J. Functional Programming 2 (). 407-435, October 1992 © 1992 Cambridge University Press 407

Abstract interpretation by dynamic partitioning

FRANCOIS BOURDONCLE

DIGITAL Paris Research Laboratory, 85, avenue Victor Hugo, 92500 Rueil-Malmaison, France
Centre de Mathématiques Appliquées, Ecole des Mines de Paris, Sophia-Antipolis, 06560 Valbonne,
France (e-mail: bourdoncle@pr!.dec.com)

Abstract

The essential part of abstract interpretation is to build a machine-representable abstract
domain expressing interesting properties about the possible states reached by a program at run-
time. Many techniques have been developed which assume that one knows in advance the class
of properties that are of interest. There are cases however when there are no a priori indications
about the ‘best’ abstract properties to use. We introduce a new framework that enables non-
unique representations of abstract program properties to be used, and expose a method, called
dynamic partitioning, that allows the dynamic determination of interesting abstract domains
using data structures built over simpler domains. Finally, we show how dynamic partitioning
can be used to compute non-trivial approximations of functions over infinite domains and give
an application to the computation of minimal function graphs.

Capsule review

Dynamic partitioning is a technique which may be used during abstract interpretation to
dynamically select the set of abstract properties that are used in a particular analysis. For many
problems of abstract interpretation there may be no a priori knowledge about the ‘best’
abstract properties to use. The techniques introduced in this paper describe methods of, given
some initial unsatisfactory abstract domain, building a new abstract domain that is better able
to capture the properties of interest.

The work reported in the paper is an important contribution to the field of abstract
interpretation in that it generalizes the traditional approach to a situation where there is no
obvious complete lattice of abstract properties. The work is also important to functional
programming in that it gives an alternative treatment of minimal function graphs. Minimal
function graphs have been used as a basis for program analysis and also as an efficient way of
computing partial fixed points during analysis.

1 Introduction

Abstract interpretation, as defined by Cousot and Cousot (1977), Cousot (1978) and
Cousot (1981), provides a general framework aimed at computing invariance
properties of programs. These properties describe the run-time states that can be
reached from a set of initial states F, by means of a transition function t over the
subsets of the set of run-time states S, which defines the operational semantics of a
given program. When 1 is continuous over the lattice (P(S), <), the invariant I =
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UnenT(By) is also the least fixed point Ifp (®) of the function ® = AP.(F, U ©(P)). In
most cases, however, S is infinite, and methods must be developed to determine a safe
and finitely represented approximation of this least fixed point. Cousot and Cousot
(1977) introduced the notion of Galois connection (o, y) as a general tool for building
such approximate frameworks. The abstraction function o maps a set of states P to
an element P* of a finitely represented abstract (approximate) lattice (P*(S), =),
whereas the concretization function y maps an abstract state P* to a set of states,
called its meaning. Then, by defining a safe approximation ®* of @, i.e. a function
such that ®* I ao®ovy, one can determine an approximate invariant I* = Ifp (®*)
which is a safe approximation of I, i.e. y(I¥) 2 L

However, when the approximate lattice is of infinite height, the iterative
computation of the approximate invariant may not finitely converge, and speedup
techniques, such as widening and narrowing, must be used to determine a safe
approximation of I*. But in many cases, there is not even a clear indication about how
to build a good and finitely represented abstract lattice. This happens when there is no
indication about what the least fixed point will ‘look like’, and therefore no advance
knowledge of the properties that should be expressed in the abstract lattice P*(S) to
precisely describe the invariant 1. Differently stated, there is a gap between the exact
lattice P(S) and the abstract lattices that one can a priori build or think about. This
is true in particular when functions over infinite domains are approximated.
Moreover, most implementations of abstract interpretation have to deal with the
problem of testing the equivalence of the data structures used to represent lattice
elements (i.e. testing the equality of their meaning). This test is often very costly and
difficult to implement, as with the abstract interpretation of functional or logic
programs for instance, and it would be desirable to design a framework that avoids
such a test.

The aim of this paper is to discuss a technique, which we call dynamic partitioning,
that can be used to compute non-trivial, safe approximations of program invariants
in the above cases, by dynamically selecting interesting and finitely represented
abstract properties without having to test the equality of their meaning.

We shall first recall, in Section 2, the classical definition of a widening operator, and
then describe, in Section 3, a framework that generalizes the classical lattice-oriented
framework to cases where no Galois connection can be defined and where testing the
equivalence of data structures can be avoided by using properly generalized widening
operators over general partial orders. We shall then discuss in Section 4 several
classical situations in interprocedural abstract interpretation and show how our
technique can be applied in each case. We will show in particular how non-trivial
approximations of functional fixed points can be computed by using our framework
and an adequate data structure. Finally, we shall give in Section 5 two practical
applications and show how dynamic partitioning can be used to effectively compute
non-trivial, safe approximations of minimal function graphs.
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2 Widening operators

The Galois connection approach described above is perfectly adequate when the
abstract lattice P*(S) is of finite height, since the iterative computation of the least
fixed point of ®* over P*(S) will necessarily converge in a finite amount of time.
However, some interesting program properties, such as the range of integer variables,
are expressed in a lattice of infinite height. Even if the integer variables were bounded,
choosing for instance Z = {®", ..., 0%}, ® = =2, @* = 21—, the interval lattice
I(Z) is still of height 2%, and fixed point computations may in theory require up to the
same number of iterations. A speedup technique has been proposed by Cousot and
Cousot (1977) that uses so called widening operators to transform infinite iterative
computations into finite but approximated ones. So let us suppose for instance that
one has a program function Loeop defined in ML as follows:

fun Leopi =if i <100 then
Loop (i+1)
else
i

Suppose now that one wants to compute the values returned by Loop for a set of input
data specifications. Loop being recursive, this computation may require computing the
value returned by Loop for arguments that were not present in the initial data set.
Therefore, the goal of an interprocedural abstract interpretation framework will be
to determine this minimal function graph describing the minimal information about
Loop needed to compute its value for every argument in the original specification.
This notion of minimal function graph was first introduced in Jones and Mycroft
(1986), but was in essence already present by Cousot and Cousot (1978). A program
state {a,b)eZ xZ, therefore consists of an input value ¢ and a return value
b = Loop(a), where the special value L denotes nontermination. Generalizing the
idea used by Jones and Mycroft for constant propagation, we can approximate the
minimal function graph of Loop by a pair of intervals representing an approximation
of all of Loop’s arguments and all of Loop’s results. This approximate minimal
function graph is therefore the least fixed point X* of the monotonic function ®* over
the lattice I(Z) x I(Z) defined as follows:

O*<i, v = i, LD v <D0, D3(i, v))
where i, is the input data specification, and the two functions ®* and ®} are defined
by:
() = iner*(i A [0, 99])
i, vy =v Vv (i A[100,0%)
where the strict abstract function incr? is defined by:
iner!(L) = L

incr*[a, b] = [min(a + 1, ®*), min (b + 1, ©*)].
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The least fixed point X* is known to be the upper limit of the increasing chain:

Xo=<L, 1>

Xo = O(X7).
But this limit can take a very long time to compute. For instance, if i, = [0, 0], this
least fixed point is equal to ([0, 100],[100, 100])> and is reached after 102 iterations.
One must therefore find a way to speedup this computation in order for it to be

tractable. To this end, we introduce the widening operator V, over I(Z), taken from
Cousot and Cousot (1977, p. 247), or Cousot (1981, p. 334):

1V, x=xV,l=x
la,, 8,1V, [a,, b,] = [if a, < a, then »~ else a,,

if b, > b, then 0" else 5,].

