)^—y.
Begin by observing that

= D say,

where J(x) = J(x \N) for xe*/2 and ns here means ns(*/2); this is because if xe*F and
x» ye I2 then yeF (closure) so y < I(y) = I(°x) g ° J(x) by Lemma 3.3.

It is sufficient now to prove that

I i in5 2 log*/ i^)^-y (4.3)
4->0

lim 52 log *fis(*F\D) ^-R (4.4)

for any finite R. The proof of (4.3) is almost identical to the proof of [2, Lemma 6.3] so
we omit it.
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Proof of 4.4. Pick an increasing sequence mn such that mo = 0 and

mn<k L

Then

I °l^\n (n>l). (4.5)

For X e *l2 define

where

yn= £

Notice that by (4.5) and Corollary 1.2 (with 92 = Yn)

(n>l). (4.6)

Suppose we are given Xe*l2 such that Y^nSN^l<co and Yn<2 n/2 for all n^fc, for
some finite k. Then AT is nearstandard in *l2; so we have

ns'sfl f ( l Xi*k\u (J {yn^2-
ne'N

Now *F\D £ ns' and *F\D is internal, so there is infinite K with

ne*N

Then, by Corollary 1.2 and 4.6
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for finite 6, since the ratio of successive terms in the series is

/ 2nl2(2ll2-l)\
expf- l M^O for«>K.

Hence

for finite 5, which establishes (4.4).
The proof of Theorem 4.2 is now complete.
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