This non-commutative operator generalizes ‘unstable’ bounds of its right argument.
It is a safe approximation of the join operator, and is such that for every increasing
chain (x,),.n, the increasing chain (y,), .y defined by:

Yo = Xy
Vas1 = Yn Vi Xy
is always eventually stable, i.e. there exists a n, such that: Vn > n,:y, = y, . Under

these assumptions, it is well known (Cousot, 1981, theorem 10-30, p. 334) that the
upper limit ¥* of the increasing chain:

Yi=(L1,1)
Y, = YV, QYY) if - (@H(Y) < YD
Yian=71, if oY) < Y,

where the widening operator is applied componentwise, is a post fixed point of ®*, i.e.
@*(Y*) < Y*, and, therefore, is a safe approximation of X*, i.e. X* < Y*. Note that
since here:

yEx=xV,y=x

this chain could be simply defined by:
[ Yi=<(l, 1>
\¥2..= viv,@v).
So, for example, with input data specification i, =[0,0], one can compute the

increasing chain:
Yi=<Ll,1>

Yy =<[0,0, L)
Y; =<[0,0"], L)
Y# = Y* = ([0, "], [100,0*])
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whose limit Y* is a safe approximation of the least fixed point:
X* = ([0, 100], [100, 100}>.
This result could also be improved by using the rarrowing operator A, defined by:
LAx=xAl=1
[a,, b]Ala,, b,] = [if a, = ®™ then q, else min(a,, a,),
if b, = ©* then b, else max (b,, b,)].
This operator satisfies the canonical condition:
Vx,yel(Z):x2y=x2xAy =y
and is such that for every decreasing chain (y,),.n. the chain (z,), .y defined by:
[ 2=
Izm =2, A Y0na
is always eventually stable. It is known that the lower limit Z* of the decreasing chain:
f Zt=v1*
28, = z2 A 0422

starting from the post fixed point Y*, is a safe approximation of X*. On our example,
this gives, after only two iterations:

Z} = [0,0"],[100, 0*]>
Z} = Z* = ([0, 100], [100, o*]>.

This example show how good results can be obtained by using very naive and *brute
force’ widening and narrowing operators. Of course, it might be argued that the
interval [0, 100] inferred by the computation could have been easily determined by
simply looking at the text of the program, and that a finite abstract lattice could thus
have been built a priori. We shall see, in Section 5.2, an example that shows that this
is not always the case, and in practice, building ad hoc approximate functional lattices
is simply not feasible. However, since we already know how to deal with intervals, it
is very tempting to describe minimal function graphs by sets of interval pairs, instead
of a single pair of intervals. The advantage of such a representation is that it is very
flexible, and does not establish in advance any particular tradeoff between complexity
and precision.

This is however a difficult problem to solve if we want to use this approach, in that
there is no canonical representation of abstract minimal function graphs. For
example, it is quite clear that the two sets {{[1, 2], [0,0]>} and {{[1, 1], [0, 0], €2, 2], [0,
0]>} are equivalent in the sense that they represent the same minimal function graph,
but no one is ‘better’ than the other. What we would like to do, however, is to work
with such representations, even though they are not unique, and still ensure the
convergence and safeness of every computation. The traditional complete lattice
framework is clearly not appropriate in this case, so we need to generalize the
approach to general partial orders.
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3 Representations
Definition 1
Let (D, L, =) be a countable complete partial order (cpo), R a set, and y:R—->D a
meaning function. Then (R, <,v,V) is said to be a representation of D if:
) (R, L1, X) is a partial order
(i1) The meaning function vy is monotonic
(iil) Each element de D can be safely abstracted by an element a(d)eR, i.e.:

v(d)) = d
(iv) Each binary operator V,: R x R— R of the sequence V = (V). is such that:

r < rv,r
y(r) =y(rv,r)

(v) For every {r;};cn S R, the chain (r;),.y defined by:

Vr,r’eR:{

‘ ro ="y

/’ — 7
1r1+1 =rVra,

has an upper bound.

A representation is said to be complete if (R, <X) is a cpo, finite if every element of R
has a finite encoding, and tractable if the chain (r}), .y is always eventually stable.

This definition has some similarities with the definition of the upper approximation
(D*, <) of a complete lattice (D, £) using a Galois connection, i.e. a pair of
monotonic functions (o, ¥), o: D— D* and vy:D*— D such that:

V({d,d)eDx D*.a(d) < d*=dc y(dh).

The difference between the two definitions is that our framework makes very weak
assumptions about R and D, and generalizes the case where R and D are both
complete lattices, since we only require that o be safe. As a matter of fact, o is not even
needed in the framework, and only the existence of a safe approximation for every
concrete element is required. This allows in particular different representations to
have the same meaning and one can choose arbitrarily between them, hence the term
representation. Therefore, the traditional inequality ooy =< Id,, which becomes an
equality when vy is one-to-one, does not hold in this framework.

Each elementary widening operator V, of the widening operator V = (V,),_y iS an
alternative to a join operator over the abstract lattice D* which does not necessarily
exist if R is a partial order. The conditions imposed on V, simply ensure that safe and
increasing chains over R can be built from increasing chains over D, as we shall see
below. When R and D are both complete lattices, the operator V of a tractable
representation is a straightforward generalization of the classical widening operator,
in the sense that y(rV,r") 2 y(r) U y(r') and every increasing chain built using V is
eventually stable.

Another remark concerning this framework is that condition (v) is trivially satisfied
for any complete representation, for every increasing chain has a least upper bound.
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Differently stated, the widening operator V is not necessary in a complete
representation to prove the existence of a least upper approximation. But even so, it
can be very interesting to have such a widening operator to define finite and tractable
frameworks, as we have seen in Section 2. Also, note that the use of widening
operators over non-complete lattices was already present in Cousot and Halbwachs
(1978), where the lattice of finitely represented conxex hulls is not complete.

Finally, it should be noted that our framework can be very easily generalized to
cases where (R, <) is only a preorder,! in which case the meaning function need not
be monotonic and the conditions imposed on the elementary widening operators
must be:

Y() = v(rV.r)
Y(r) Ev(rV,r).

Pre-orders have been used for instance in Stransky (1990). However, the problem
with such very general frameworks is that not much can be said about them, for they
are essentially defined by the properties of the widening operator V. Moreover, pre-
orders are not very easy to work with, for representations having the same meaning
can ‘oscillate’ during the computation and one must be able to finitely compute the
equivalence of representations (i.e. y(r) = y(r)) to detect the stabilization of increasing
chains. As we noted earlier, this is not necessary here since stabilization is detected by
the equality of representations (i.e. r = r’). Hence, our framework is perfectly suited
to cases where R is implemented using very complex data structures for which the
equivalence test is intractable or very costly, since we require that equivalent
representations be comparable only when they are ‘similar enough’. It is interesting to
note that a comparable idea, which was only a heuristic at the time, was used in the
design of the widening operator of Cousot and Halbwachs (1978) which preserves as
much as possible the representations of convex hulls during iterative computations.
So let (R,<,Y,V) be a representation of D, and ®eD—~>D be a continuous
function, that is, a monotonic function such that for every directed subset
CeD:d(U C)= U ®(C). It is well known that the least fixed point of @ is:

Vr,r’eR:{

¢ =1fp(®) = U D(L).

ieN

If the elements of D do not have a finite encoding, it may be impossible to compute
this increasing chain. So let us suppose that one can define a safe approximation @*
of ® operating over the set of (supposedly finitely encoded) representations R, that is,
a function ®* such that:

yo®* o doy.

One can choose in particular? any function ®* such that ®* = oao®ovy, for by
monotonicity of y and property (iii):

yo®* 2 (yoa)oDoy = Doy
but this is not mandatory. The only thing we really need is any safe approximation
! A pre-order is a reflexive and transitive binary relation.

Z As in Cousot (1981, p. 331), for instance.
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of @. Our problem is now: how can we compute a safe representation of ¢ using ®*
which is the only function that we can possibly compute? To this end, let us define
the chain (r,),.n by:

( re=41

1ri+1 = rlvtq)#(rt)'

Theorem 2
The chain (r),.n is an increasing chain over R that has an upper bound r, which is a safe
representation of the least fixed point of ©, that is:

¥(ry) 2 &.

Proof

Let us first define the increasing chain (¢,),.n bY ¢ = L and ¢,,, = P(d,). It is clear
that y(r,) 2 L = ¢,. Suppose by induction that y(r,) = ¢,. Then by definition of the
widening operator V:

V(i) = 70, Vi ' (r)) 2 v(®*(r).

But ®f being a safe approximation of ®, and by monotonicity of ®:

'Y((D#(rt)) I O(v(r)) 20(¢) = b,y

which proves that each r, is a safe approximation of ¢,. But thanks to the first
property of V, r,,, > r, and (r),y IS an increasing chain which has an upper
bound r,. Finally, by monotonicity of y:Vi:$,  y(r,) = ¥(r,), which implies that
¢=v(r,). O

Using a finite and tractable representation, one can therefore compute a non-
trivial, safe and finitely represented approximation of the least fixed point ¢ of any
continuous function @ over D, even if the representation R does not have a maximum
element (which would be of course a trivial safe approximation of any element of D).

However, as in Section 2, it is possible to compute an even better representation r;,
of the least fixed point of ® by defining a narrowing operator A = (A,),.x such that
every elementary narrowing operator A, satisfies:

[b=v0) _ (rAr<r
Nocve) o svirAr)

and computing the lower limit of the decreasing chain (r}), .y defined as follows:

Vr,reR, YbeD

[ ro=ra
7o = 118, @)
Note that, once again, the first condition imposed on A, enforces the chain condition
whereas the second condition enforces the safeness of the computation, that is, this

condition ensures that the narrowing operator will not ‘jump below’ the least fixed
point, as shown by the following theorem.
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Theorem 3
When the decreasing chain (r}),.n is eventually stable, its lower limit is a safe
representation of the least fixed point of ®.

Proof

We first note that ry = r, being a safe representation of ¢, we have:
Y(ro) = ¢.

Now, suppose by induction that:
Y 2 ¢

then obviously, by monotonicity of ®:
Y(@'(r)) 2 O(v(r) 2 D(P) = ¢
and therefore: Y(ri,) = Y(r; A, D (r)) = ¢

which shows that the lower limit r, = r; for some i,eN is a safe representation
of . O

Note that, contrary to the classical widening/narrowing approach, we do not
require that the meaning of the first element r, = r_ be a post fixed point of @, which,
consequently, avoids comparing y(r,) with ®(y(r,)) at each stage of the iterative
computation of r, as in Section 2. This property is very important if, as stated in the
introduction, comparing the meaning of representations is very costly. However, if
the elementary widening operator V, satisfies the natural stability condition:

Vr,rreRyr)=yr)=rV,r' =r

as does the widening operator V, over the interval lattice I(Z), then y(r,) will always
be a post fixed point of ®. Elementary widening operators satisfying this condition
will be called stable. Note that complex widening operators, such as the ones that will
be presented in the following sections, will not generally be stable. Intuitively, since
we require that two representations r and »' be comparable only when they are
‘similar enough’, the stability test y(r") = y(r) will be approximated, and, therefore,
redundant information r’ added to a representation r will sometimes lead to a loss of
precision.

Finally, note that widening and narrowing are not dual operations. However, for
the sake of simplicity, we shall only focus on widening operators in the rest of this

paper.
4 Dynamic partitioning

The aim of this section is to build generic representations based on the idea of ‘non-
redundancy’. We shall first discuss what we call basic partitioning, which is a
technique that can be used to build representations of a concrete complete lattice (L,
1,T, 5, U, N) using well chosen subsets of 4 when A is an upper approximation of
L. We shall then discuss two other methods, called basic functional partitioning and
Sfunctional partitioning used to build representations of functions F:C— B over an
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infinite set C, using subsets of 4 x B when A is an upper approximation of P(C) and
B is a lattice. We start by defining two notions of non-redundancy for the subsets of
a lattice A.

Definition 4
A subset P of lattice A4 is said to be non-redundant if it does not contain 1 and:

VaadePa<ad=a=d.
P is said to be strongly non-redundant if it does not contain L and:
Va,aePa+a=ana=1.

Non-redundant subsets are often called crowns or antichains. The set of non-
redundant and strongly non-redundant subsets of 4 will be noted respectively P, (4)
and P, (A4). {wo elements of a non-redundant subset are either equal or not
comparable, whereas they are equal or have ‘nothing in common’ if they belong to
the same strongly non-redundant subset. Note that strong non-redundancy implies
non-redundancy.

4.1 Basic partitioning

So let us suppose that 4 is an upper approximation of a complete lattice L and let
(o, v) denote the Galois connection between the two lattices. We wish to build a
representation of L using the subsets of 4. The most natural meaning of a subset
P of A is of course:
I'(P)= U v(a)
acP

that is, the least upper bound of the set of concrete elements denoted by the abstract
elements of P. Let us define the binary relation < over P(4) by:

PP <=VaeP,ddeP a<da.

This relation is similar to the preorder used to build the lower powerdomain (see
Gunter and Scott, 1990, p. 653), sometimes called the Hoare powerdomain, or the
relational powerdomain (see Schmidt, 1953, p. 295). The originality of our framework
is that using well chosen subsets of P(4), we can turn this preorder into a partial order
and avoid using principal ideals and complex power domains, as in Mycroft and
Nielson (1983), for instance.

Theorem 5
P, (A4, <) and (P,,.(4), X) are partial orders and T is monotonic over P(A).

Proof

< is obviously a preorder. So let P<X P, P’ <X P, and ae P. Then there exists a’ € P’
and a” € Psuch that: a < @’ < a”, and by non-redundancy: a = a”, which implies that:
a=aeP, and hence P < P’. But similarly P’ < P, and thus < is a partial order.
Finally, it is easy to show that the monotonicity of y implies the monotonicity
of . O
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Under more restrictive conditions, we can show that (P, (4), X) is a complete
partial order.

Theorem 6
If A is meet-continuous,® then (P, (A), X) is a cpo.

Proof

To show that (P,,.(A4), <) is complete, let (P),.y be an increasing chain. Using the
diagonal argument and the definition of <, one can build a (possibly infinite) set of
increasing chains {C},.,, J € N, C; = (¢;,);cn» Such that for all ieN: P, = {¢;,},., —{L1}.
But A4 being a complete lattice, each increasing chain C, has a limit /,e 4. The only
possible candidate to the upper limit of the chain (P),.y is therefore {/},_ ;. But then
for all j +j:

L A lj,=\/Cj A \/Cj'

= \/ (cn A \/ CJ’)
= \/,(cj’ A Cpy)
—\Vil=1

which shows that {/},_, is strongly non-redundant and is the least upper bound of the
chain (P),eN. O

Under the light of this theorem, one might think that it is a good idea to limit
oneself to the strongly non-redundant subsets of A4, since they form a complete partial
order, and appear to be ‘less arbitrary’ than the general non-redundant subsets of A.
But it depends a lot on the ‘shape’ of the abstract lattice 4. Intuitively, for strongly
non-redundant subsets to be useful, every abstract element a€ 4 should be the least
upper bound of a set of atoms. This can be formalized by saying that 4 should be an
algebraic atomic lattice with a strongly non-redundant basis A of atoms such that:

YaeAd:a=\/(4 N |a)

where | a = {a"€ A:a’ < a} is the principal ideal generated by a. Standard examples
of such lattices are (P(S), =) and the interval lattice I(Z), with bases {{s}},.; and
{[i, i},.> respectively. Counter-examples are complete total orders, for which every
subset with more than two elements is necessarily redundant. More generally, one can
prove the following theorem.

Theorem 7
Let (A4, L, T, <, v, A) be an upper approximation of P(S), such that y is one-to-one,
y(L)Y=, and:

[} *[s1=[s] A [s1=L1 (where[s] = a({s})).
Then A is an algebraic atomic lattice, A = {[s]:s€ S} is a strongly non-redundant basis
3 A complete lattice L is meet-continuous (see Gierz et al., 1980, p. 30) if for every directed subset

D < L and every element xeL:x A \/ D = \/{x A d:deD}.
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of A, and {y(a):a€ A} is a partition of S. Moreover, ify is V -continuous, then A is meet-
continuous.

Proof
We first note that y being one-to-one, aoy =1d , v is A-continuous and o is U-
continuous (Cousot, 1978, theorem 4.2.7.0.3, p. 4.33). Suppose now that there exists
se Ssuch that [s] = L. Then [s] = a({s}) < L and by definition of Galois connections,
{s} € v(1) = & which is impossible. Thus 4 is strongly non-redundant. But:
XxXeEAN (a=IseS:x=a(s})<a

<3Js5seS:x =[s] A {s} = v(a)

<3Jsey(a):x =Is].
Therefore 4 n | a = B(a) = {[s]:sey(a)}. In order to show that a = \/ B(a), we shall
first show that y(a) = |J,cp@ ¥(@). But yoa 2 1dp, and thus:

U v@= U (yoaish

acB(a) sey(a)

> U ) =1

sey(a)
Conversely, let xe Usey(a) Y([s])- Then there exists {s} = y(a) such that {x} = y([s]), and
hence by monotonicity of o:
a({x}) < [s] = a({s}) < a(y(@) = a
which implies that {x} < y(a), that is, x € y(a). Therefore:
a=(xoy)(@=ao J v@)

aeB(a)

=V (eon)(@ = VB@.

aefie)

Now, when y is Vv -continuous, then for every a4 and every subset X € A4:

Y@ A\ X) =y(@) n U {v(x):xeX}
= U@ n y(x):xeX}
= U {r(a A x):xe X}

and therefore, o being U -continuous:

an\/X=(xoy)(@aAr\X)
=\ {(aoy)(@ A x):xeX}
=\{a A x:xe X}
which shows that A4 is meet-continuous. Finally, y([s]) % y([s']) implies that {s] # [s'],
and y being A -continuous, y([s]) n y([s']) = y(s] A [s']) = y(L) = &, which proves
that {y(a):ae A4} is a (set-theoretic) partition of S. [

What we need now in order to complete our framework is to define elementary
widening operators V such that: P<X PV P and I'(P) = I'(PV P’). There are, of
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course, many ways to define these operators. When working with P, (A4), the most
precise widening operator can be defined by:

PVP =(PU P)—{ade€P,JacP:a <a}.

In fact, this widening operator behaves rather like a join operator. More generally,
at each step of the computation, one can choose (either deterministically or not) a
subset F, of the current invariant P to coalesce. The idea of such a generalization is
to replace P by:
(P U {a,))—{acP:a < ay}
where a, is any element greater than \/ F,. Of course, one might choose to define a
very poor widening, which does not improve the expressible properties of the
framework, by:
PVP ={\/(PU P)}.

It is easy to see that these definitions turn P, (A4) into a representation framework
abstracting the lattice L whenever the ‘generalizations’ are properly used. It is
difficult to say more about these generalizations since widening operators are well
known to be highly lattice-dependent. When working with P_ (4), widening
operators are even more difficult to define in the general case, and we shall only
develop an example in Section 5.1. Note that in practice, one will always work with
the set of finite strongly non-redundant subsets of 4 which is generally not a cpo, so
the completeness of P, (A4) will not help. Finally, note that the definition of the
widening operator has a great influence over the quality of the result of the
computation, as we shall see in Section 5.2. Therefore, the general idea one should
follow in the definition of a widening operator (V,),.x should be to use very precise
elementary operators (i.e. join-like) at the beginning of an iteration sequence, and to
generalize only after these operators have precisely defined the ‘shape’ of the least
fixed point. However, as we shall see in Section 5.2, there are also cases where it can
be a good idea to alternate join-like operators and generalizations.

4.2 Basic functional partitioning

A central problem in abstract interpretation is to find a safe approximation of a least
fixed point F that belongs to a functional lattice C— B, where (B, L, T,=, U, N) is
itself a lattice. For instance, for very simple, non-recursive programming languages,
C is usually the finite set of lexical control points, and B the powerset of run-time
memory states. But for more complicated, recursive languages, a control point is
more naturally defined as a subpart of the run-time stack, and C is infinite. More
generally, there are cases where it can be interesting to consider that control points
are indeed execution traces and not only static control points. Finally, in the minimal
function graph approach, C is the set of admissible inputs of program functions, and
B is the lattice of possible outputs, the bottom value of B being used to denote
nondetermination. In this paper, we shall refer to the elements of the possibly infinite
set C as control points.

Very often however, there is no need to know the value of F for every control point,
and it is sufficient to determine a safe approximation F, =2 U {F(c):ce C;}, of the

16 FPR 2
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values taken by F over each subset of a given partition {C},., of C. This partition can
be defined in a very natural way by assigning a token to each control point. This
method has been proposed for instance in Sharir and Pnueli (1981) and Jones (1982),
where tokens are used to group execution traces and coalesce the memory states
associated with them.

If the set of tokens is finite, then the framework is said to be partitioned (see Cousot,
1981, p. 315) and the problem is equivalent to the resolution of a finite system of
semantic equations. This is the case for instance in Bourdoncle (1990), where a token
is assigned to each run-time stack. These tokens model the ‘shape’ of the stack
(pointers, control stack ...) and generalize the tokens used in Sharir and Pnueli (1981)
that only took into account the control part of the run-time stacks.

However, if the set of tokens is infinite (or very large) and one has no idea of a good
way of defining a finite partition, then the original problem of finding a safe and
finitely represented approximation of F remains to be solved. The idea is then to ‘lift’
F so that it operates on sets of control points, and to dynamically calculate a partition
of C, instead of it being ‘hard wired’.

We are going to study two general methods for doing this dynamic partitioning. For
each of these methods, we suppose that there is a basic (and supposedly not
satisfactory) way of finitely representing sets of control points, and we intend to build
a representation from this initial approximation. We shall therefore suppose that (A4,
L, T, <, v, A)is an upper approximation of (P(C), 4, C, <, U, n), and call (o, )
the Galois connection between the two lattices. We shall also suppose that v is one-
to-one and that y(1) = J, which implies that v is A -continuous. The elements of
A will be called abstract control points and the elements of T = {[c]:ce C}, where
[c] = a({c}), will be called the tokens. Theorem 7 shows that whenever T is strongly
non-redundant, then A4 is an algebraic atomic lattice, and T defines a partition of
C, but this hypothesis will not be necessary. Our definition therefore generalizes the
classical notion of token. Finally, the elements of B will be called abstract values.

The first representation that we shall define is based on the very naive observation
that every abstract control point ae A implicitly defines a (possibly infinite) set of
control points y(a) that we shall informally call a ‘region’. Therefore, an easy way to
approximate a function from C into Bis to ‘cover’ the region over which this function
is different from L by a finite subset of 4, and to associate an abstract value & with
each element a of this subset.

If the regions of such a representation P = A x B do not overlap, the natural
meaning of P will map every control point ¢ to the unique abstract value b associated
with the element a by which its token [c] is covered, or to L if its token is not
covered. However, if the regions overlap, the meaning of P can be defined in several
ways. We shall study in this section the most natural idea which is to map every
control point ¢ to the union of the abstract values associated with the abstract control
point a with which its token intersects. We will show that these representations can
be constrained in order to form a partial order compatible with this meaning, and
then explain how widening operators can be effectively designed. We shall then study,
in the next section, a different and non standard meaning of overlapping
representations that is better suited to generalization.
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Definition 8
A subset P of 4 x B is said to be normalized if:
V<a,bYeP, V<{a',b'>ePa=a=b="b".

For every normalized subset P, and 4, a,,a,€ A, we define:

A(P)={aeA:3beB:{a,b)e P}

C(P) = | J{v(@):3beB:{a,b) e P}

P(a) = U {beB:{a,b)e P}

P¥a,,a,) = {b:{a,bDeP A a, <a< a,}.

The set A(P) is called the domain of P, and the abstract value P(a) is the image of a
by P. The set C(P) is the concrete domain of P, i.e. the ‘region’ of C covered by the
domain of P. For a normalized subset P of 4 x B, the image P(a) of every element of
the domain of P is the unique element b such that {a, b> € P. We call P(A4, B) the set
of normalized subsets P whose domains do not contain L, and P (A4, B) (resp. P, (4,

B)) the set of normalized subsets which have a non-redundant (resp. strongly non-
redundant) domain. Obviously:

P, (A4,B) < P,(A4,B) = P(4,B).
We then define the meaning I'(P) of a representation Pe P(A4, B) by:
L(P)(c) = Mplc]
where the monotonic function .#,: A — B is defined by:
M(x)= U P(a).

aeA(P)

anz+l
When T is a strongly non-redundant basis of 4, we obviously have:

VteT, VaeAantF+ Ll=1<a

and therefore: T(P)(c)= U {b:<a,bDeP A[c] < a}

which states that each control point ¢ is mapped to the union of the abstract values
b attached to the elements of A(P) by which its token [c] is ‘covered’, or to L if its
token is not covered. Note that if A(P) is strongly non-redundant, then an element of
the basis is at most covered by a single element in A(P). It is worth mentioning at this
stage that although any set of tokens can be chosen, it seems reasonable to impose
that T be strongly non-redundant. To see the problem, let us choose C =Z, 4 =17,
and [c] =c. Then y(c) ={0,...,c}, the lattice (4, Ll,o*, <,max,min) is totally
ordered, and:
VYaadeAd:a+ L hna +#1lsanad+1l
which shows that I'(P) is constant over C and:
I'(P)(c)= U {b:{a,b)eP}.

Intuitively, all the ‘regions’ defined by the abstract control points overlap, and
therefore, there is no way to distinguish between the different abstract values b€ B of
the representation. We are now going to show that P (4, B) and P, (A4, B) can be
turned into partial orders.

snr

16-2
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Theorem 9
P, (4, B) and P, (A, B) are partial orders for the binary relation:

PP <=VY{abdeP, A{a,b'deP a<a AbC¥
and the meaning function I is monotonic over P, (A, B) and P, (A, B).

snr

The proof is straightforward. Note that every function F in C— B can always be
finitely abstracted by {{T, T >} and, when T is non-redundant, it can also be safely
abstracted by {{[c], F(¢)>:ce C}. Therefore, defining a widening operator over P, (4,
B) will turn P_ (4, B) into a representation of C— B. Elementary widening operators
can be defined as follows:

o We first define the domain of PV P’ by:
APV P)= A(P)V, A(P)

where V, is any basic partitioning widening operator defined in Section 4.1.
o Then, for every a in the domain of PV P’, we define the image of a by:

(PVP)Ya)=b
where be B is any abstract value such that:
b=l (a) U Mp(a).

To prove that P<X PV P’, we remark that by definition 4(P) <X A(PV P’), and

therefore:
eretore V{a,bYeP, Ia'cA(PVP):a<d

hence: b= P(a) = M(a) = M(a) = Mp(a') U Mp(a)=(PVP)()
and thus: I, b’>ePVPa<a ANbED.
Let us now prove that I'(P) = I'(PV P’). So let {a’,b’>e P’ and xe A be such that

X A @’ + 1. By construction, we have:

)= U v@s U va@=CaPVP)

acA(P) aeA(PVP)

and therefore, there exists a pair {a,b>€ PV P’ such thata A x A @’ + L, otherwise,
Y being A -continuous:

Y(x Aad)=v(x A d)n y(a)
csyxaa)n U v@

acA(P’)
s U GG&xAa)ny@)
acA(PVP)
c U vaarxnad)=g
acA(PVP)

and thus, v being one-to-one, x A a’ = L, which is absurd. Consequently, a A a’ +

1 th :
> and therefore: U (@) 2 Mola Aa)

where shows that Z.(x)= U ¢ U (b)= Mpyp(X)

(@,b)epP’ (a,b)ePVP’
zAa'£L TAaFL
and hence: rPycreve).
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Provided that condition (v) of Definition 1 is satisfied, (P,.(4, B), <,I',V) is thus a
representation of the functional lattice C— B.

4.3 Functional partitioning

The main interest of basic functional partitioning is that it is indeed very natural and
easy to understand: the value mapped to a control point ¢ by the meaning of a
representation P is defined as the union of the abstract values b associated with the
abstract control points @ which have ‘something in common’ with its token [c], i.e.
[e] A @ £ L. But basic functional partitioning has several shortcomings.

Firstly, as we noted earlier, basic functional partitioning is reasonably applicable
only when the lattice 4 is an algebraic atomic lattice with a strongly non-redundant
basis. This can be very annoying when approximating higher order functions for
instance, since abstract functional lattices do not generally have a strongly non-
redundant basis.

Secondly, there are cases where the ordering < over P_ (4, B) is not appropriate,
and one would like abstract control points of representations to be maintained during
iterative computations. This happens to be the case for interprocedural abstract
interpretation since abstract control points naturally correspond to function calls in
the fixed point computation algorithm, and the abstract call graph, which is generally
needed to determine the set of recursive procedures, is therefore defined in terms of
abstract control points. Of course, this goal can be easily achieved by slightly
modifying the definition of <X as follows:

V<{a,bYeP, I{d,bYePa=a AbEV.

However, this ordering has a major drawback with respect to the definition of
widening operators in that, intuitively, the only way to generalize a representation P
without losing too much information is to ‘pave’ C using strongly non-redundant
subsets of A, because every extra element {a’,b’) added to P leads to a loss of
information for every token ‘covered’ by a’. This is illustrated by the left part of
Figure 1 in the case of the interval lattice I(Z*). But this pavement can turn out to be

b T

b, | b,
bl b1
1
b, b, |
L - [ b’
| ]
i —

Fig. 1. Basic functional partitioning versus functional partitioning.
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much too complicated when working with sophisticated lattices such as the linear
inequalities lattice, for instance. Worse, it can even be impossible to define such a
pavement for lattices that do not have a strongly non-redundant basis. What we
would like to do is therefore to map small regions {a,},., of C to a given set of values
{b},c,» while defining some kind of default value b’ for a larger and possibly
overlapping area a’, as illustrated by the right part of Figure 1. This can be achieved
by generalizing the definition of the meaning function I' to every element P of
P(4, B) by:
L(P)(c) = Aplc]

where #,.:A— B is defined by:

Mo(x)= U Dulanx,a) and Do(u,v) = N P(u,v).

acA(P)
arnz+l

Given two abstract control points u and v, (1, v) is equal to the greatest lower
bound of the abstract values b associated with the abstract control points a that
belong to the (possibly empty) convex subset {x:u < x < v}. It is easy to see that this
function is increasing in its first argument and decreasing in its second argument. The
function ., is therefore monotonic, and maps every abstract control point xe 4 to
the union of the abstract values b associated with the minimum elements a € A(P) such
that x A a + L. The meaning of a representation in P, (4, B) is thus identical to the
meaning defined in the previous section, since every element of a non-redundant
domain A(P) is minimum. The meaning of .#, for the representation P = {{a, b),{a’,
b’>,{a",b">} and three particular values a = [2,13), a’ =[10, 18] and a” = [6,21], is
illustrated in Figure 2 in the case of the interval lattice I(Z). The function .#, maps

bubup’
(o)
(a.b)
b b" bl U b”
b \ b”
€1 b' 1
1] Ll T r L1 v L 1 i Ll b ¥ T T 1 L L) LJ v 1 ) T I l) 1 4’
o 2 5 6 9 10 13 14 18 19 21 22

Fig. 2. Meaning of .#, for P = {a,b),{a’,b")>,{a",b">}.

an abstract control point, represented by a point on the plane using the usual
encoding of intervals:

[x, ¥ (x+)/2, (y—x)/2)
to an abstract value in B. The function I'(P):Z - B maps every integer k to .#,[k],
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where the token [k] = [k, k] is the one-point interval. Note how the intervals below a’
are ‘protected’ from the value b” associated with the abstract control point a”.

The problem however with this new meaning function I’ is that it is not monotonic
over P(4, B). Intuitively, non-monotonicity arises when an element <{a’, 5"} is added
to a representation P and ¢’ “masks’ a region previously mapped to a value greater
than b’. This would be the case for instance in Figure 2 if {a’,b") was added to {{a,
by, {a",b">} and b’ =b". In order to avoid this situation, one can require that " be
greater than %.(a"), where the smallest safe value 5,(x) is defined by:

Sx)= U Dp(x,a).
155

Intuitively, this condition ensures that the new value &’ is at least the union of every
value that ¢’ could mask, i.e. the values associated with the minimum elements in A(P)
that are above &’. This intuition can be formalized by defining the relation < over
P(A4, B) as follows:

[v<a bY>eP, Ia,bY>eP:a=a NbT¥

PP
1v<a BYe P :d ¢ AP)=b 2 %(d).

Note that since #,.(a) = P(a) for every a in the domain of P, this condition could also
be written as follows:
{ A(P) = A(P)

PP«
\v<¢a,byeP b 2 %),
Theorem 10

(P(4, B), X) is a partial order, and T is monotonic over P(A4, B).

Proof
Let us first show that T is monotonic over P(4, B). So let us suppose that P < P'.
Then A(P) = A(P’), and for every xe A4 such that x £ 1:

Flx)2 U Dola A x,a)

acA(P)
l<z<a

()2 U Dpla A x,0).
acA(P)
anz+l

But for every ae A(P) such that either x Aa+ L or L <x<a

Dpfanx,a)= [1 ()
(a’,b)eP’
aAzga'<a
Let us now suppose that there exists {a’,»’) € P’ such that ¢ A x < &’ < a. Then by
hypothesis:
VaS@)= U Zua@,a)2 U Z.(a, ).

a"eA(P) a"e A(P)
a'sa” a’'ga"<a
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1
c) a,<a'<a and a">a' d) a,<a'<a,

Fig. 3. Widening in a functional partitioning framework.

Buta A x < @’ < a’ < aimplies that Z.(a A x,a) E Dp(a’, a”), and since ae A(P), the
set {a”"€ A(P):a’ € a” < a} is non-empty and thus:

b2 9.(a A x,a)
which implies that: Dola A x,a) 2 Dpla A x,a)
and therefore: [ F(x) 2 F(x)

‘l///,,,(x) 2 M(x).

Consequently, since (L) = #,(L) = L for every representation Q, then .#, & M,
% = ., and T is monotonic over P(4, B). Finally, < being trivially reflexive and
antisymmetric, let us prove that it is also transitive. So let P <X P’ <\ P”. Then for every
{a”,b”)y e P” such that a” ¢ A(P), either a”e A(P’), and thus b” 2 b' 2 F.(a”), or else:

T ACOEEAC

which proves that P P". [J
We have proven that (P(4, B), X) is a partial order, but we must note that the
meaning function is not strictly monotonic, i.e. one can find two distinct
representations such that P, < P, and ['(P,) = I'(P,). This holds for instance whenever
b, = b, for:
F={I1,1],6),<[2,31,'>,<[1,3), b0} (i€{1,2})

since: [(P) =T(P) = {1>b,2> b, 3> b}

This problem can be solved by considering well chosen subsets of P(A4, B), but we
shall not study this problem here. We have thus defined a very flexible framework
such that abstract control points are added and never removed during a given
computation. Moreover, the information associated with each control point is only
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allowed to increase. Finally, we have a very easy criterion to check whether or not a
pair {a,b)€e A x B can be safely added to a representation, which is very important
if one wishes to be able to generalize at some point of the computation. What we need
now is to define elementary widening operators, i.e. operators such that P < PV P’
and I'(P) = T (PVP).

In the rest of this section, we shall only consider finite representations, for they have
the greatest practical interest, and for the sake of simplicity, we start by defining
P’ =PV P for a singleton P’ ={{a’,b’)}. There are basically three cases in the
definition of P”. Each one is illustrated in Figure 3, where we have taken 4 = 1(Z),
and P = {<a,;, b,7,<a,, b,»,<as, by>}:

e If a’€ A(P), then for every {a, b) € P such that a < «’, the replacement of » by any
element greater than &’ || b ensures that the meaning of P” is greater than the
meaning of {{a’,b")}, and at the same time that P <X P” (Figure 3a).

o If a'¢ A(P). Suppose one wishes to add this new abstract control point to the
domain of the current representation P. Obviously {a’, ") cannot simply be added
to P. But adding any pair <{a”,b”) such that a” > a’ and " 2 b’ U F.(a”) will
ensure that P <X P”. However, as in the previous case, every <{a,b)e P such that
a < a” may ‘mask’ the value b’ to several elements of the basis. Hence, each value
b must be replaced by an element greater than &’ |J b to ensure that the meaning
of P” is greater than the meaning of {{a’,b')} (see Figures 3b, ¢).

o There are cases however where a’ ¢ A(P) but one does not want to add &' to the
domain of P. In fact, this will almost always be the case when working with finite
representations. There are then two subcases to consider. If y(a’) < C(P), every
control point ¢ represented by a’ is already represented by at least one element a
such that {a,b)>€ P and [c] < a, and replacing b by b U b’ will ensure that the
meaning of P” is greater than the meaning of {{a’,b">} — provided of course that,
as in the previous cases, every »” such that {(a”, "> e P and a” < a be replaced by
an element greater than & U b” (Figure 3d). But if y(a") € C(P), then the region
defined by a’ contains ‘new’ control points, and there is no way to avoid the
addition of &’ to A(P). The previous case must thus be applied, choosing for
instance a” = T.

Note that, in practice, the test y(a”) € C(P) will always be approximated, and a
given abstract control point &’ will not be added to the domain of P only if there
exists {a, b) € P such that a’ < a. Such an approximation will thus generally imply
the non-stability of the widening operator (cf. Section 3).

This definition shows that functional partitioning is well suited to generalization
processes, for it enables one to easily generalize without losing too much information.
In order to complete our framework, we now define PV Q for any finite representation
QeP(4, B) by arbitrarily numbering the elements <{a,, b,>, i€[1,k] of Q, and adding
them one at a time to P, i.e.:

PVQ=({(PVQ)..)VQ,
where Q, = {a,,b,>}. This definition trivially implies that

PVQ>((PVQ)..)VQ »... =P
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and thanks to the next theorem:
rPve)=Tr(Lve)..)vo,)
2T(@)U ... uI(@
=2TQ,v ...vQ0)
=TI'(Q)

which shows that condition (iv) of Definition 1 is satisfied.

Theorem 11
For every Q,,0,eP(A, B) such that Q, U Q,eP(4,B):

(@, U @) = T(Q)) U [(Qy).

Proof
We first remark that for every u,ve A:

(01 U Qo) (u,v) = Qi(u,0) U Qi(u,v)

thus: Dy, 0, 0) = Dy (u,0) N Dy (u,0) E Dy (u,0), D (u,0)
and therefore:
Mo,y o, (%) = U Dy, ue, (@A X, a)
ac4(Q, U Qy
anz+l
= U Dy yo@anxau U Y ,qlanxa)
aeA(Q,) acA(Q,)
anz+l aAz:l

= My (x) U M (x)
which proves that I'(Q, U Q,) = I'(Q,) U I'(Q,). O

5 Applications

We now present two possible applications of dynamic partitioning. The first one is
simply the application of basic partitioning to the bi-dimensional interval lattice
I(Z?). Its interest is rather academic, but we shall use this example to illustrate how
widening operators can be effectively built. In the second example, we will show how
a precise description of the input/output behaviour of a program function can be
computed using functional partitioning. This example will exemplify the case where
the shape of a program invariant cannot be predicted and has to be considered as an
output of the fixed point computation itself.

5.1 Multi-intervals

The aim of this section is to show how sets of bi-dimensional intervals can be used
to represent sets of integer pairs. Following the method developed in Section 4.1, we
can either use non-redundant subsets or strongly non-redundant subsets of I(Z?).
Note that strongly non-redundant subsets of I(Z?) are always larger than non-
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Fig. 4. Widenings over P, (I(Z?)).

Fig. 5. Safe representation of Ifp (®).

redundant subsets. We are going to illustrate the ideas that can be used to build
elementary widening operators over such subsets. Figure 4a shows an element
P ={a,,a,,a;} of P, (I(Z%) plus an extra element a’ €I(Z*). We wish to calculate
P’ = PV {a’}. Figure 4b illustrates how P’ can be defined using a join-like operator.
Note that such an operator might be very difficult to implement. So let us focus on
P_(I(Z?%). We shall define two elementary operators. The first one V, (Figure 4c)
behaves like a join operator, and shall be used in the first steps of a computation. The
second one V, (Figure 4d) computes a generalization as follows. Using the widening
operator V, over I(Z?) defined in Section 2, one first computes a” = (\/ P)V,a’.
Intuitively, \/ P is used as a reference to determine in ‘ which direction’ a’is ‘moving’.
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Of course, different references can be used, such as the most recently added elements
of P for instance. Finally, P’ is calculated by removing the redundant elements of
P U {a”}. We shall use these two elementary widening operators to compute a
non-trivial, safe and finitely represented approximation of the least fixed point of
@ :P(N?) - P(N?) defined by:

OM) ={(2,15,<2, 25} U KIxp/2, x+ D}z, yyem-

This least fixed point cannot be finitely represented in any usual lattice used for
modelling sets of integer pairs, such as the linear inequalities lattice of Cousot and
Halbwachs (1978), for instance. But one can very easily define a safe approximation
@* of @ by:

O*(P) = {K[2,2],[1, 2D} U {®I(X, V)}ix. yyer

where O1([i, s, [, s'D) = Wi’ /2), [ss7/2]), [i+ 7, s+ 51

Thus, using the framework of Section 3 with the widening operator:
V=(ViV))=(V,V,V,V, .)

one can finitely compute the following non-trivial approximation displayed in

Figure 5:
{<12,2],[1,21>,<[1, 2], [3, 41>, <[1, 4], [4, 61, <[2, 121, [5, 101, <[5, @”, [7, @*])}-

5.2 Minimal function graphs

We now present an application of functional partitioning to interprocedural abstract
interpretation, which in fact originally motivated this work. Let us suppose that one
has a program function ®:Z - Z, such as the Loop function introduced in Section 2
or MacCarthy’s 91-function defined by:
funMcn=i1if (n> 100) then
n—10
else

Mc(Mc(n+11)).
We wish to determine a safe approximation of the minimal function graph of @ for
a given set of input data specifications. We do not formally describe a minimal
function graph semantics, but rather give an intuition about the way finite
representations of minimal function graphs can be computed using functional
partitioning. As hinted at the end of Section 2, we shall abstract minimal function
graphs using representations in P(I(Z),I(Z)), and input data specifications using
representations in P_(I(Z)). So let us suppose that we have an initial representation

I, of the set of input data specifications. We can define the first representation of the
minimal function graph of ® with respect to the input data specification I, by:

By = {<,, -L>}i°e10-
The meaning of a representation P is the one introduced in Section 4.3, that is:

T(P) (n) = Mp[n, 7]
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where '/”P(x) = \/ /\ ' (x A i) SUs i}<i’.v’>eP'
{t,v)eP
TAtEL

Note that, contrary to what is proposed by Jones and Mycroft (1986), we have not
introduced a special value ‘!’ to denote non-termination. Therefore, at the end of the
computation, I'(P)(n) = L either means that ® has never been called with n as
argument, or that it has been called and looped. Note that this is not too important,
since these two interpretations can be easily distinguished by looking at the domain
of the representation. The approximate minimal function graph is therefore the
limit of the increasing chain defined by:

P =P Vk (D#(Pk)
where V, is an elementary widening operator, and ®*(P) is defined as follows:

(1) For every {i,v) in P, an updated value v" 2 v of v is computed by applying the
definition of @ to the set of values denoted by i and replacing the values of the
recursive calls ®(i") by #,("). The latter is the best approximation of ®(i") that
can be given using the current approximation of ®.

(2) Then ®*(P) = {7, L)}ye) Vil<i, "D} (s vyer» Where I’ is the set of new abstract
control points over which @ has been called in step 1.

In other words, we compute an updated approximation v” of the value v of ® over
each abstract control point i in the domain of the representation P, taking into
account the fact that recursive calls have generated new abstract control points i’ by
inserting these intervals into the representation, and we then insert the new pair
vy itself.

The insertion of {i,v’> can be done for instance in a fairly simple way by using the
usual widening operator V, over I(Z) defined in Section 2, and replacing {i,v) in the
initial representation by <{i,v V,v"), in order to make sure that the increasing chain of
abstract values (v, V, v, ...) will be eventually stable. Of course, at the beginning of
the iteration sequence, it is also safe to replace {i,v) by {i,v V v").

The insertion of the new abstract control points i into the representation is more
subtle, and uses the elementary widening operator V defined in Section 4.3.
Obviously, it is generally unsafe to add directly {i’, 1) into the representation since,
as discussed in Section 4.3, // might ‘mask’ one of the intervals i in the domain of the
representation and thus invalidate its meaning. The smallest pair that can be safely
inserted is therefore {i’, (/). But abstract control points themselves need to be
generalized to enforce a finite computation, and at some point of the iteration
sequence, we will have to replace the interval i’ by a greater one i, e.g. the maximum
element T. This can be formalized by introducing three elementary widening
operators defined as follows.

(V,) Add the pair (i, %.(i")). This is the most precise, join-like, widening operator.
(V,) When it is safe not to add 7, i.e. when the region covered by i’ is already
covered by the domain of P, then do nothing, otherwise generalize by adding
'S0, where i"=¢. A good choice can be for instance
"=(\/AP) v, ie the smallest interval representing all the
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values over which @ has been computed so far, in which case
S(i) = L.

(V,) Finally, to avoid adding an infinite number of abstract control points, one can
use the widening operator over the intervals and add

KV APYV, i, L.

Of course, the choice of the sequence of elementary widening operator is essential. The
first elementary widening operator V, will generally be used at the beginning of the
computation, and V, will systematically be used at the end. Moreover, it is often
useful, after having generalized using V,, to make a few more precise steps using V,
or V,. The motivation behind this choice is that once the domain of the minimal
function graph has been delimited, a few more precise steps are generally needed to
determine the abstract control points that are useful to precisely describe this graph
and allow these intervals to ‘propagate’ along recursive calls.

Finally, note that the insertion of the updated abstract values v” and the insertion
of the new abstract control points i can be freely mixed in practice, and newly
generated control points can be added on the fly to the representation without
problem.

The widening operator that we have described turns the functional partitioning
framework into a tractable framework. So for instance, using the widening operator
(V. V,V9), one can automatically compute, after four iterations, the following
representation of the minimal function graph of Leep for the input data specification

{[0,0]}:
{<[0, 01,[100, 100]>, [0, ®*],[100,@*]>,<(1,1],[100, 100]>,<[1, 100}, 100, 100] >}

which has the following meaning:

i Loop (i)
0 <rn<100 [100,100]
100 < n [100, ®*]

This result is interesting in that it shows that the exact information: Loeop [0, 100] =
[100, 100] has been obtained, as opposed to Section 2, and this has been achieved
without the help of a narrowing operator. However, contrary to the result of Section
2, the approximate minimal function graph seems to indicate that the computation of
Loop (0) might require computing Loop for values greater than 100, but starting this
time from the input data specification {[0, 100]}, and using the ‘brute force’ widening
operator (V¢) we can compute the following representation:

{<[0,100], [100, 1001 >}

which invalidates this interpretation. Similarly, using the widening operator (V, V2 V?)
one can compute, after four iterations, the following representation of the minimal
function graph of Mec for the input specification {[0, 50]}:

{<[0, 50],[91, 911>, [0, @* — 10],[91, ©*]>, {[11, 111],[91, 101]>,([11, 61},[91, 91>,
<[22,72],191,91]>,<[22,111],[91, 101]}, 91, 101],[91,91]>}.
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This representation has the following meaning:

n Mc(n)
n<0 1
0<ngT72 [91,91]
73<n<90 [91,101]
91 < n< 101 [91,91]
12<n<g 111 [91,101]

112<n 91, 0+ —10]

which is a good and safe approximation of the exact meaning of Me, i.e.:

[n—lo if n > 101

Mec(n) =
() 191 otherwise.

It is interesting to compare this result to the one obtained in Bourdoncle (1990) using
a method based on static partitioning. In this method, the representation of
MacCarthy’s 91 function would consist of three interval pairs, each pair being
associated with a syntactically different call to Mec, that is, the main call to Mc and
the two recursive calls. This formally corresponds to having three mutually recursive
functions Mcl, Mc2 and Mc3 with the following definition:
if (n> 100) then
n—10
else
Mc3(Me2(n+11))
and describing each of these functions by a pair of intervals representing all of the
function’s inputs and all of the function’s outputs. The result obtained is the

following:
Mel:[0,50),[91, " —20])>

Mec2:{[11,0*],[91, 0" —10]>
Mc3:{91,0"—10],[91, 0" —20]>.
This quite mediocre result can be explained by noting that the induction property:
VY ne[91,101]: Mc(n) = 91

has not been inferred by the framework because the number of interval pairs was fixed
in advance. This phenomenon can be worked around by using an ad-hoc input data
specification, namely {[0, 100]}, which gives the following, optimum, result:

Mecl:{{0,100],[91,91]>

Mc2:([11,111),[91, 101]>

Mc3:{[91,101],[91,91]>.

However, this ‘trick’ is not necessary when using the functional partitioning
framework, since this framework infers the interesting program properties by itself,
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and automatically determines the number of interval pairs needed to describe the
program invariant. However, it is worth mentioning that the widening operator has
a major impact on the result’s quality, and for instance, the ‘brute force’ widening
operator would only compute, after two iterations, the following, mediocre but
concise, representation:

{<[05 50]’ [913 o — 10]>’ <[Oa 0)+], [915 o — 10]>}
with the obvious meaning:
Vnel0,0™]:Mc(n)e[91, 0+ — 10].

This example shows that the data-oriented approach of dynamic partitioning is much
more versatile than the syntax-oriented approach of static partitioning, and generally
gives better results. But on the other hand, static partitioning guarantees the size of
the least fixed point’s representation, and can lead to faster analyses. Finally, note
that the two approaches can be easily mixed. For example, using the widening
operator (V_,V,V®) and the input data specification ({[0,50]}, J, >, one can
compute, after five iterations, the following representations:

Mel:{{[0,50],[91,91]>}

Me2:{{[11,61],[91,911>, <[11, ®*), [91, w* — 101>, <[22, 72], [91, 911>,
<[22,111],[91, 101])}

Me3:{([91, 101],[91, 91>}

which have the following, coalesced meaning, obtained by intersecting their individual
meanings:
n Mc(n)
n<0 1
0<n<72 [91,91]
3<n<90 [91,101]
91 £ n <101 [91,91]
102<ng 11l [91,101]
112<n 91, ®*—10]

6 Conclusion

We have presented a technique that enables rich abstract interpretation frameworks
to be built from simpler ones even in cases when one has no indication about what
such frameworks should look like. We believe in particular that functional
partitioning is of great interest to interprocedural abstract interpretation for it
incrementally builds finite, non-trivial representations of minimal function graphs
and monotonic functions. More generally, the representation framework can be used
every time there is no canonical representation of abstract program properties and the
equivalence test over these properties is intractable or very costly.

We have shown how widening operators can be built in dynamic partitioning
frameworks, and exemplified their behaviour over a set of examples. However, this
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paper has not addressed a number of interesting problems such as the effective design
of narrowing operators, the combination of forward and backward analyses, and the
generalization of functional partitioning to higher order functions.
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